Advertisement

Journal of Neuroimmune Pharmacology

, Volume 13, Issue 3, pp 383–395 | Cite as

Physostigmine Restores Impaired Autophagy in the Rat Hippocampus after Surgery Stress and LPS Treatment

  • Clarissa von Haefen
  • Marco Sifringer
  • Stefanie Endesfelder
  • Alexander Kalb
  • Adrián González-López
  • Annalena Tegethoff
  • Nadine Paeschke
  • Claudia D. Spies
ORIGINAL ARTICLE

Abstract

Tissue damage and pathogen invasion during surgical trauma have been identified as contributing factors leading to neuroinflammation in the hippocampus, which can be protected by stimulation of the cholinergic anti-inflammatory pathway using the acetylcholinesterase inhibitor physostigmine. Macroautophagy, an intracellular degradation pathway used to recycle and eliminate damaged proteins and organelles by lysosomal digestion, seems to be important for cell survival under stress conditions. This study aimed to examine the role of autophagy in physostigmine-mediated hippocampal cell protection in a rat model of surgery stress. In the presence or absence of physostigmine, adult Wistar rats underwent surgery in combination with lipopolysaccharide (LPS). Activated microglia, apoptosis-, autophagy-, and anti-inflammatory-related genes and -proteins in the hippocampus were determined by Real-Time PCR, Western blot and fluorescence microscopy after 1 h, 24 h and 3 d. Surgery combined with LPS-treatment led to microglia activation after 1 h and 24 h which was accompanied by apoptotic cell death after 24 h in the hippocampus. Furthermore, it led to a decreased expression of ATG-3 after 24 h and an increased expression of p62/ SQSTM1 after 1 h and 24 h. Administration of physostigmine significantly increased autophagy related markers and restored the autophagic flux after surgery stress, detected by increased degradation of p62/ SQSTM1 in the hippocampus after 1 h and 24 h. Furthermore, physostigmine reduced activated microglia and apoptosis relevant proteins and elevated the increased expression of TGF-beta1 and MFG-E8 after surgery stress. In conclusion, activation of autophagy may be essential in physostigmine-induced neuroprotection against surgery stress.

Keywords

Autophagy Apoptosis Neuroinflammation Hippocampus Cholinergic stimulation Anti-inflammation 

Notes

Acknowledgments

We thank Marie-Christin Gaerz and Rosalie Schmidt for excellent technical assistance.

Compliance with Ethical Standards

Conflicts of Interest

All authors have read the journal’s policy on disclosure of potential conflicts of interest and have none to declare.

Ethical Approval

All animal experiments were approved and performed in accordance with the guidelines of the Charité-Universitätsmedizin Berlin, Germany and the national ethic principles (registration no. G 0253/09).

