Adrenergic Modulation of Hematopoiesis

  • Georges J. M. MaestroniEmail author


Hematopoiesis produce every day billions of blood cells and takes place in the bone marrow (BM) by the proliferation and differentiation of hematopoietic stem cells (HSC). HSC are found mainly adjacent to the BM vascular sinusoids where endothelial cells and mesenchimal stromal cells promote HSC maintenance by producing a variety of factors. Other cell types that regulate HSC niches include sympathetic nerves, non–myelinating Schwann cells and a variety of mature hematopoietic cells such as macrophages, neutrophils, and megakaryocytes. This review will focus on the role of adrenergic signals, i.e. of catecholamines, in the regulation of the HSC niche. The available evidence is rather controversial possibly due to the fact that adrenergic receptors are expressed by many cellular components of the niche and also by the often neglected observation that catecholamines may be produced and released also by the BM cells themselves. In addition one has to consider that, physiologically, the sympathetic nervous system (SNS) activity follows a circadian rhythmicity as driven by the suprachiasmatic nucleus (SCN) of the hypothalamus but may be also activated by cognitive and non-cognitive environmental stimuli. The adrenergic modulation of hematopoiesis holds a considerable potential for pharmacological therapeutic approaches in a variety of hematopoietic disorders and for HSC transplantation however the complexity of the system demands further studies.

Graphical Abstract

Sympathetic nerve termini may release NE while mature BM cells may release norepinephrine (NE) and / or epinephrine (E). Both may bind to β-adrenergic receptor (AR) expressed in nestin+MSC in the hematopoietic stem cell (HSC) niche and regulate the physiological trafficking of HSC by modulating the expression of CXCL12 and SCF. Both NE and E may also activate Lin − c-Kit+ Sca-1+ (LKS) cell via another AR. In addition, NE may also signal to α1-AR expressed in pre-B cells which by TGF-β secretion might regulate proliferation of their lymphoid progenitors in an autocrine manner and/or inhibit myeloid progenitors


Adrenergic receptors Catecholamines Bone marrow niche Hematopoiesis Circadian rhythm 


Compliance with Ethical Standards

Conflict of Interest

No conflict of interest applies to this work.


