Advertisement

Journal of Neuroimmune Pharmacology

, Volume 13, Issue 4, pp 498–508 | Cite as

Ethanol’s Effects on Transient Receptor Potential Channel Expression in Brain Microvascular Endothelial Cells

  • Sulie L. Chang
  • Wenfei Huang
  • Xin Mao
  • Michelle L. Mack
ORIGINAL ARTICLE

Abstract

Ethanol (EtOH), the main ingredient in alcoholic beverages, is well known for its behavioral, physiological, and immunosuppressive effects. There is evidence that EtOH acts through protein targets to exert its physiological effects; however, the mechanisms underlying EtOH’s effects on inflammatory processes, particularly at the blood-brain barrier (BBB), are still poorly understood. Transient receptor potential (TRP) channels, the vanguards of human sensory systems, are novel molecular receptors significantly affected by EtOH, and are heavily expressed in brain microvascular endothelial cells (BMVECs), one of the cellular constituents of the BBB. EtOH’s actions on endothelial TRP channels could affect intracellular Ca2+ and Mg2+ dynamics, which mediate leukocyte adhesion to endothelial cells and endothelial permeability at the BBB, thus altering immune and inflammatory responses. We examined the basal expression profiles of all 29 known mammalian TRP channels in mouse BMVECs and determined both EtOH concentration- and time-dependent effects on TRP expression using a PCR array. We also generated an in vitro BBB model to examine the involvement of a chosen TRP channel, TRP melastatin 7 (TRPM7), in EtOH-mediated alteration of BBB permeability. With the exception of the akyrin subfamily, members of five TRP subfamilies were expressed in mouse BMVECs, and their expression levels were modulated by EtOH in a concentration-dependent manner. In the in vitro BBB model, TRPM7 antagonists further enhanced EtOH-mediated alteration of BBB permeability. Because of the diversity of TRP channels in BMVECs that regulate cellular processes, EtOH can affect Ca2+/Mg2+ signaling, immune responses, lysosomal functions as well as BBB integrity.

Keywords

Ethanol Transient receptor potential channels Brain microvascular endothelial cells Blood-brain barrier 

Notes

Acknowledgements

The authors thank Dr. Yufeng Wei for initial data analysis and Dr. Louaine L. Spriggs for editorial support. This study is partially supported by National Institutes of Health grants R21AA023172, AA024984 and K02DA016149 to SLC.

Compliance with Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11481_2018_9796_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 23 kb)

