Advertisement

CCR2 on Peripheral Blood CD14+CD16+ Monocytes Correlates with Neuronal Damage, HIV-Associated Neurocognitive Disorders, and Peripheral HIV DNA: reseeding of CNS reservoirs?

  • Mike Veenstra
  • Desiree A. Byrd
  • Matilde Inglese
  • Korhan Buyukturkoglu
  • Dionna W. Williams
  • Lazar Fleysher
  • Ming Li
  • Lucio Gama
  • Rosiris León-Rivera
  • Tina M. Calderon
  • Janice E. Clements
  • Susan Morgello
  • Joan W. Berman
ORIGINAL ARTICLE

Abstract

HIV-associated neurocognitive disorders (HAND) occur in ~50% of HIV infected individuals despite combined antiretroviral therapy. Transmigration into the CNS of CD14+CD16+ monocytes, particularly those that are HIV infected and express increased surface chemokine receptor CCR2, contributes to neuroinflammation and HAND. To examine whether in HIV infected individuals CCR2 on CD14+CD16+ monocytes serves as a potential peripheral blood biomarker of HAND, we examined a cohort of 45 HIV infected people. We correlated CCR2 on CD14+CD16+ monocytes with cognitive status, proton magnetic resonance spectroscopy (1H-MRS) measured neurometabolite levels, and peripheral blood mononuclear cell (PBMC) HIV DNA copies. We determined that CCR2 was increased specifically on CD14+CD16+ monocytes from people with HAND (median [interquartile range (IQR)]) (63.3 [51.6, 79.0]), compared to those who were not cognitively impaired (38.8 [26.7, 56.4]) or those with neuropsychological impairment due to causes other than HIV (39.8 [30.2, 46.5]). CCR2 was associated with neuronal damage, based on the inverse correlation of CCR2 on CD14+CD16+ monocytes with total N-Acetyl Aspartate (tNAA)/total Creatine (tCr) (r2 = 0.348, p = 0.01) and Glutamine-Glutamate (Glx)/tCr (r2 = 0.356, p = 0.01) in the right and left caudate nucleus, respectively. CCR2 on CD14+CD16+ monocytes also correlated with PBMC HIV DNA copies (ρ = 0.618, p = 0.02) that has previously been associated with HAND. These findings suggest that CCR2 on CD14+CD16+ monocytes may be a peripheral blood biomarker of HAND, indicative of increased HIV infected CD14+CD16+ monocyte entry into the CNS that possibly increases the macrophage viral reservoir and contributes to HAND.