  1. Ahlqvist RP (1948) A study of the adrenotropic receptors. Am J Phys 153(3):586–600Google Scholar
  2. Al-Sharea A, Lee MKS, Whillas A, Michell D, Shihata W, Nicholls AJ, Cooney OD, Kraakman MJ, Bertuzzo Veiga C, Jefferis AM, Jackson K, Nagareddy PR, Lambert G, Wong CHY, Andrews KL, Head GA, Chin-Dusting J, Murphy AJ (2018) Chronic sympathetic driven hypertension promotes atherosclerosis by enhancing hematopoiesis. Haematologica. pii: haematol.2018.192898.
  3. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, Isern J, Langa X, Tzankov A, Lundberg P, Muntión S, Tzeng YS, Lai DM, Schwaller J, Skoda RC, Méndez-Ferrer S (2014) Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512(7512):78–81. Google Scholar
  4. Asri A, Sabour J, Akashi A, Soleimani M (2016) Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1a/CXCR4 axis. EXCLI J 15:134–143. Google Scholar
  5. Benestad HB, Gundersen IS, Iversen PO, Haug E, Nja A (1998) No neuronal regulation of murine bone marrow function. Blood 91:1280Google Scholar
  6. Berlinger DL, Lorton D, Lubhan C, Felten DL (2001) Innervation of lymphoid organs- association of nerves with cells of the immune system and their implication in disease. In: Adre R, Felten DL, Cohen N (eds). Psychoneuroimmunology , 3rd end Academic Press, San Diego, pp55–113.Google Scholar
  7. Black PH (2003) The inflammatory response is an integral part of the stress response: implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X. Brain Behav Immun 17(5):350–364Google Scholar
  8. Blank U, Karlsson S (2015) TGF-β signaling in the control of hematopoietic stem cell. Blood 125:3542–3550. Google Scholar
  9. Budkowska M, Ostrycharz E, Wojtowicz A, Marcinowska Z, Woźniak J, Ratajczak MZ, Dołęgowska B (2018) A circadian rhythm in both complement Cascade (ComC) activation and Sphingosine-1-phosphate (S1P) levels in human peripheral blood supports a role for the ComC–S1P Axis in circadian changes in the number of stem cells circulating in peripheral blood. Stem Cell Rev 14(5):677–685. Google Scholar
  10. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg U (1994) International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46(2):121–136Google Scholar
  11. Coiffard B, Diallo AB, Culver A, Mezouar S, Hammad E, Vigne C, Nicolino-Brunet C, Dignat-George F, Baumstarck K, Boucekine M, Leone M, Mege JL (2018, 2018 Aug 2) Circadian rhythm disruption and sepsis in severe trauma patients. Shock:1.
  12. Cosentino M, Bombelli R, Ferrari M, Marino F, Rasini E, Maestroni GJ, Conti A, Boveri M, Lecchini S, Frigo G (2000) HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci 68(3):283–295Google Scholar
  13. Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, Sun Y, Severe N, Dutta P, Scharff J, Scadden DT, Weissleder R, Swirski FK, Moskowitz MA, Nahrendorf M (2015) Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res 116(3):407–417. Google Scholar
  14. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462. Google Scholar
  15. Feldman RS, Meyer JS, Quenzer LF (1997) Catecholamines, in principles of neuropsychopharmacology. Sinauer Associates Inc, Sunderland, pp 277–344Google Scholar
  16. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S (1985) Noradrenergic and peptidergic innervation of lymphoid tissue. J Immune 135(2 Suppl):755s–765s.Google Scholar
  17. Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA (2008) Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora's box? Mol Med 14(3–4):195–204Google Scholar
  18. Freeman JG, Ryan JJ, Shelburne CP, Bailey DP, Bouton LA, Narasimhachari N, Domen J, Siméon N, Couderc F, Stewart JK (2001) Catecholamines in murine bone marrow derived mast cells. J Neuroimmunol 119(2):231–238Google Scholar
  19. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98(2):556–562Google Scholar
  20. Golan K, Vagima Y, Ludin A, Itkin T, Cohen-Gur S, Kalinkovich A, Kollet O, Kim C, Schajnovitz A, Ovadya Y, Lapid K, Shivtiel S, Morris AJ, Ratajczak MZ, Lapidot T (2012) S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119(11):2478–2488Google Scholar
  21. Guimarães S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacol Rev 53(2):319–356Google Scholar
  22. Han J, Zou Z, Zhu C, Deng J, Wang J, Ran X, Shi C, Ai G, Li R, Cheng T, Su Y (2009) DNA synthesis of rat bone marrow mesenchymal stem cells through alpha1-adrenergic receptors. Arch Biochem Biophys 490(2):96–102. Google Scholar
  23. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisak Y, Lacombe J, Armstrong SA, Dührsen U, Frenette PS (2014) Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15(3):365–375. Google Scholar
  24. Hasan S, Johnson NB, Mosier MJ, Shankar R, Conrad P, Szilagyi A, Gamelli RL, Muthumalaiappan K (2017) Myelo-erythroid commitment after burn injury is under β-adrenergic control via MafB regulation. Am J Physiol Cell Physiol 312(3):C286–C301. Google Scholar
  25. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MA (2001) Plasma elevation of stem cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97(11):3354–3360Google Scholar
  26. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, von Zur Muhlen C, Bode C, Fricchione GL, Denninger J, Lin CP, Vinegoni C, Libby P, Swirski FK, Weissleder R, Nahrendorf M. (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med Jul;20(7):754–758. doi:
  27. Kaminski DA, Letterio JJ, Burrows PD (2002) Differential regulation of mouse B cell development by transforming growth factor beta1. Dev Immunol 9(2):85–95Google Scholar
  28. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421. Google Scholar
  29. Kawano Y, Fukui C, Shinohara M, Wakahashi K, Ishii S, Suzuki T, Sato M, Asada N, Kawano H, Minagawa K, Sada A, Furuyashiki T, Uematsu S, Akira S, Uede T, Narumiya S, Matsui T, Katayama Y (2017) G-CSF-induced sympathetic tone provokes fever and primes antimobilizing functions of neutrophils via PGE2. Blood 129(5):587–597. Google Scholar
  30. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502(7473):637–643. Epub 2013 Oct 9Google Scholar
  31. Laukova M, Vargovic P, Vlcek M, Lejavova K, Hudecova S, Krizanova O, Kvetnansky R (2013) Catecholamine production is differently regulated in splenic T- and B-cells following stress exposure. Immunobiology 218(5):780–789. Google Scholar
  32. Letterio JJ, Geiser AG, Kulkarni AB, Dang H, Kong L, Nakabayashi T, Mackall CL, Gress RE, Roberts AB (1996) Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression. J Clin Invest 98(9):2109–2119Google Scholar
  33. Lucas D, Battista M, Shi PA, Isola L, Frenette PS (2008) Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3(4):364–366. Google Scholar
  34. Lucas D, Bruns I, Battista M, Mendez-Ferrer S, Magnon C, Kunisaki Y, Frenette PS (2012) Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood 119(17):3962–3965. Google Scholar
  35. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Frenette PS (2013) Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19(6):695–703. Google Scholar
  36. Maestroni GJ (1995) Adrenergic regulation of haematopoiesis. Pharmacol Res 32(5):249–253Google Scholar
  37. Maestroni GJ (2000) Neurohormones and catecholamines as functional components of the bone marrow microenvironment. Ann N Y Acad Sci 917:29–37Google Scholar
  38. Maestroni GJ, Conti A (1994a) Noradrenergic modulation of lymphohematopoiesis. Int J Immunopharmacol 16(2):117–122Google Scholar
  39. Maestroni GJ, Conti A (1994b) Modulation of hematopoiesis via alpha 1-adrenergic receptors on bone marrow cells. Exp Hematol 22(3):313–320Google Scholar
  40. Maestroni GJ, Conti A, Pedrinis E (1992) Effect of adrenergic agents on hematopoiesis after syngeneic bone marrow transplantation in mice. Blood 80(5):1178–1182Google Scholar
  41. Maestroni GJ, Togni M, Covacci V (1997) Norepinephrine protects mice from acute lethal doses of carboplatin. Exp Hematol 25(6):491–494Google Scholar
  42. Maestroni GJ, Cosentino M, Marino F, Togni M, Conti A, Lecchini S, Frigo G (1998) Neural and endogenous catecholamines in the bone marrow. Circadian association of norepinephrine with hematopoiesis? Exp Hematol 26(12):1172–1177Google Scholar
  43. Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45(1):55–71. Google Scholar
  44. Marino F, Cosentino M, Bombelli R, Ferrari M, Maestroni GJ, Conti A, Lecchini S (1997) Measurement of catecholamines in mouse bone marrow by means of HPLC with electrochemical detection. Haematologica 82(4):392–394Google Scholar
  45. Martínez A, Bono C, Megías J, Yáñez A, Gozalbo D, Gil ML (2018) Systemic candidiasis and TLR2 agonist exposure impact the antifungal response of hematopoietic stem and progenitor cells. Front Cell Infect Microbiol 8:309. Google Scholar
  46. Massberg S, Von Andrian UH (2009) Novel trafficking routes for hematopoietic stem and progenitor cells. Ann N Y Acad Sci 1176:87–93. Google Scholar
  47. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447. Google Scholar
  48. Méndez-Ferrer S, Chow A, Merad M, Frenette PS (2009) Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 16(4):235–242. Google Scholar
  49. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. Google Scholar
  50. Muthu K, Iyer S, He L-K, Szilagyi A, Gamelli RL, Shankar R, Jones SB (2007) Murine hematopoietic stem cells and progenitors express adrenergic receptors. J Neuroimmunol 186(1–2):27–36Google Scholar
  51. Nicholls AJ, Wen SW, Hall P, Hickey MJ, Wong CHY (2018) Activation of the sympathetic nervous system modulates neutrophil function. J Leukoc Biol 103(2):295–309. Google Scholar
  52. Okamura H (2007) Suprachiasmatic nucleus clock time in the mammalian circadian system. Cold Spring Harb Symp Quant Biol 72:551–556Google Scholar
  53. Pasupuleti LV, Cook KM, Sifri ZC, Alzate WD, Livingston DH, Mohr AM (2014) Do all β-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock? J Trauma Acute Care Surg 76(4):970–975. Google Scholar
  54. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3(7):687–694Google Scholar
  55. Powell ND, Sloan EK, Bailey MT, Arevalo JMG, Miller GE, Chen E, Cole SW (2013) Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proc Natl Acad Sci U S A 110(41):16574–16579. Google Scholar
  56. Récalde A, Richart A, Guérin C, Cochain C, Zouggari Y, Yin KH, Vilar J, Drouet I, Lévy B, Varoquaux O, Silvestre JS (2012) Sympathetic nervous system regulates bone marrow-derived cell egress through endothelial nitric oxide synthase activation: role in postischemic tissue remodeling. Arterioscler Thromb Vasc Biol Mar 32(3):643–653. Google Scholar
  57. Saba F, Soleimani M, Kaviani S, Abroun S, Sayyadipoor F, Behrouz S, Saki N (2015) G-CSF induces up-regulation of CXCR4 expression in human hematopoietic stem cells by beta-adrenergic agonist. Hematology 20(8):462–468. Google Scholar
  58. Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol 6:171. Google Scholar
  59. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25Google Scholar
  60. Shastri A, Budhathoki A, Barta SK, Kornblum N, Derman O, Battini R, Raghupathy R, Verma AK, Frenette PS, Braunschweig I, Janakiram M (2017) Stimulation of adrenergic activity by desipramine enhances hematopoietic stem and progenitor cell mobilization along with G-CSF in multiple myeloma: a pilot study. Am J Hematol 92(10):1047–1051. Google Scholar
  61. Skurikhin EG, Pershina OV, Minakova MY, Dygai AM, Gol'dberg ED (2006) Monoaminergic regulation of proliferation and differentiation of granulomonocytopoietic precursors during neuroses. Bull Exp Biol Med 141(6):669–674Google Scholar
  62. Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179(5):1677–1682Google Scholar
  63. Tang Y, Shankar R, Gamboa M, Desai S, Gamelli RL, Jones SB (2001) Norepinephrine modulates myelopoiesis after experimental thermal injury with sepsis. Ann Surg 233(2):266–275Google Scholar
  64. Togni M, Maestroni G (1996) Hematopoietic rescue in mice via alpha 1-adrenoceptors on bone marrow B cell precursors. Int J Oncol 9(2):313–318Google Scholar
  65. Tsunokuma N, Yamane T, Matsumoto C, Tsuneto M, Isono K, Imanaka-Yoshida K, Yamazaki H (2017) Depletion of neural crest-derived cells leads to reduction in plasma noradrenaline and alters B Lymphopoiesis. J Immunol 32198(1):156–169. Google Scholar
  66. Vasamsetti SB, Florentin J, Coppin E, Stiekema LCA, Zheng KH, Nisar MU, Sembrat J, Levinthal DJ, Rojas M, Stroes ESG, Kim K, Dutta P (2018) Sympathetic neuronal activation triggers myeloid progenitor proliferation and differentiation. Immunity 49(1):93–106.e7. Google Scholar
  67. Wu X, Wang Z, Qian M, Wang L, Bai C, Wang X (2014) Adrenaline stimulates the proliferation and migration of mesenchymal stem cells towards the LPS-induced lung injury. J Cell Mol Med 18(8):1612–1622. Google Scholar
  68. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158. Google Scholar
  69. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Research in Medical PharmacologyUniversity of InsubriaVareseItaly

Personalised recommendations