Advertisement

Journal of Neuroimmune Pharmacology

, Volume 14, Issue 2, pp 200–214 | Cite as

Morphine Potentiates Dysbiotic Microbial and Metabolic Shifts in Acute SIV Infection

  • Gregory M. Sindberg
  • Shannon E. Callen
  • Santanu Banerjee
  • Jingjing Meng
  • Vanessa L. Hale
  • Ramakrishna Hegde
  • Paul D. Cheney
  • Francois Villinger
  • Sabita RoyEmail author
  • Shilpa BuchEmail author
ORIGINAL ARTICLE

Abstract

Human Immunodeficiency Virus (HIV) pathogenesis has been closely linked with microbial translocation, which is believed to drive inflammation and HIV replication. Opioid drugs have been shown to worsen this symptom, leading to a faster progression of HIV infection to Acquired Immunodeficiency Syndrome (AIDS). The interaction of HIV and opioid drugs has not been studied at early stages of HIV, particularly in the gut microbiome where changes may precede translocation events. This study modeled early HIV infection by examining Simian Immunodeficiency Virus (SIV)-infected primates at 21 days or less both independently and in the context of opioid use. Fecal samples were analyzed both for 16S analysis of microbial populations as well as metabolite profiles via mass spectrometry. Our results indicate that changes are minor in SIV treated animals in the time points examined, however animals treated with morphine and SIV had significant changes in their microbial communities and metabolic profiles. This occurred in a time-independent fashion with morphine regardless of how long the animal had morphine in its system. Globally, the observed changes support that microbial dysbiosis is occurring in these animals at an early time, which likely contributes to the translocation events observed later in SIV/HIV pathogenesis. Additionally, metabolic changes were predictive of specific treatment groups, which could be further developed as a diagnostic tool or future intervention target to overcome and slow the progression of HIV infection to AIDS.

Keywords

HIV pathogenesis Opioids Intestine microbiome Intestine metabolism Non-human primates SIV 

Notes

Authors’ Contributions

GS, ShB, and SR conceived the idea for the project. GS and VH analyzed and arranged figures from the bioinformatics data. SC, RH, and PC cared for the animals, delivered treatments, and handled sample collection. GS, SB, JM processed samples for 16S sequencing and metabolic analysis. FV performed histology staining and analysis. GS wrote the initial draft of the paper. GS, SC, ShB, and SR were the primary editors and reworked the manuscript. All authors have read and approved the final manuscript.

Funding

Funding for the study was provided by the following grants from the National Institute on Drug Abuse (NIDA) division of the National Institute of Health (https://www.drugabuse.gov/): R01 DA043252 (SR), R01 DA037843 (SR), K05 DA033881 (SR), R01 DA031202 (SR), R01 DA035203 (ShB), R01 DA043138 (ShB), R01 DA040397 (ShB), R01 DA044586 (ShB). GS was supported under NIDA training grant T32 DA007097. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with Ethical Standards

Ethics Approval

All animal protocols were approved by the local animal care committee (IACUC, #2012–2070) at the University of Kansas in accordance with the Guide for the Care and Use of Laboratory Animals.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests in this section.

Supplementary material

11481_2018_9805_MOESM1_ESM.pdf (110 kb)
ESM 1 (PDF 109 kb)
11481_2018_9805_MOESM2_ESM.pdf (351 kb)
ESM 2 (PDF 350 kb)
11481_2018_9805_MOESM3_ESM.pdf (248 kb)
ESM 3 (PDF 247 kb)
11481_2018_9805_MOESM4_ESM.pdf (587 kb)
ESM 4 (PDF 586 kb)
11481_2018_9805_Fig6_ESM.png (1.3 mb)
ESM 5

H&E staining of ileum at necropsy shows immune infiltration. Histological data from each group show infiltration of immune cells into the lamina propria, however no significant difference was observed between the SIV and the morphine or morphine+ HIV groups. (PNG 1343 kb)

11481_2018_9805_MOESM5_ESM.tif (633 kb)
High Resolution (TIF 632 kb)
11481_2018_9805_MOESM6_ESM.pdf (386 kb)
ESM 6 (PDF 385 kb)
11481_2018_9805_MOESM7_ESM.pdf (557 kb)
ESM 7 (PDF 556 kb)
11481_2018_9805_MOESM8_ESM.pdf (30 kb)
ESM 8 (PDF 30 kb)
11481_2018_9805_MOESM9_ESM.pdf (86 kb)
ESM 9 (PDF 86 kb)