References

  1. Aziz M, Jacob A, Matsuda A, Wu R, Zhou M, Dong W, Yang WL, Wang P (2011) Pre-treatment of recombinant mouse MFG-E8 downregulates LPS-induced TNF-alpha production in macrophages via STAT3-mediated SOCS3 activation. PLoS One 6:e27685CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barrientos RM, Higgins EA, Sprunger DB, Watkins LR, Rudy JW, Maier SF (2002) Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behav Brain Res 134:291–298CrossRefPubMedGoogle Scholar
  3. Bendix I, Schulze C, Haefen C, Gellhaus A, Endesfelder S, Heumann R, Felderhoff-Mueser U, Sifringer M (2012) Erythropoietin modulates autophagy signaling in the developing rat brain in an in vivo model of oxygen-toxicity. Int J Mol Sci 13:12939–12951CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40:1133–1145CrossRefPubMedGoogle Scholar
  6. Buttner S, Broeskamp F, Sommer C, Markaki M, Habernig L, Alavian-Ghavanini A, Carmona-Gutierrez D, Eisenberg T, Michael E, Kroemer G, Tavernarakis N, Sigrist SJ, Madeo F (2014) Spermidine protects against alpha-synuclein neurotoxicity. Cell Cycle 13:3903–3908CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caballero B, Coto-Montes A (2012) An insight into the role of autophagy in cell responses in the aging and neurodegenerative brain. Histol Histopathol 27:263–275PubMedGoogle Scholar
  8. Caraci F, Gulisano W, Guida CA, Impellizzeri AA, Drago F, Puzzo D, Palmeri A (2015) A key role for TGF-beta1 in hippocampal synaptic plasticity and memory. Sci Rep 5:11252CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cheyuo C, Jacob A, Wu R, Zhou M, Qi L, Dong W, Ji Y, Chaung WW, Wang H, Nicastro J, Coppa GF, Wang P (2012) Recombinant human MFG-E8 attenuates cerebral ischemic injury: its role in anti-inflammation and anti-apoptosis. Neuropharmacology 62:890–900CrossRefPubMedGoogle Scholar
  10. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68:360–368CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson's disease. J Neurosci 30:12535–12544CrossRefPubMedGoogle Scholar
  12. Deroide N, Li X, Lerouet D, Van Vre E, Baker L, Harrison J, Poittevin M, Masters L, Nih L, Margaill I, Iwakura Y, Ryffel B, Pocard M, Tedgui A, Kubis N, Mallat Z (2013) MFGE8 inhibits inflammasome-induced IL-1beta production and limits postischemic cerebral injury. J Clin Invest 123:1176–1181CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dobolyi A, Vincze C, Pal G, Lovas G (2012) The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 13:8219–8258CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eskelinen EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793:664–673CrossRefPubMedGoogle Scholar
  15. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41CrossRefPubMedGoogle Scholar
  16. Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK (2017) Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2:e91229CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fidalgo AR, Cibelli M, White JP, Nagy I, Maze M, Ma D (2011) Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neurosci Lett 498:63–66CrossRefPubMedGoogle Scholar
  18. Francois A, Terro F, Quellard N, Fernandez B, Chassaing D, Janet T, Rioux Bilan A, Paccalin M, Page G (2014) Impairment of autophagy in the central nervous system during lipopolysaccharide-induced inflammatory stress in mice. Mol Brain 7:56CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A, Koemans TS, Kramer JM, Liu KS, Schroeder S, Stunnenberg HG, Sinner F, Magnes C, Pieber TR, Dipt S, Fiala A, Schenck A, Schwaerzel M, Madeo F, Sigrist SJ (2013) Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci 16:1453–1460CrossRefPubMedGoogle Scholar
  20. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889CrossRefPubMedGoogle Scholar
  21. Harris H, Rubinsztein DC (2012) Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8:108–117CrossRefGoogle Scholar
  22. Jiang H, Zhang XJ (2008) Acetylcholinesterase and apoptosis. A novel perspective for an old enzyme. FEBS J 275:612–617CrossRefPubMedGoogle Scholar
  23. Kalb A, von Haefen C, Sifringer M, Tegethoff A, Paeschke N, Kostova M, Feldheiser A, Spies CD (2013) Acetylcholinesterase inhibitors reduce neuroinflammation and -degeneration in the cortex and hippocampus of a surgery stress rat model. PLoS One 8:e62679CrossRefPubMedPubMedCentralGoogle Scholar
  24. Klionsky DJ (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222CrossRefPubMedPubMedCentralGoogle Scholar
  25. Klionsky DJ, Codogno P (2013) The mechanism and physiological function of macroautophagy. J Innate Immun 5:427–433CrossRefPubMedGoogle Scholar
  26. Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378CrossRefPubMedGoogle Scholar
  27. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884CrossRefPubMedGoogle Scholar
  28. Lauber K, Keppeler H, Munoz LE, Koppe U, Schroder K, Yamaguchi H, Kronke G, Uderhardt S, Wesselborg S, Belka C, Nagata S, Herrmann M (2013) Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids. Cell Death Differ 20:1230–1240CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, Tanaka KE, Czaja MJ (2015) Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 11:271–284CrossRefPubMedPubMedCentralGoogle Scholar
  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  31. Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6:352–361CrossRefPubMedGoogle Scholar
  32. Matsuda A, Wu R, Jacob A, Komura H, Zhou M, Wang Z, Aziz MM, Wang P (2011) Protective effect of milk fat globule-epidermal growth factor-factor VIII after renal ischemia-reperfusion injury in mice. Crit Care Med 39:2039–2047CrossRefPubMedPubMedCentralGoogle Scholar
  33. Moreau K, Luo S, Rubinsztein DC (2010) Cytoprotective roles for autophagy. Curr Opin Cell Biol 22:206–211CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer's disease--locating the primary defect. Neurobiol Dis 43:38–45CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pena-Altamira E, Petralla S, Massenzio F, Virgili M, Bolognesi ML, Monti B (2017) Nutritional and pharmacological strategies to regulate microglial polarization in cognitive aging and Alzheimer's disease. Front Aging Neurosci 9:175CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ravikumar B, Berger Z, Vacher C, O'Kane CJ, Rubinsztein DC (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15:1209–1216CrossRefPubMedGoogle Scholar
  37. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786CrossRefPubMedGoogle Scholar
  38. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695CrossRefPubMedGoogle Scholar
  39. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal 2012:756357CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10:2208–2222CrossRefPubMedGoogle Scholar
  41. Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, Chen XW, Su DF, Liu C (2017) Autophagy plays an important role in anti-inflammatory mechanisms stimulated by Alpha7 nicotinic acetylcholine receptor. Front Immunol 8:553CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shen WX, Chen JH, Lu JH, Peng YP, Qiu YH (2014) TGF-beta1 protection against Abeta1-42-induced neuroinflammation and neurodegeneration in rats. Int J Mol Sci 15:22092–22108CrossRefPubMedPubMedCentralGoogle Scholar
  43. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 5:e9979CrossRefPubMedPubMedCentralGoogle Scholar
  44. Spittau B, Rilka J, Steinfath E, Zoller T, Krieglstein K (2015) TGFbeta1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8. Glia 63:142–153CrossRefPubMedGoogle Scholar
  45. Su P, Zhang J, Wang D, Zhao F, Cao Z, Aschner M, Luo W (2016) The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience 319:155–167CrossRefPubMedGoogle Scholar
  46. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175CrossRefPubMedPubMedCentralGoogle Scholar
  47. Velloso NA, Dalmolin GD, Gomes GM, Rubin MA, Canas PM, Cunha RA, Mello CF (2009) Spermine improves recognition memory deficit in a rodent model of Huntington's disease. Neurobiol Learn Mem 92:574–580CrossRefPubMedGoogle Scholar
  48. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, Shen CK (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A 109:15024–15029CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yang L, He HY, Zhang XJ (2002) Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells. Neurosci Res 42:261–268CrossRefPubMedGoogle Scholar
  51. Yang C, Zhu B, Shen J, Hu T, Li Z, Hong T (2013) Rapamycin and mTOR inhibitors probably have therapeutic effects for post-operative cognitive dysfunction. Med Hypotheses 81:487–488CrossRefPubMedGoogle Scholar
  52. Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, Fu L (2014) mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. Behav Brain Res 264:82–90CrossRefPubMedGoogle Scholar
  53. Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N (2017) The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem 142:215–230CrossRefPubMedGoogle Scholar
  54. Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, Guo LH, Alemany M, Zhang LY, Shi YF (2002) Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 9:790–800CrossRefPubMedGoogle Scholar
  55. Zhao M, Sun L, Yu XJ, Miao Y, Liu JJ, Wang H, Ren J, Zang WJ (2013) Acetylcholine mediates AMPK-dependent autophagic cytoprotection in H9c2 cells during hypoxia/reoxygenation injury. Cell Physiol Biochem 32:601–613CrossRefPubMedGoogle Scholar
  56. Zhu Y, Ahlemeyer B, Bauerbach E, Krieglstein J (2001) TGF-beta1 inhibits caspase-3 activation and neuronal apoptosis in rat hippocampal cultures. Neurochem Int 38:227–235CrossRefPubMedGoogle Scholar
  57. Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, Krieglstein J (2002) Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22:3898–3909CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Clarissa von Haefen
    • 1
  • Marco Sifringer
    • 1
  • Stefanie Endesfelder
    • 2
  • Alexander Kalb
    • 1
  • Adrián González-López
    • 1
    • 3
  • Annalena Tegethoff
    • 1
  • Nadine Paeschke
    • 1
  • Claudia D. Spies
    • 1
  1. 1.Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  2. 2.Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  3. 3.CIBER-Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadridSpain

Personalised recommendations