Advertisement

Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson’s Disease

  • Jie Luo
  • Piyush Padhi
  • Huajun Jin
  • Vellareddy Anantharam
  • Gary Zenitsky
  • Qian Wang
  • Auriel A. Willette
  • Arthi Kanthasamy
  • Anumantha G. KanthasamyEmail author
INVITED REVIEW

Abstract

Chronic and debilitating neurodegenerative diseases, such as Parkinson’s disease (PD), impose an immense medical, emotional, and economic burden on patients and society. Due to a complex interaction between genetic and environmental risk factors, the etiology of PD remains elusive. However, the cumulative evidence emerging from clinical and experimental research over the last several decades has identified mitochondrial dysfunction, oxidative stress, neuroinflammation, and dysregulated protein degradation as the main drivers of PD neurodegeneration. The genome-editing system CRISPR (clustered regularly interspaced short palindromic repeats) has recently transformed the field of biotechnology and biomedical discovery and is poised to accelerate neurodegenerative disease research. It has been leveraged to generate PD animal models, such as Parkin, DJ-1, and PINK1 triple knockout miniature pigs. CRISPR has also allowed the deeper understanding of various PD gene interactions, as well as the identification of novel apoptotic pathways associated with neurodegenerative processes in PD. Furthermore, its application has been used to dissect neuroinflammatory pathways involved in PD pathogenesis, such as the PKCδ signaling pathway, as well as the roles of novel compensatory or protective pathways, such as Prokineticin-2 signaling. This review aims to highlight the historical milestones in the evolution of this technology and attempts to illustrate its transformative potential in unraveling disease mechanisms as well as in the development of innovative treatment strategies for PD.

Graphical Abstract

Keywords

CRISPR Parkinson’s disease Neurodegeneration Neuroinflammation Drug development PKCdelta 

Notes

Acknowledgments

The writing of this review was primarily supported by the National Institutes of Health R01 grants ES027245, ES026892, NS100090 and NS088206. AAW and QW were supported by the College of Human Sciences at Iowa State University, National Institutes of Health R00 grant AG047282, and Alzheimer’s Association Research Grant to Promote Diversity (AARG-D) AARGD-17-529552. The W. Eugene and Linda Lloyd Endowed Chair and Eminent scholar and Armbrust Endowment to A.G.K. and the Salisbury chair to A.K. are also acknowledged. The support from the Presidential Interdisciplinary Research Initiative for the Big Data Brain Research from Iowa State University is also acknowledged.

Compliance with Ethical Standards

Conflict of Interest

A.G.K and V.A have an equity interest in PK Biosciences Corporation located in Ames, IA. The terms of this arrangement have been reviewed and approved by Iowa State University in accordance with its conflict of interest policies. Other authors declare no actual or potential competing financial interests.