References

  1. Ancuta P, Kamat A, Kunstman KJ, Kim E-Y, Autissier P, Wurcel A, Zaman T, Stone D, Mefford M, Morgello S, Singer EJ, Wolinsky SM, Gabuzda D (2008) Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 3(6):e2516.  https://doi.org/10.1371/journal.pone.0002516 Google Scholar
  2. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799.  https://doi.org/10.1212/01.WNL.0000287431.88658.8b Google Scholar
  3. Asselin C, Gendron F-P (2014) Shuttling of information between the mucosal and luminal environment drives intestinal homeostasis. FEBS Lett 588:4148–4157.  https://doi.org/10.1016/j.febslet.2014.02.049 Google Scholar
  4. Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ (2014) Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J Neurosci 34(34):11485–11503.  https://doi.org/10.1523/JNEUROSCI.0210-14.2014 Google Scholar
  5. Bandaru VVR, Patel N, Ewaleifoh O, Haughey NJ (2011) A failure to normalize biochemical and metabolic insults during morphine withdrawal disrupts synaptic repair in mice transgenic for HIV-gp120. J Neuroimmune Pharmacol 6(4):640–649.  https://doi.org/10.1007/s11481-011-9289-0 Google Scholar
  6. Banerjee S, Meng J, Das S, Krishnan A, Haworth J, Charboneau R, Zeng Y, Ramakrishnan S, Roy S (2013) Morphine induced exacerbation of sepsis is mediated by tempering endotoxin tolerance through modulation of miR-146a. Sci Rep 3(1977).  https://doi.org/10.1038/srep01977
  7. Banerjee S, Sindberg GM, Wang F, Meng J, Sharma U, Zhang L et al (2016a) Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol, In press 9:1418–1428Google Scholar
  8. Banerjee S, Sindberg G, Wang F, Meng J, Sharma U, Zhang L et al (2016b) Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol 9:1418–1428.  https://doi.org/10.1038/mi.2016.9mi20169 Google Scholar
  9. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141.  https://doi.org/10.1016/j.cell.2014.03.011 Google Scholar
  10. Bell JE, Brettle RP, Chiswick A, Simmonds P (1998) HIV encephalitis, proviral load and dementia in drug users and homosexuals with AIDS. Effect of neocortical involvement. Brain 121(Pt 1):2043–2052 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9827765 Google Scholar
  11. Boesjes M, Brufau G (2014) Metabolic effects of bile acids in the gut in health and disease. Curr Med Chem 21(24):2822–2829 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24606522 Google Scholar
  12. Bokhari SM, Hegde R, Callen S, Yao H, Adany I, Li Q et al (2011) Morphine potentiates Neuropathogenesis of SIV infection in rhesus macaques. J Neuroimmune Pharmacol:1–14 Retrieved from http://www.springerlink.com/index/H2K2873240R38004.pdf
  13. Brenchley JM, Price D a, Schacker TW, Asher TE, Silvestri G, Rao S et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371.  https://doi.org/10.1038/nm1511 Google Scholar
  14. Brown TT, Qaqish RB (2006) Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20(17):2165–2174.  https://doi.org/10.1097/QAD.0b013e32801022eb00002030-200611140-00005 Google Scholar
  15. Cabrera-Perez J, Badovinac VP, Griffith TS (2016) Enteric immunity, the gut microbiome, and sepsis: Rethinking the germ theory of disease. Exp Biol Med (Maywood).  https://doi.org/10.1177/1535370216669610
  16. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336.  https://doi.org/10.1038/nmeth.f.303 Google Scholar
  17. Chitu-Tisu CE, Barbu EC, Lazar M, Ion DA, Badarau IA (2016) Low bone mineral density and associated risk factors in HIV-infected patients. Germs 6(2):50–59.  https://doi.org/10.11599/germs.2016.1089germs.2016.1089 Google Scholar
  18. d’Ettorre, G., Ceccarelli, G., Giustini, N., Serafino, S., Calantone, N., De Girolamo, G., … Vullo, V. (2015). Probiotics reduce inflammation in antiretroviral treated, HIV-infected individuals: results of the “Probio-HIV” clinical trial. PLoS One, 10(9), e0137200.  https://doi.org/10.1371/journal.pone.0137200PONE-D-14-57636
  19. Dandekar S, George MD, Bäumler AJ (2010) Th17 cells, HIV and the gut mucosal barrier. Curr Opin HIV AIDS 5(2):173–178.  https://doi.org/10.1097/COH.0b013e328335eda3 Google Scholar
  20. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90(12):3566–3574.  https://doi.org/10.1890/08-1823.1 Google Scholar
  21. Dillon, S., Lee, E., Kotter, C., & Austin, G. (2014). An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal …. Retrieved from http://www.nature.com/mi/journal/vaop/ncurrent/full/mi2013116a.html
  22. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, Wanke CA, Ward HD (2015) Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis 211:19–27.  https://doi.org/10.1093/infdis/jiu409 Google Scholar
  23. Donahoe RM, Vlahov D (1998) Opiates as potential cofactors in progression of HIV-1 infections to AIDS. J Neuroimmunol 83(1–2):77–87 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9610676 Google Scholar
  24. El-Hage N, Bruce-Keller AJ, Yakovleva T, Bazov I, Bakalkin G, Knapp PE, Hauser KF (2008) Morphine exacerbates HIV-1 tat-induced cytokine production in astrocytes through convergent effects on [ca(2+)](i), NF-kappaB trafficking and transcription. PLoS One 3(12):e4093.  https://doi.org/10.1371/journal.pone.0004093 Google Scholar
  25. Feng P, Truant AL, Meissler JJ, Gaughan JP, Adler MW, Eisenstein TK (2006) Morphine withdrawal lowers host defense to enteric bacteria: spontaneous sepsis and increased sensitivity to oral Salmonella enterica serovar typhimurium infection. Infect Immun 74(9):5221–5226.  https://doi.org/10.1128/IAI.00208-06 Google Scholar
  26. Gershon MD (2004) Review article: serotonin receptors and transporters -- roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther 20(Suppl 7):3–14.  https://doi.org/10.1111/j.1365-2036.2004.02180.x Google Scholar
  27. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP et al (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179(4):859–870.  https://doi.org/10.1086/314660 Google Scholar
  28. Gómez-Hurtado I, Santacruz A, Peiró G (2011) Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis. PLoS One Retrieved from 6:e23037.  https://doi.org/10.1371/journal.pone.0023037.g005 Google Scholar
  29. Grunfeld C, Delaney JA, Wanke C, Currier JS, Scherzer R, Biggs ML, Tien PC, Shlipak MG, Sidney S, Polak JF, OʼLeary D, Bacchetti P, Kronmal RA (2009) Preclinical atherosclerosis due to HIV infection: carotid intima-medial thickness measurements from the FRAM study. AIDS 23(14):1841–1849.  https://doi.org/10.1097/QAD.0b013e32832d3b85 Google Scholar
  30. Gurwell JA, Nath A, Sun Q, Zhang J, Martin KM, Chen Y, Hauser KF (2001) Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 tat protein in striatal neurons in vitro. Neuroscience 102(3):555–563Google Scholar
  31. Hauser KF, El-Hage N, Stiene-Martin A, Maragos WF, Nath A, Persidsky Y et al (2007) HIV-1 neuropathogenesis: glial mechanisms revealed through substance abuse. J Neurochem 100(3):567–586.  https://doi.org/10.1111/j.1471-4159.2006.04227.x Google Scholar
  32. Hazenberg, M. D., Otto, S. A., van Benthem, B. H., Roos, M. T., Coutinho, R. A., Lange, J. M., … Miedema, F. (2003). Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS, 17(13), 1881–1888.  https://doi.org/10.1097/01.aids.0000076311.76477.6e
  33. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neuro-Oncol 17(1):3–16.  https://doi.org/10.1007/s13365-010-0006-1 Google Scholar
  34. Hilburger ME, Adler MW, Truant AL, Meissler JJ, Satishchandran V, Rogers TJ, Eisenstein TK (1997a) Morphine induces sepsis in mice. J Infect Dis 176(1):183–188 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9207365 Google Scholar
  35. Hilburger ME, Adler MW, Truant AL, Meissler JJ Jr, Satishchandran V, Rogers TJ, Eisenstein TK (1997b) Morphine induces sepsis in mice. J Infect Dis 176(1):183–188 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9207365 Google Scholar
  36. Hofmann AF, Eckmann L (2006) How bile acids confer gut mucosal protection against bacteria. Proc Natl Acad Sci U S A 103(12):4333–4334.  https://doi.org/10.1073/pnas.0600780103 Google Scholar