References

  1. Alifimoff JK, Firestone LL, Miller KW (1989) Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br J Pharmacol 96(1):9–16CrossRefGoogle Scholar
  2. Baldoli E, Castiglioni S, Maier JA (2013) Regulation and function of TRPM7 in human endothelial cells: TRPM7 as a potential novel regulator of endothelial function. PLoS One 8(3):e59891CrossRefGoogle Scholar
  3. Bandell M, Macpherson LJ, Patapoutian A (2007) From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Curr Opin Neurobiol 17(4):490–497CrossRefGoogle Scholar
  4. Benedikt J, Teisinger J, Vyklicky L, Vlachova V (2007) Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate. J Neurochem 100(1):211–224CrossRefGoogle Scholar
  5. Berrout, J., M. Jin and R. G. O'Neil (2012). "Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood–brain barrier endothelial cells." Brain Res 1436(0): 1–12Google Scholar
  6. Blednov YA, Harris RA (2009) Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol. Neuropharmacology 56(4):814–820CrossRefGoogle Scholar
  7. Brandao K, Deason-Towne F, Perraud AL, Schmitz C (2013) The role of Mg2+ in immune cells. Immunol Res 55(1–3):261–269CrossRefGoogle Scholar
  8. Brown RC, Wu L, Hicks K, O'Neil RG (2008) Regulation of blood-brain barrier permeability by transient receptor potential type C and type V calcium-permeable channels. Microcirculation 15(4):359–371CrossRefGoogle Scholar
  9. Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524CrossRefGoogle Scholar
  10. Cornett PM, Matta JA, Ahern GP (2008) General anesthetics sensitize the capsaicin receptor transient receptor potential V1. Mol Pharmacol 74(5):1261–1268CrossRefGoogle Scholar
  11. Cortright DN, Szallasi A (2009) TRP channels and pain. Curr Pharm Des 15:1736–1749CrossRefGoogle Scholar
  12. De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L (2013) Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 108(0):1–20CrossRefGoogle Scholar
  13. Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25(1):59–127CrossRefGoogle Scholar
  14. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin ca(2+) release channels in the endolysosome. Nat Commun 1:38CrossRefGoogle Scholar
  15. Ellingson J, Silbaugh B, Brasser S (2009) Reduced oral ethanol avoidance in mice lacking transient receptor potential channel Vanilloid receptor 1. Behav Genet 39(1):62–72CrossRefGoogle Scholar
  16. Freebern WJ, Haggerty CM, Montano I, McNutt MC, Collins I, Graham A, Chandramouli GVR, Stewart DH, Biebuyck HA, Taub DD, Gardner K (2005) Pharmacologic profiling of transcriptional targets deciphers promoter logic. Pharmacogenomics J 5(5):305–323CrossRefGoogle Scholar
  17. Freese C, Reinhardt S, Hefner G, Unger RE, Kirkpatrick CJ, Endres K (2014) A novel blood-brain barrier co-culture system for drug targeting of Alzheimer's disease: establishment by using acitretin as a model drug. PLoS One 9(3):e91003CrossRefGoogle Scholar
  18. Gaskin FS, Kamada K, Zuidema MY, Jones AW, Rubin LJ, Korthuis RJ (2011) Isoform-selective 5'-AMP-activated protein kinase-dependent preconditioning mechanisms to prevent postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 300(4):H1352–H1360CrossRefGoogle Scholar
  19. Grimm C, Hassan S, Wahl-Schott C, Biel M (2012) Role of TRPML and two-pore channels in endolysosomal cation homeostasis. J Pharmacol Exp Ther 342(2):236–244CrossRefGoogle Scholar
  20. Guibert C, Ducret T, Savineau JP (2011) Expression and physiological roles of TRP channels in smooth muscle cells. Adv Exp Med Biol 704:687–706CrossRefGoogle Scholar
  21. Guinamard R, Demion M, Launay P (2010) Physiological roles of the TRPM4 channel extracted from background currents. Physiology (Bethesda) 25(3):155–164Google Scholar
  22. Guinamard R, Salle L, Simard C (2011) The non-selective monovalent cationic channels TRPM4 and TRPM5. Adv Exp Med Biol 704:147–171CrossRefGoogle Scholar
  23. Gwanyanya A, Sipido KR, Vereecke J, Mubagwa K (2006) ATP and PIP2 dependence of the magnesium-inhibited, TRPM7-like cation channel in cardiac myocytes. Am J Physiol Cell Physiol 291(4):C627–C635CrossRefGoogle Scholar
  24. Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y (2005) Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. J Leukoc Biol 78(6):1223–1232CrossRefGoogle Scholar
  25. Haorah J, Knipe B, Gorantla S, Zheng J, Persidsky Y (2007) Alcohol-induced blood-brain barrier dysfunction is mediated via inositol 1,4,5-triphosphate receptor (IP3R)-gated intracellular calcium release. J Neurochem 100(2):324–336CrossRefGoogle Scholar
  26. Haorah J, Schall K, Ramirez SH, Persidsky Y (2008) Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: novel mechanism for neurodegeneration associated with alcohol abuse. Glia 56(1):78–88CrossRefGoogle Scholar
  27. Harris RA, Trudell JR, Mihic SJ (2008) Ethanol's molecular targets. Sci Signal 1(28):re7CrossRefGoogle Scholar
  28. Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102(3):347–355CrossRefGoogle Scholar
  29. Hecquet CM, Ahmmed GU, Malik AB (2010) TRPM2 channel regulates endothelial barrier function. Adv Exp Med Biol 661:155–167CrossRefGoogle Scholar
  30. Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jungling E, Zitt C, Luckhoff A (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371(Pt 3:1045–1053CrossRefGoogle Scholar
  31. Howard RJ, Murail S, Ondricek KE, Corringer P-J, Lindahl E, Trudell JR, Harris RA (2011a) Structural basis for alcohol modulation of a pentameric ligand-gated ion channel. Proc Natl Acad Sci 108(29):12149–12154CrossRefGoogle Scholar
  32. Howard RJ, Slesinger PA, Davies DL, Das J, Trudell JR, Harris RA (2011b) Alcohol-binding sites in distinct brain proteins: the quest for atomic level resolution. Alcohol Clin Exp Res 35(9):1561–1573PubMedPubMedCentralGoogle Scholar
  33. Kauer JA, Gibson HE (2009) Hot flash: TRPV channels in the brain. Trends Neurosci 32(4):215–224CrossRefGoogle Scholar
  34. Kiselyov K, Colletti GA, Terwilliger A, Ketchum K, Lyons CW, Quinn J, Muallem S (2011) TRPML: transporters of metals in lysosomes essential for cell survival? Cell Calcium 50(3):288–294CrossRefGoogle Scholar
  35. Ko JY, Park JH (2013) Mouse models of polycystic kidney disease induced by defects of ciliary proteins. BMB Rep 46(2):73–79CrossRefGoogle Scholar
  36. Kozak JA, Matsushita M, Nairn AC, Cahalan MD (2005) Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J Gen Physiol 126(5):499–514CrossRefGoogle Scholar
  37. Kraft R, Harteneck C (2005) The mammalian melastatin-related transient receptor potential cation channels: an overview. Pflugers Arch 451(1):204–211CrossRefGoogle Scholar
  38. Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286(1):C129–C137CrossRefGoogle Scholar
  39. Langeslag M, Clark K, Moolenaar WH, van Leeuwen FN, Jalink K (2007) Activation of TRPM7 channels by phospholipase C-coupled receptor agonists. J Biol Chem 282(1):232–239CrossRefGoogle Scholar
  40. Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP (2004) TRPM4 regulates calcium oscillations after T cell activation. Science 306(5700):1374–1377CrossRefGoogle Scholar
  41. Liu X, Mao X, Chang SL (2011) Altered gene expression in the spleen of adolescent rats following high ethanol concentration binge drinking. Int J Clin Exp Med 4(4):252–257PubMedPubMedCentralGoogle Scholar
  42. Macianskiene R, Gwanyanya A, Vereecke J, Mubagwa K (2008) Inhibition of the magnesium-sensitive TRPM7-like channel in cardiac myocytes by nonhydrolysable GTP analogs: involvement of phosphoinositide metabolism. Cell Physiol Biochem 22(1–4):109–118CrossRefGoogle Scholar
  43. Matta JA, Cornett PM, Miyares RL, Abe K, Sahibzada N, Ahern GP (2008) General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc Natl Acad Sci 105(25):8784–8789CrossRefGoogle Scholar
  44. Mene P, Punzo G, Pirozzi N (2013) TRP channels as therapeutic targets in kidney disease and hypertension. Curr Top Med Chem 13(3):386–397CrossRefGoogle Scholar
  45. Molino Y, Jabes F, Lacassagne E, Gaudin N, Khrestchatisky M (2014) Setting-up an in vitro model of rat blood-brain barrier (BBB): a focus on BBB impermeability and receptor-mediated transport. J Vis Exp 88:e51278Google Scholar
  46. Montell, C. (2005). "The TRP superfamily of cation channels." Sci. STKE 2005(272): re3-, 2005, re3Google Scholar
  47. Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR (2005) Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology 49(5):638–645CrossRefGoogle Scholar
  48. Nilius B, Droogmans G, Wondergem R (2003) Transient receptor potential channels in endothelium: solving the calcium entry puzzle? Endothelium 10(1):5–15CrossRefGoogle Scholar
  49. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217CrossRefGoogle Scholar
  50. Oh HG, Chun YS, Kim Y, Youn SH, Shin S, Park MK, Kim TW, Chung S (2012) Modulation of transient receptor potential melastatin related 7 channel by presenilins. Dev Neurobiol 72(6):865–877CrossRefGoogle Scholar
  51. Paravicini TM, Chubanov V, Gudermann T (2012) TRPM7: a unique channel involved in magnesium homeostasis. Int J Biochem Cell Biol 44(8):1381–1384CrossRefGoogle Scholar
  52. Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4(7):529–539CrossRefGoogle Scholar
  53. Perraud A-L, Zhao X, Ryazanov AG, Schmitz C (2011) The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal 23(3):586–593CrossRefGoogle Scholar
  54. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68(1):619–647CrossRefGoogle Scholar
  55. Romeo J, Wärnberg J, Marcos A (2010) Drinking pattern and socio-cultural aspects on immune response: an overview. Proc Nutr Soc 69(03):341–346CrossRefGoogle Scholar
  56. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4(5):329–336CrossRefGoogle Scholar
  57. Rychkov GY, Barritt GJ (2011) Expression and function of TRP channels in liver cells. Adv Exp Med Biol 704:667–686CrossRefGoogle Scholar
  58. Sahni J, Tamura R, Sweet IR, Scharenberg AM (2010) TRPM7 regulates quiescent/proliferative metabolic transitions in lymphocytes. Cell Cycle 9(17):3565–3574CrossRefGoogle Scholar
  59. Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293(5533):1327–1330CrossRefGoogle Scholar
  60. Sarkar S, Mao X, Liu C, Chang SL (2012) Age- and ethanol concentration-dependent effects of acute binge drinking in the HIV-1 transgenic rat. Alcohol Clin Exp Res 37 Suppl 1:E70–E78PubMedGoogle Scholar
  61. Sarmiento, D., I. Montorfano, O. Cerda, M. Caceres, A. Becerra, C. Cabello-Verrugio, A. A. Elorza, C. Riedel, P. Tapia, L. A. Velasquez, D. Varela and F. Simon (2014). "Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel." Microvasc ResGoogle Scholar
  62. Takata F, Dohgu S, Yamauchi A, Matsumoto J, Machida T, Fujishita K, Shibata K, Shinozaki Y, Sato K, Kataoka Y, Koizumi S (2013) In vitro blood-brain barrier models using brain capillary endothelial cells isolated from neonatal and adult rats retain age-related barrier properties. PLoS One 8(1):e55166CrossRefGoogle Scholar
  63. Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ, Owen D, Smith GD, Randall AD, Harrison S, Bianchi A, Davis JB, Geppetti P (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5(6):546–551CrossRefGoogle Scholar
  64. Venkatachalam K, Wong CO, Montell C (2013) Feast or famine: role of TRPML in preventing cellular amino acid starvation. Autophagy 9(1):98–100CrossRefGoogle Scholar
  65. Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels. Nat Chem Biol 1(2):85–92CrossRefGoogle Scholar
  66. Wehrhahn J, Kraft R, Harteneck C, Hauschildt S (2010) Transient receptor potential melastatin 2 is required for lipopolysaccharide-induced cytokine production in human monocytes. J Immunol 184(5):2386–2393CrossRefGoogle Scholar
  67. Wolozin BL, Pasternak GW (1981) Classification of multiple morphine and enkephalin binding sites in the central nervous system. Proc Natl Acad Sci U S A 78(10):6181–6185CrossRefGoogle Scholar
  68. Xie J, Sun B, Du J, Yang W, Chen HC, Overton JD, Runnels LW, Yue L (2011) Phosphatidylinositol 4,5-bisphosphate (PIP(2)) controls magnesium gatekeeper TRPM6 activity. Sci Rep 1:146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sulie L. Chang
    • 1
    • 2
  • Wenfei Huang
    • 1
    • 2
  • Xin Mao
    • 1
  • Michelle L. Mack
    • 1
    • 2
  1. 1.Institute of NeuroImmune PharmacologySeton Hall UniversitySouth OrangeUSA
  2. 2.Department of Biological SciencesSeton Hall UniversitySouth OrangeUSA

Personalised recommendations