References

  1. Banks WA (2016) From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15:275–292.  https://doi.org/10.1038/nrd.2015.21 CrossRefGoogle Scholar
  2. Barrangou R (2012) RNA-mediated programmable DNA cleavage. Nat Biotechnol 30:836–838CrossRefGoogle Scholar
  3. Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244.  https://doi.org/10.1016/j.molcel.2014.03.011 CrossRefGoogle Scholar
  4. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712.  https://doi.org/10.1126/science.1138140 CrossRefGoogle Scholar
  5. Barzilai A, Melamed E (2003) Molecular mechanisms of selective dopaminergic neuronal death in Parkinson’s disease. Trends Mol Med 9:126–132CrossRefGoogle Scholar
  6. Basu S, Adams L, Guhathakurta S, Kim Y-S (2017) A novel tool for monitoring endogenous alpha-synuclein transcription by NanoLuciferase tag insertion at the 3’end using CRISPR-Cas9 genome editing technique. Sci Rep 8:45883.  https://doi.org/10.1038/srep45883 CrossRefGoogle Scholar
  7. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964.  https://doi.org/10.1126/science.1159689 CrossRefGoogle Scholar
  8. Cai B, Sun S, Li Z, Zhang X, Ke Y, Yang J, Li X (2018) Application of CRISPR/Cas9 technologies combined with iPSCs in the study and treatment of retinal degenerative diseases. Hum Genet 137:679–688.  https://doi.org/10.1007/s00439-018-1933-9 CrossRefGoogle Scholar
  9. Chen Y-C, Farzadfard F, Gharaei N et al (2017) Randomized CRISPR-Cas transcriptional perturbation screening reveals protective genes against alpha-Synuclein toxicity. Mol Cell 68:247–257.e5.  https://doi.org/10.1016/j.molcel.2017.09.014 CrossRefGoogle Scholar
  10. Chen Y, Dolt KS, Kriek M, Baker T, Downey P, Drummond NJ, Canham MA, Natalwala A, Rosser S, Kunath T (2019) Engineering synucleinopathy-resistant human dopaminergic neurons by CRISPR-mediated deletion of the SNCA gene. Eur J Neurosci 49:510–524Google Scholar
  11. Cyranoski D (2018) CRISPR-baby scientist fails to satisfy critics. Nature 564:13–14CrossRefGoogle Scholar
  12. Dansithong W, Paul S, Scoles DR, Pulst SM, Huynh DP (2015) Generation of SNCA cell models using zinc finger nuclease (ZFN) technology for efficient high-throughput drug screening. PLoS One 10:e0136930.  https://doi.org/10.1371/journal.pone.0136930 CrossRefGoogle Scholar
  13. De Virgilio A, Greco A, Fabbrini G et al (2016) Parkinson’s disease: autoimmunity and neuroinflammation. Autoimmun Rev 15:1005–1011.  https://doi.org/10.1016/j.autrev.2016.07.022 CrossRefGoogle Scholar
  14. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607.  https://doi.org/10.1038/nature09886 CrossRefGoogle Scholar
  15. Demirci S, Uchida N, Tisdale JF (2018) Gene therapy for sickle cell disease: an update. Cytotherapy 20:899–910.  https://doi.org/10.1016/j.jcyt.2018.04.003 CrossRefGoogle Scholar
  16. Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400.  https://doi.org/10.1128/JB.01412-07 CrossRefGoogle Scholar
  17. Dionisio PEA, Oliveira SR, Amaral JSJD, Rodrigues CMP (2018) Loss of microglial Parkin inhibits necroptosis and contributes to Neuroinflammation. Mol Neurobiol.  https://doi.org/10.1007/s12035-018-1264-9
  18. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386CrossRefGoogle Scholar
  19. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.  https://doi.org/10.1126/science.1258096 CrossRefGoogle Scholar
  20. Duffy MF, Collier TJ, Patterson JR, Kemp CJ, Luk KC, Tansey MG, Paumier KL, Kanaan NM, Fischer DL, Polinski NK, Barth OL, Howe JW, Vaikath NN, Majbour NK, el-Agnaf OMA, Sortwell CE (2018) Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflammation 15:129.  https://doi.org/10.1186/s12974-018-1171-z CrossRefGoogle Scholar
  21. Ekstrand MI, Galter D (2009) The MitoPark mouse - an animal model of Parkinson’s disease with impaired respiratory chain function in dopamine neurons. Parkinsonism Relat Disord 15(Suppl 3):S185–S188.  https://doi.org/10.1016/S1353-8020(09)70811-9 CrossRefGoogle Scholar
  22. Farrer M, Maraganore DM, Lockhart P, Singleton A, Lesnick TG, de Andrade M, West A, de Silva R, Hardy J, Hernandez D (2001) Alpha-Synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet 10:1847–1851CrossRefGoogle Scholar
  23. Filipov NM, Seegal RF, Lawrence DA (2005) Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicol Sci 84:139–148.  https://doi.org/10.1093/toxsci/kfi055 CrossRefGoogle Scholar
  24. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826.  https://doi.org/10.1038/nbt.2623 CrossRefGoogle Scholar
  25. Ganguly G, Chakrabarti S, Chatterjee U, Saso L (2017) Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Devel Ther 11:797–810.  https://doi.org/10.2147/DDDT.S130514 CrossRefGoogle Scholar
  26. Garneau JE, Dupuis M-E, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71.  https://doi.org/10.1038/nature09523 CrossRefGoogle Scholar
  27. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586.  https://doi.org/10.1073/pnas.1208507109 CrossRefGoogle Scholar
  28. Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, Joseph J, Brenza T, Narasimhan B, Kanthasamy A, Kalyanaraman B, Kanthasamy AG (2016) Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J NeuroImmune Pharmacol 11:259–278.  https://doi.org/10.1007/s11481-016-9650-4 CrossRefGoogle Scholar
  29. Gong Z, Pan J, Shen Q, Li M, Peng Y (2018) Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation 15:242.  https://doi.org/10.1186/s12974-018-1282-6 CrossRefGoogle Scholar
  30. Good CH, Hoffman AF, Hoffer BJ, Chefer VI, Shippenberg TS, Bäckman CM, Larsson NG, Olson L, Gellhaar S, Galter D, Lupica CR (2011) Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson’s disease. FASEB J Off Publ Fed Am Soc Exp Biol 25:1333–1344.  https://doi.org/10.1096/fj.10-173625 Google Scholar
  31. Gordon R, Neal ML, Luo J, Langley MR, Harischandra DS, Panicker N, Charli A, Jin H, Anantharam V, Woodruff TM, Zhou QY, Kanthasamy AG, Kanthasamy A (2016) Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration. Nat Commun 7.  https://doi.org/10.1038/ncomms12932
  32. Gyorgy B, Loov C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, Kastanenka K, Mu D, Volak A, Giedraitis V, Lannfelt L, Maguire CA, Joung JK, Hyman BT, Breakefield XO, Ingelsson M (2018) CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Molecular therapy Nucleic acids 11:429–440Google Scholar
  33. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405CrossRefGoogle Scholar
  34. Horvath P, Romero DA, Coute-Monvoisin A-C, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190:1401–1412.  https://doi.org/10.1128/JB.01415-07 CrossRefGoogle Scholar
  35. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278.  https://doi.org/10.1016/j.cell.2014.05.010 CrossRefGoogle Scholar
  36. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433CrossRefGoogle Scholar
  37. Jansen R, van Embden JDA, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575CrossRefGoogle Scholar
  38. Jarraya B, Boulet S, Ralph GS et al (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia Sci Transl Med 1.  https://doi.org/10.1126/scitranslmed.3000130
  39. Jiang H, Kang SU, Zhang S, Karuppagounder S, Xu J, Lee YK, Kang BG, Lee Y, Zhang J, Pletnikova O, Troncoso JC, Pirooznia S, Andrabi SA, Dawson VL, Dawson TM (2016) Adult Conditional Knockout of PGC-1alpha Leads to Loss of Dopamine Neurons. eNeuro 3Google Scholar
  40. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.  https://doi.org/10.1126/science.1225829 CrossRefGoogle Scholar
  41. Jo A, Ham S, Lee GH, Lee YI, Kim SS, Lee YS, Shin JH, Lee Y (2015) Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int 2015:305716–305710.  https://doi.org/10.1155/2015/305716 CrossRefGoogle Scholar
  42. Kanthasamy AG, Anantharam V, Zhang D, Latchoumycandane C, Jin H, Kaul S, Kanthasamy A (2006) A novel peptide inhibitor targeted to caspase-3 cleavage site of a proapoptotic kinase protein kinase C delta (PKCdelta) protects against dopaminergic neuronal degeneration in Parkinson’s disease models. Free Radic Biol Med 41:1578–1589.  https://doi.org/10.1016/j.freeradbiomed.2006.08.016 CrossRefGoogle Scholar