  37. Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, Landay A, Martin J, Sinclair E, Asher AI, Deeks SG, Douek DC, Brenchley JM (2009) Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis 199(8):1177–1185.  https://doi.org/10.1086/597476 Google Scholar
  38. Kalayjian RC, Lau B, Mechekano RN, Crane HM, Rodriguez B, Salata RA, Krishnasami Z, Willig JH, Martin JN, Moore RD, Eron JJ, Kitahata MM (2012) Risk factors for chronic kidney disease in a large cohort of HIV-1 infected individuals initiating antiretroviral therapy in routine care. AIDS 26(15):1907–1915.  https://doi.org/10.1097/QAD.0b013e328357f5ed Google Scholar
  39. Khan WI, Ghia JE (eds) (2010) Gut hormones: emerging role in immune activation and inflammation. Clin Exp Immunol 161(1):19–27.  https://doi.org/10.1111/j.1365-2249.2010.04150.x
  40. Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ (2010) Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44(5):354–360.  https://doi.org/10.1097/MCG.0b013e3181c87e02 Google Scholar
  41. Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW (2013) Residual immune dysregulation syndrome in treated HIV infection. Adv Immunol 119:51–83.  https://doi.org/10.1016/B978-0-12-407707-2.00002-3 Google Scholar
  42. Lorenz MW, Stephan C, Harmjanz A, Staszewski S, Buehler A, Bickel M et al (2008) Both long-term HIV infection and highly active antiretroviral therapy are independent risk factors for early carotid. Atherosclerosis 196(2):720–726.  https://doi.org/10.1016/j.Atherosclerosis.2006.12.022 Google Scholar
  43. Lorenzo-Zúñiga, V., & Bartoli, R. (2003). Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. …. Retrieved from http://onlinelibrary.wiley.com/doi/10.1053/jhep.2003.50116/abstract
  44. McHardy IH, Li X, Tong M, Ruegger P, Jacobs J, Borneman J, Anton P, Braun J (2013) HIV infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome 1(1):26.  https://doi.org/10.1186/2049-2618-1-26 Google Scholar
  45. McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu Z, Lozupone CA, Hamady M, Knight R, Bushman FD (2008) The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog 4(2):e20.  https://doi.org/10.1371/journal.ppat.0040020 Google Scholar
  46. Mellon RD, Bayer BM (1998) Evidence for central opioid receptors in the immunomodulatory effects of morphine: review of potential mechanism(s) of action. J Neuroimmunol 83(1–2):19–28 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9610669 Google Scholar
  47. Meng J, Yu H, Ma J, Wang J, Banerjee S, Charboneau R, Barke RA, Roy S (2013) Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner. PLoS One 8(1):e54040.  https://doi.org/10.1371/journal.pone.0054040 Google Scholar
  48. Meng J, Sindberg GM, Roy S (2015) Disruption of gut homeostasis by opioids accelerates HIV disease progression. Front Microbiol 6(643).  https://doi.org/10.3389/fmicb.2015.00643
  49. Moeller AH, Shilts M, Li Y, Rudicell RS, Lonsdorf EV, Pusey AE, Wilson ML, Hahn BH, Ochman H (2013) SIV-induced instability of the chimpanzee gut microbiome. Cell Host Microbe 14(3):340–345.  https://doi.org/10.1016/j.chom.2013.08.005 Google Scholar
  50. Mudd JC, Brenchley JM (2016) Gut mucosal barrier dysfunction, microbial Dysbiosis, and their role in HIV-1 disease progression. J Infect Dis 214(Suppl):S58–S66.  https://doi.org/10.1093/infdis/jiw258jiw258 Google Scholar
  51. Muscoli C, Doyle T, Dagostino C, Bryant L, Chen Z, Watkins LR, Ryerse J, Bieberich E, Neumman W, Salvemini D (2010) Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids. J Neurosci 30(46):15400–15408.  https://doi.org/10.1523/JNEUROSCI.2391-10.2010 Google Scholar
  52. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C, French A, DeMarais P, Sun Y, Koenig L, Cox S, Engen P, Chakradeo P, Abbasi R, Gorenz A, Burns C, Landay A (2014) A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog 10(2). Retrieved from):e1003829.  https://doi.org/10.1371/journal.ppat.1003829 Google Scholar
  53. Neff CP, Krueger O, Xiong K, Arif S, Nusbacher N, Schneider JM, Cunningham AW, Armstrong A, Li S, McCarter MD, Campbell TB, Lozupone CA, Palmer BE (2018) Fecal microbiota composition drives immune activation in HIV-infected individuals. EBioMedicine 30:192–202.  https://doi.org/10.1016/j.ebiom.2018.03.024 Google Scholar
  54. Nell S, Suerbaum S, Josenhans C (2010) The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 8(8):564–577.  https://doi.org/10.1038/nrmicro2403 Google Scholar
  55. Ninković J, Roy S (2012) Morphine decreases bacterial phagocytosis by inhibiting actin polymerization through cAMP-, Rac-1-, and p38 MAPK-dependent mechanisms. Am J Pathol 180(3):1068–1079.  https://doi.org/10.1016/j.ajpath.2011.11.034 Google Scholar
  56. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693.  https://doi.org/10.1038/sj.embor.7400731 Google Scholar
  57. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics (Oxford, England) 30(21):3123–3124.  https://doi.org/10.1093/bioinformatics/btu494 Google Scholar
  58. Pflughoeft, K. J., & Versalovic, J. (2012). Human Microbiome in Health and Disease. Retrieved from http://www.annualreviews.org/doi/abs/10.1146/annurev-pathol-011811-132421
  59. Pimentel M, Gunsalus RP, Rao SS, Zhang H (2012) Methanogens in human health and disease. The American Journal of Gastroenterology Supplements 1(1):28–33.  https://doi.org/10.1038/ajgsup.2012.6 Google Scholar
  60. Raghavan R, Cheney PD, Raymond LA, Joag SV, Stephens EB, Adany I, Pinson DM, Li Z, Marcario JK, Jia F, Wang C, Foresman L, Berman NE, Narayan O (1999) Morphological correlates of neurological dysfunction in macaques infected with neurovirulent simian immunodeficiency virus. Neuropathol Appl Neurobiol 25(4):285–294 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10476045 Google Scholar
  61. Rivera-Amill V, Silverstein PS, Noel RJ, Kumar S, Kumar A (2010) Morphine and rapid disease progression in nonhuman primate model of AIDS: inverse correlation between disease progression and virus evolution. J Neuroimmune Pharmacol 5(1):122–132.  https://doi.org/10.1007/s11481-009-9184-0 Google Scholar
  62. Roy S, Wang J, Charboneau R, Loh HH, Barke RA (2005) Morphine induces CD4+ T cell IL-4 expression through an adenylyl cyclase mechanism independent of the protein kinase a pathway. J Immunol 175(10):6361–6367Google Scholar
  63. Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, Kirchner VA, Koodie L, Ma J, Meng J, Barke RA (2011) Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J NeuroImmune Pharmacol 6(4):442–465.  https://doi.org/10.1007/s11481-011-9292-5 Google Scholar
  64. Russell WR, Hoyles L, Flint HJ, Dumas M-E (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16(3):246–254.  https://doi.org/10.1016/j.mib.2013.07.002 Google Scholar
  65. Ryom L, Mocroft A, Kirk O, Ross M, Reiss P, Fux CA, Morlat P, Moranne O, Smith C, el-Sadr W, Law M, Lundgren JD (2014) Predictors of advanced chronic kidney disease and end-stage renal disease in HIV-positive persons. AIDS 28(2):187–199.  https://doi.org/10.1097/QAD.0000000000000042 Google Scholar
  66. Sico JJ, Chang CC, So-Armah K, Justice AC, Hylek E, Skanderson M et al (2015) HIV status and the risk of ischemic stroke among men. Neurology 84(19):1933–1940.  https://doi.org/10.1212/WNL.0000000000001560WNL.0000000000001560 Google Scholar
  67. Spiller R (2007) Recent advances in understanding the role of serotonin in gastrointestinal motility in functional bowel disorders: alterations in 5-HT signalling and metabolism in human disease. Neurogastroenterol Motil 19(Suppl 2):25–31.  https://doi.org/10.1111/j.1365-2982.2007.00965.x Google Scholar
  68. Stecher B (2015) The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol Spectr 3(3).  https://doi.org/10.1128/microbiolspec.MBP-0008-2014
  69. Tamboli, C., Neut, C., Desreumaux, P., & Colombel, J. (2004). Dysbiosis in inflammatory bowel disease. Gut Retrieved from http://gut.bmj.com/content/53/1/1.1.short, 4