Keywords

HAND CD14+CD16+ Monocytes CCR2 MRI/MRS HIV ddPCR 

Notes

Acknowledgements

The authors thank MHBB staff and patients who generously contributed their time to the study. This study was funded by National Institutes of Health U24MH100931 (MHBB) (S.M.), R01MH075679 (J.W.B.), R21MH102113-01A1 (J.W.B), R01MH090958 (J.W.B.), R01MH112391 (T.M.C., J.W.B.), R01NS077869 (J.E.C), R01AI127142 (J.E.C.), P30AI124414 (ERC CFAR) (M.V., R.L-R., T.M.C., J.W.B.), Mount Sinai Institute for NeuroAIDS Disparities (R25 MH080663) (R.L-R.), MSTP Training Grant at Albert Einstein College of Medicine (5T32GM007288) (R.L-R.), TL1TR001072 (Einstein-Montefiore CTSA) (M.V.), pilot research grant Icahn School of Medicine Brain Imaging Center (S.M.), National MS Society RG 5120A3/1 (M.I.), and eCLIPSE fellowship (M.V.), Burroughs Wellcome Foundation Grant program “Unifying Population and Laboratory Science”.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Antinori A et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799CrossRefPubMedPubMedCentralGoogle Scholar
  2. Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW (2011) Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 267:109–123CrossRefPubMedGoogle Scholar
  3. Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, Alvarez X, Kuroda MJ, Williams KC (2010) Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog 6:e1000842CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burdo TH, Lentz MR, Autissier P, Krishnan A, Halpern E, Letendre S, Rosenberg ES, Ellis RJ, Williams KC (2011) Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis 204:154–163CrossRefPubMedPubMedCentralGoogle Scholar
  5. Byrd DA, Robinson-Papp J, Mindt MR, Mintz L, Elliott K, Lighty Q, Morgello S, Manhattan HIVBB (2013) Isolating cognitive and neurologic HIV effects in substance-dependent, confounded cohorts: a pilot study. J Int Neuropsychol Soc 19:463–473CrossRefPubMedGoogle Scholar
  6. Campbell JH, Burdo TH, Autissier P, Bombardier JP, Westmoreland SV, Soulas C, Gonzalez RG, Ratai EM, Williams KC (2011) Minocycline inhibition of monocyte activation correlates with neuronal protection in SIV neuroAIDS. PLoS One 6:e18688CrossRefPubMedPubMedCentralGoogle Scholar
  7. Campbell JH, Ratai EM, Autissier P, Nolan DJ, Tse S, Miller AD, Gonzalez RG, Salemi M, Burdo TH, Williams KC (2014) Anti-alpha4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog 10:e1004533CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cysique LA, Brew BJ (2011) Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neuro-Oncol 17:176–183Google Scholar
  9. Cysique LA, Hey-Cunningham WJ, Dermody N, Chan P, Brew BJ, Koelsch KK (2015) Peripheral blood mononuclear cells HIV DNA levels impact intermittently on neurocognition. PLoS One 10:e0120488CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, Lewin SR, Gorry PR, Jaworowski A, Greene WC, Sonza S, Crowe SM (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol 178:6581–6589CrossRefPubMedGoogle Scholar
  11. Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44CrossRefPubMedGoogle Scholar
  12. Eugenin EA, D'Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85:1299–1311CrossRefPubMedGoogle Scholar
  13. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26:1098–1106CrossRefPubMedGoogle Scholar
  14. Fields J, Dumaop W, Eleuteri S, Campos S, Serger E, Trejo M, Kosberg K, Adame A, Spencer B, Rockenstein E, He JJ, Masliah E (2015) HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci 35:1921–1938CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L'Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neuro-Oncol 7:528–541Google Scholar
  16. Gongvatana A, Harezlak J, Buchthal S, Daar E, Schifitto G, Campbell T, Taylor M, Singer E, Algers J, Zhong J, Brown M, McMahon D, So YT, Mi D, Heaton R, Robertson K, Yiannoutsos C, Cohen RA, Navia B, Consortium HIVN (2013) Progressive cerebral injury in the setting of chronic HIV infection and antiretroviral therapy. J Neuro-Oncol 19:209–218Google Scholar
  17. Gott C, Gates T, Dermody N, Brew BJ, Cysique LA (2017) Cognitive change trajectories in virally suppressed HIV-infected individuals indicate high prevalence of disease activity. PLoS One 12:e0171887CrossRefPubMedPubMedCentralGoogle Scholar
  18. Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E, Alger J, Singer E, Campbell T, Yiannoutsos C, Cohen R, Navia B, Consortium HIVN (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25:625–633CrossRefPubMedPubMedCentralGoogle Scholar
  19. Harezlak J, Cohen R, Gongvatana A, Taylor M, Buchthal S, Schifitto G, Zhong J, Daar ES, Alger JR, Brown M, Singer EJ, Campbell TB, McMahon D, So YT, Yiannoutsos CT, Navia BA, Consortium HIVN (2014) Predictors of CNS injury as measured by proton magnetic resonance spectroscopy in the setting of chronic HIV infection and CART. J Neuro-Oncol 20:294–303Google Scholar
  20. Heaton RK et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–2096CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kamat A, Lyons JL, Misra V, Uno H, Morgello S, Singer EJ, Gabuzda D (2012) Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J Acquir Immune Defic Syndr 60:234–243CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994CrossRefPubMedGoogle Scholar
  23. Kusao I, Shiramizu B, Liang CY, Grove J, Agsalda M, Troelstrup D, Velasco VN, Marshall A, Whitenack N, Shikuma C, Valcour V (2012) Cognitive performance related to HIV-1-infected monocytes. J Neuropsychiatr Clin Neurosci 24:71–80CrossRefGoogle Scholar