  43. Kanthasamy AG, Choi C, Jin H, Harischandra DS, Anantharam V, Kanthasamy A (2012) Effect of divalent metals on the neuronal proteasomal system, prion protein ubiquitination and aggregation. Toxicol Lett 214:288–295.  https://doi.org/10.1016/j.toxlet.2012.09.008 CrossRefGoogle Scholar
  44. Kitazawa M, Anantharam V, Yang Y, Hirata Y, Kanthasamy A, Kanthasamy AG (2005) Activation of protein kinase Cδ by proteolytic cleavage contributes to manganese-induced apoptosis in dopaminergic cells: protective role of Bcl-2. Biochem Pharmacol 69:133–146.  https://doi.org/10.1016/j.bcp.2004.08.035 CrossRefGoogle Scholar
  45. Kim H, Ham S, Jo M, Lee GH, Lee Y-S, Shin J-H, Lee Y (2017) CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation. Int J Mol Sci 18:2093Google Scholar
  46. Koo T, Lee J, Kim J-S (2015) Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cells 38:475–481.  https://doi.org/10.14348/molcells.2015.0103 CrossRefGoogle Scholar
  47. Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A (2013) The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 28:311–318.  https://doi.org/10.1002/mds.25292 CrossRefGoogle Scholar
  48. Kunkel GH, Chaturvedi P, Thelian N, Nair R, Tyagi SC (2018) Mechanisms of TFAM-mediated cardiomyocyte protection. Can J Physiol Pharmacol 96:173–181.  https://doi.org/10.1139/cjpp-2016-0718 CrossRefGoogle Scholar
  49. Lander ES (2016) The heroes of CRISPR. Cell 164:18–28.  https://doi.org/10.1016/j.cell.2015.12.041 CrossRefGoogle Scholar
  50. Langley M, Ghosh A, Charli A, Sarkar S, Ay M, Luo J, Zielonka J, Brenza T, Bennett B, Jin H, Ghaisas S, Schlichtmann B, Kim D, Anantharam V, Kanthasamy A, Narasimhan B, Kalyanaraman B, Kanthasamy AG (2017) Mito-Apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in MitoPark transgenic mice. Antioxid Redox Signal 27:1048–1066.  https://doi.org/10.1089/ars.2016.6905 CrossRefGoogle Scholar
  51. Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2018) Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson’s disease: relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology 64:240–255.  https://doi.org/10.1016/j.neuro.2017.06.002 CrossRefGoogle Scholar
  52. Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG (2005) Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther 313:46–55.  https://doi.org/10.1124/jpet.104.078469 CrossRefGoogle Scholar
  53. Ledford H (2015) CRISPR, the disruptor. Nature 522:20–24CrossRefGoogle Scholar
  54. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487.  https://doi.org/10.1038/nature21029 CrossRefGoogle Scholar
  55. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:1234–1257.  https://doi.org/10.1080/10717544.2018.1474964 CrossRefGoogle Scholar
  56. Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO (2014) Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 11:817–839.  https://doi.org/10.1007/s13311-014-0299-5 CrossRefGoogle Scholar
  57. Mangold M, Siller M, Roppenser B, Vlaminckx BJM, Penfound TA, Klein R, Novak R, Novick RP, Charpentier E (2004) Synthesis of group a streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol Microbiol 53:1515–1527.  https://doi.org/10.1111/j.1365-2958.2004.04222.x CrossRefGoogle Scholar
  58. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845.  https://doi.org/10.1126/science.1165771 CrossRefGoogle Scholar
  59. Menken M, Munsat TL, Toole JF (2000) The global burden of disease study: implications for neurology. Arch Neurol 57:418–420CrossRefGoogle Scholar
  60. Mitra S, Chakrabarti N, Bhattacharyya A (2011) Differential regional expression patterns of alpha-synuclein, TNF-alpha, and IL-1beta; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment. J Neuroinflammation 8:163.  https://doi.org/10.1186/1742-2094-8-163 CrossRefGoogle Scholar
  61. Mojica FJ, Juez G, Rodriguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9:613–621CrossRefGoogle Scholar
  62. Mojica FJ, Ferrer C, Juez G, Rodriguez-Valera F (1995) Long stretches of short tandem repeats are present in the largest replicons of the archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17:85–93CrossRefGoogle Scholar
  63. Mojica FJ, Diez-Villasenor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246CrossRefGoogle Scholar
  64. Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182.  https://doi.org/10.1007/s00239-004-0046-3 CrossRefGoogle Scholar
  65. Murlidharan G, Sakamoto K, Rao L, Corriher T, Wang D, Gao G, Sullivan P, Asokan A (2016) CNS-restricted transduction and CRISPR/Cas9-mediated gene deletion with an engineered AAV vector. Mol Ther Nucleic Acids 5:e338.  https://doi.org/10.1038/mtna.2016.49 CrossRefGoogle Scholar
  66. Nakai W, Westmoreland J, Yeh E, Bloom K, Resnick MA (2011) Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair (Amst) 10:102–110.  https://doi.org/10.1016/j.dnarep.2010.10.004 CrossRefGoogle Scholar
  67. Nalls MA, Pankratz N, Lill CM et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46:989–993.  https://doi.org/10.1038/ng.3043 CrossRefGoogle Scholar
  68. Nassif DV, Pereira JS (2018) Fatigue in Parkinson’s disease: concepts and clinical approach. Psychogeriatrics 18:143–150.  https://doi.org/10.1111/psyg.12302 CrossRefGoogle Scholar
  69. Neal M, Luo J, Harischandra DS, Gordon R, Sarkar S, Jin H, Anantharam V, Désaubry L, Kanthasamy A, Kanthasamy A (2018) Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes. Glia 66:2137–2157.  https://doi.org/10.1002/glia.23467 CrossRefGoogle Scholar
  70. Ng KL, Da Li J, Cheng MY et al (2005) Neuroscience: dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science (80- ) 308:1923–1927.  https://doi.org/10.1126/science.1112103 CrossRefGoogle Scholar
  71. Orr CF, Rowe DB, Halliday GM (2002) An inflammatory review of Parkinson’s disease. Prog Neurobiol 68:325–340CrossRefGoogle Scholar
  72. Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129.  https://doi.org/10.1038/nature17664 CrossRefGoogle Scholar
  73. Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM, Yamamoto TN, Merchant AS, Mehta GU, Chichura A, Shalem O, Tran E, Eil R, Sukumar M, Guijarro EP, Day CP, Robbins P, Feldman S, Merlino G, Zhang F, Restifo NP (2017) Identification of essential genes for cancer immunotherapy. Nature 548:537–542.  https://doi.org/10.1038/nature23477 CrossRefGoogle Scholar
  74. Potting C, Crochemore C, Moretti F, Nigsch F, Schmidt I, Manneville C, Carbone W, Knehr J, DeJesus R, Lindeman A, Maher R, Russ C, McAllister G, Reece-Hoyes JS, Hoffman GR, Roma G, Müller M, Sailer AW, Helliwell SB (2018) Genome-wide CRISPR screen for PARKIN regulators reveals transcriptional repression as a determinant of mitophagy. Proc Natl Acad Sci U S A 115:E180–E189.  https://doi.org/10.1073/pnas.1711023115 CrossRefGoogle Scholar
  75. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663.  https://doi.org/10.1099/mic.0.27437-0 CrossRefGoogle Scholar
  76. Reczek CR, Birsoy K, Kong H, Martinez-Reyes I, Wang T, Gao P, Sabatini DM, Chandel NS (2017) A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nature chemical biology 13:1274-1279Reczek CR, Birsoy K, Kong H, Martinez-Reyes I, Wang T, Gao P, Sabatini DM, Chandel NS (2017) A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nature chemical biology 13:1274–279Google Scholar
  77. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480.e12.  https://doi.org/10.1016/j.cell.2016.11.018 CrossRefGoogle Scholar
  78. Sanders LH, Laganière J, Cooper O, Mak SK, Vu BJ, Huang YA, Paschon DE, Vangipuram M, Sundararajan R, Urnov FD, Langston JW, Gregory PD, Zhang HS, Greenamyre JT, Isacson O, Schüle B (2014) LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiol Dis 62:381–386.  https://doi.org/10.1016/j.nbd.2013.10.013 CrossRefGoogle Scholar
  79. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282.  https://doi.org/10.1093/nar/gkr606 CrossRefGoogle Scholar
  80. Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, Palanisamy BN, Rokad D, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Park Dis 3:30.  https://doi.org/10.1038/s41531-017-0032-2 CrossRefGoogle Scholar
  81. Sarkar S, Rokad D, Malovic E, Luo J, Harischandra DS, Jin H, Anantharam V, Huang X, Lewis M, Kanthasamy A, Kanthasamy AG (2019) Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Sci Signal 12:eaat9900.  https://doi.org/10.1126/scisignal.aat9900 CrossRefGoogle Scholar
  82. Siderowf A, Lang AE (2012) Premotor Parkinson’s disease: concepts and definitions. Mov Disord 27:608–616.  https://doi.org/10.1002/mds.24954 CrossRefGoogle Scholar
  83. Singh N, Lawana V, Luo J, Phong P, Abdalla A, Palanisamy B, Rokad D, Sarkar S, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A (2018) Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 117:82–113.  https://doi.org/10.1016/j.nbd.2018.05.019 CrossRefGoogle Scholar
  84. Soldner F, Laganiere J, Cheng AW et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331.  https://doi.org/10.1016/j.cell.2011.06.019 CrossRefGoogle Scholar
  85. Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI, Goldmann J, Myers RH, Young RA, Jaenisch R (2016) Parkinson-associated risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature 533:95–99Google Scholar
  86. Song C, Charli A, Luo J et al (2019) Mechanistic interplay between autophagy and apoptotic signaling in Endosulfan-induced dopaminergic neurotoxicity: relevance to the adverse outcome pathway in pesticide neurotoxicity. Toxicol SciGoogle Scholar
  87. Sternberg SH, Doudna JA (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 58:568–574.  https://doi.org/10.1016/j.molcel.2015.02.032 CrossRefGoogle Scholar
  88. Stiles AR, Simon MT, Stover A, Eftekharian S, Khanlou N, Wang HL, Magaki S, Lee H, Partynski K, Dorrani N, Chang R, Martinez-Agosto JA, Abdenur JE (2016) Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion. Mol Genet Metab 119:91–99.  https://doi.org/10.1016/j.ymgme.2016.07.001 CrossRefGoogle Scholar
  89. Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208:1–25CrossRefGoogle Scholar
  90. Torres-Odio S, Key J, Hoepken H-H, Canet-Pons J, Valek L, Roller B, Walter M, Morales-Gordo B, Meierhofer D, Harter PN, Mittelbronn M, Tegeder I, Gispert S, Auburger G (2017) Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. J Neuroinflammation 14:154.  https://doi.org/10.1186/s12974-017-0928-0 CrossRefGoogle Scholar
  91. van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12:479–492.  https://doi.org/10.1038/nrmicro3279 CrossRefGoogle Scholar
  92. Verina T, Kiihl SF, Schneider JS, Guilarte TR (2011) Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates. Neurotoxicology 32:215–226. https://doi.org/10.1016/j.neuro.2010.11.003\rS0161-813X(10)00221-4 [pii]Google Scholar
  93. Wade PR, Palmer JM, Mabus J et al (2010) Prokineticin-1 evokes secretory and contractile activity in rat small intestine. Neurogastroenterol Motil 22:e152–e161.  https://doi.org/10.1111/j.1365-2982.2009.01426.x Google Scholar
  94. Wang X, Cao C, Huang J, Yao J, Hai T, Zheng Q, Wang X, Zhang H, Qin G, Cheng J, Wang Y, Yuan Z, Zhou Q, Wang H, Zhao J (2016) One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6:20620Google Scholar
  95. Wilkins HM, Swerdlow RH (2016) Relationships between mitochondria and neuroinflammation: implications for Alzheimer’s disease. Curr Top Med Chem 16:849–857CrossRefGoogle Scholar
  96. Witte ME, Geurts JJG, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10:411–418.  https://doi.org/10.1016/j.mito.2010.05.014 CrossRefGoogle Scholar
  97. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153.  https://doi.org/10.1038/nbt.1775 CrossRefGoogle Scholar
  98. Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184.  https://doi.org/10.1007/s00018-014-1744-7 CrossRefGoogle Scholar
  99. Zhu XX, Zhong YZ, Ge YW, Lu KH, Lu SS (2018) CRISPR/Cas9-Mediated Generation of Guangxi Bama Minipigs Harboring Three Mutations in alpha-Synuclein Causing Parkinson's Disease. Sci Rep 8:12420Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical SciencesIowa State UniversityAmesUSA
  2. 2.Department of Food Science and Human NutritionIowa State UniversityAmesUSA

Personalised recommendations