  70. Thaiss CA, Zmora N, Levy M, Elinav E (2016) The microbiome and innate immunity. Nature 535(7610):65–74.  https://doi.org/10.1038/nature18847nature18847 Google Scholar
  71. Tozzi V, Balestra P, Bellagamba R, Corpolongo A, Salvatori MF, Visco-Comandini U, Vlassi C, Giulianelli M, Galgani S, Antinori A, Narciso P (2007) Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 45(2):174–182.  https://doi.org/10.1097/QAI.0b013e318042e1ee Google Scholar
  72. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809.  https://doi.org/10.1038/nri2653nri2653 Google Scholar
  73. Vázquez-Castellanos JF, Serrano-Villar S, Latorre A, Artacho A, Ferrús ML, Madrid N, Vallejo A, Sainz T, Martínez-Botas J, Ferrando-Martínez S, Vera M, Dronda F, Leal M, del Romero J, Moreno S, Estrada V, Gosalbes MJ, Moya A (2014) Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol 8(4):760–772.  https://doi.org/10.1038/mi.2014.107 Google Scholar
  74. Vázquez-Castellanos JF, Serrano-Villar S, Latorre A, Artacho A, Ferrús ML, Madrid N, Vallejo A, Sainz T, Martínez-Botas J, Ferrando-Martínez S, Vera M, Dronda F, Leal M, del Romero J, Moreno S, Estrada V, Gosalbes MJ, Moya A (2015) Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol 8(4):760–772.  https://doi.org/10.1038/mi.2014.107 Google Scholar
  75. Vujkovic-Cvijin, I., & Dunham, R. (2013). Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Science Translational …. Retrieved from http://stm.sciencemag.org/content/5/193/193ra91.short
  76. Vujkovic-Cvijin, I., Dunham, R. M., Iwai, S., Maher, M. C., Albright, R. G., Broadhurst, M. J., … McCune, J. M. (2013). Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med, 5(193), 193ra91.  https://doi.org/10.1126/scitranslmed.30064385/193/193ra91
  77. Wang J, Barke RA, Charboneau R, Loh HH, Roy S (2003) Morphine negatively regulates interferon-gamma promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways. J Biol Chem 278(39):37622–37631.  https://doi.org/10.1074/jbc.M301224200M301224200 Google Scholar
  78. Wang X, Zhang T, Ho WZ (2011) Opioids and HIV/HCV infection. J NeuroImmune Pharmacol:1–13 Retrieved from http://www.springerlink.com/index/B3Q8364602316876.pdf
  79. Wu C, Li Z, Xiong D (1998) Relationship between enteric microecologic dysbiosis and bacterial translocation in acute necrotizing pancreatitis. Group Retrieved from http://www.wjgnet.com/1007-9327/full/v4/i3/242.htm
  80. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous Bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 163(1):258.  https://doi.org/10.1016/j.cell.2015.09.017 Google Scholar
  81. Yu K, Qiu C-L, Yang G-B, Zong C-M, Xing H, Shao Y, Wei Q, Qin C (2010) Alteration of serotonin transporter messenger RNA level in the peripheral blood mononuclear cells from simian/human immunodeficiency virus infected Chinese rhesus macaques (Macaca mulatta). Brain Behav Immun 24(2):298–305.  https://doi.org/10.1016/j.bbi.2009.10.008 Google Scholar
  82. Zhu L, Liu W, Alkhouri R, Baker RD, Bard JE, Quigley EM, Baker SS (2014) Structural changes in the gut microbiome of constipated patients. Physiol Genomics 46:679–686.  https://doi.org/10.1152/physiolgenomics.00082.2014 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gregory M. Sindberg
    • 1
  • Shannon E. Callen
    • 2
  • Santanu Banerjee
    • 3
    • 4
  • Jingjing Meng
    • 3
    • 4
  • Vanessa L. Hale
    • 5
  • Ramakrishna Hegde
    • 6
  • Paul D. Cheney
    • 6
  • Francois Villinger
    • 7
  • Sabita Roy
    • 1
    • 3
    • 4
    Email author
  • Shilpa Buch
    • 2
    Email author
  1. 1.Department of Veterinary BiosciencesUniversity of MinnesotaSaint PaulUSA
  2. 2.Department of PharmacologyUniversity of NebraskaOmahaUSA
  3. 3.Department of SurgeryUniversity of MinnesotaMinneapolisUSA
  4. 4.Department of SurgeryUniversity of MiamiMiamiUSA
  5. 5.Department of Veterinary Preventative Medicine, College of Veterinary MedicineOhio State UniversityColumbusUSA
  6. 6.Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityUSA
  7. 7.New Iberia Research CenterNew IberiaUSA

Personalised recommendations