  24. Lentz MR, Kim WK, Kim H, Soulas C, Lee V, Venna N, Halpern EF, Rosenberg ES, Williams K, Gonzalez RG (2011) Alterations in brain metabolism during the first year of HIV infection. J Neuro-Oncol 17:220–229Google Scholar
  25. McArthur J, Smith B (2013) Neurologic Complications and Considerations in HIV-Infected Persons. Curr Infect Dis Rep 15:61–66CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mind Exchange Working G (2013) Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis 56:1004–1017CrossRefGoogle Scholar
  27. Mohamed MA, Barker PB, Skolasky RL, Selnes OA, Moxley RT, Pomper MG, Sacktor NC (2010) Brain metabolism and cognitive impairment in HIV infection: a 3-T magnetic resonance spectroscopy study. Magn Reson Imaging 28:1251–1257CrossRefPubMedPubMedCentralGoogle Scholar
  28. Norman JP, Perry SW, Reynolds HM, Kiebala M, De Mesy Bentley KL, Trejo M, Volsky DJ, Maggirwar SB, Dewhurst S, Masliah E, Gelbard HA (2008) HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS One 3:e3731Google Scholar
  29. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264CrossRefPubMedGoogle Scholar
  30. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997) Unique monocyte subset in patients with AIDS dementia. Lancet 349:692–695CrossRefPubMedGoogle Scholar
  31. Robbins RN, Brown H, Ehlers A, Joska JA, Thomas KG, Burgess R, Byrd D, Morgello S (2014) A Smartphone App to Screen for HIV-Related Neurocognitive Impairment. J Mob Technol Med 3:23–26CrossRefPubMedPubMedCentralGoogle Scholar
  32. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC (2016) HIV-associated neurocognitive disorder - pathogenesis and prospects for treatment. Nat Rev Neurol 12:234–248CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shiramizu B, Gartner S, Williams A, Shikuma C, Ratto-Kim S, Watters M, Aguon J, Valcour V (2005) Circulating proviral HIV DNA and HIV-associated dementia. AIDS 19:45–52CrossRefPubMedPubMedCentralGoogle Scholar
  34. Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, Spina CA, Woelk CH, Richman DD (2013) Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One 8:e55943CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tedaldi EM, Minniti NL, Fischer T (2015) HIV-associated neurocognitive disorders: the relationship of HIV infection with physical and social comorbidities. Biomed Res Int 2015:641913Google Scholar
  36. Valcour VG, Shiramizu BT, Shikuma CM (2010) HIV DNA in circulating monocytes as a mechanism to dementia and other HIV complications. J Leukoc Biol 87:621–626CrossRefPubMedPubMedCentralGoogle Scholar
  37. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, Suwanwela NC, Jagodzinski L, Michael N, Spudich S, van Griensven F, de Souza M, Kim J, Ananworanich J, Group RSS (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 206:275–282CrossRefPubMedPubMedCentralGoogle Scholar
  38. Veenstra M, Leon-Rivera R, Li M, Gama L, Clements JE, Berman JW (2017) Mechanisms of CNS Viral Seeding by HIV(+) CD14(+) CD16(+) Monocytes: Establishment and Reseeding of Viral Reservoirs Contributing to HIV-Associated Neurocognitive Disorders. MBio 8:e01280–e01217CrossRefPubMedPubMedCentralGoogle Scholar
  39. Weiss JM, Nath A, Major EO, Berman JW (1999) HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J Immunol 163:2953–2959PubMedGoogle Scholar
  40. Williams DW, Eugenin EA, Calderon TM, Berman JW (2012) Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol 91:401–415CrossRefPubMedPubMedCentralGoogle Scholar
  41. Williams DW, Calderon TM, Lopez L, Carvallo-Torres L, Gaskill PJ, Eugenin EA, Morgello S, Berman JW (2013) Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis. PLoS One 8:e69270CrossRefPubMedPubMedCentralGoogle Scholar
  42. Williams DW, Byrd D, Rubin LH, Anastos K, Morgello S, Berman JW (2014) CCR2 on CD14(+)CD16(+) monocytes is a biomarker of HIV-associated neurocognitive disorders. Neurol Neuroimmunol Neuroinflamm 1:e36CrossRefPubMedPubMedCentralGoogle Scholar
  43. Witwer KW, Gama L, Li M, Bartizal CM, Queen SE, Varrone JJ, Brice AK, Graham DR, Tarwater PM, Mankowski JL, Zink MC, Clements JE (2009) Coordinated regulation of SIV replication and immune responses in the CNS. PLoS One 4:e8129CrossRefPubMedPubMedCentralGoogle Scholar
  44. Woods SP, Rippeth JD, Frol AB, Levy JK, Ryan E, Soukup VM, Hinkin CH, Lazzaretto D, Cherner M, Marcotte TD, Gelman BB, Morgello S, Singer EJ, Grant I, Heaton RK (2004) Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. J Clin Exp Neuropsychol 26:759–778CrossRefPubMedGoogle Scholar
  45. Zahr NM, Mayer D, Rohlfing T, Sullivan EV, Pfefferbaum A (2014) Imaging neuroinflammation? A perspective from MR spectroscopy. Brain Pathol 24:654–664CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mike Veenstra
    • 1
  • Desiree A. Byrd
    • 2
  • Matilde Inglese
    • 3
  • Korhan Buyukturkoglu
    • 3
  • Dionna W. Williams
    • 4
  • Lazar Fleysher
    • 5
  • Ming Li
    • 4
  • Lucio Gama
    • 4
    • 6
  • Rosiris León-Rivera
    • 1
  • Tina M. Calderon
    • 1
  • Janice E. Clements
    • 4
  • Susan Morgello
    • 7
  • Joan W. Berman
    • 8
  1. 1.Department of PathologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Departments of Neurology, and PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Departments of Neurology, Neuroscience, and RadiologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Department of RadiologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  6. 6.Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaUSA
  7. 7.Departments of Neurology, Pathology, and NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkUSA
  8. 8.Departments of Pathology, and Microbiology and ImmunologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations