Advertisement

Journal of Neuroimmune Pharmacology

, Volume 13, Issue 3, pp 355–370 | Cite as

Critical Role of Beclin1 in HIV Tat and Morphine-Induced Inflammation and Calcium Release in Glial Cells from Autophagy Deficient Mouse

  • Jessica Lapierre
  • Myosotys Rodriguez
  • Chet Raj Ojha
  • Nazira El-Hage
ORIGINAL ARTICLE
  • 147 Downloads

Abstract

We previously showed that autophagy is an important component in human immunodeficiency virus (HIV) replication and in the combined morphine-induced neuroinflammation in human astrocytes and microglia. Here we further studied the consequences of autophagy using glial cells of mice partially lacking the essential autophagy gene Atg6 (Beclin1) exposed to HIV Tat and morphine. Tat is known to cause an inflammatory response, increase calcium release, and possibly interact with autophagy pathway proteins. Following Tat exposure, autophagy-deficient (Becn1+/−) glial cells had significantly and consistently reduced levels in the pro-inflammatory cytokine IL-6 and the chemokines RANTES and MCP-1 when compared to Tat-treated cells from control (C57BL/6J) mice, suggesting an association between the inflammatory effects of Tat and Beclin1. Further, differences in RANTES and MCP-1 secretion between C57BL/6J and Becn1+/− glia treated with Tat and morphine also suggest a role of Beclin1 in the morphine-induced enhancement. Analysis of autophagy maturation by immunoblot suggests that Beclin1 may be necessary for Tat, and to a lesser extent morphine-induced arrest of the pathway as demonstrated by accumulation of the adaptor protein p62/SQSTM1 in C57BL/6J glia. Calcium release induced by Tat alone or in combination with morphine in C57BL/6J glia was significantly reduced in Becn1+/− glia while minimal interactive effect of Tat with morphine in the production of reactive oxygen or nitrogen species was detected in glia derived from Becn1+/− or C57BL/6J. Overall, the data establish a role of Beclin1 in Tat and morphine-mediated inflammatory responses and calcium release in glial cells and support the notion that autophagy mediates Tat alone and combined morphine-induced neuropathology.

Keywords

Neuroinflammation HIV Tat Opioid Beclin1-deficient mouse model 

Notes

Acknowledgements

We gratefully acknowledge the support of the National Institutes of Health (NIH)-National Institute on Drug Abuse (NIDA) grants R01 DA036154 awarded to NEH for funding the study. We also acknowledge the financial support of NIH/NIDA R01 DA036154-S1 Diversity Supplement awarded to NEH to support JL and Presidential Fellowship provided to CRO by the Florida International University Graduate School.

Author Contributions

JL performed and analyzed the experiments shown in Figs. 1, 2, 3, 4, 5, 6 and 7, Fig. S1–3, and wrote the manuscript. MR performed and analyzed the experiment shown in Fig. 1e and Fig. 5a-b. CRO assisted in the editing of the manuscript. NEH designed, analyzed, and coordinated the study and edited the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Author Jessica Lapierre declares that she has no conflict of interest. Author Myosotys Rodriguez declares that she has no conflict of interest. Author Chet Raj Ojha declares that he has no conflict of interest. Author Nazira El-Hage declares that she has no conflict of interest.

Supplementary material

11481_2018_9788_MOESM1_ESM.docx (350 kb)
ESM 1 (DOCX 350 kb)

References

  1. Barber SA, Uhrlaub JL, DeWitt JB, Tarwater PM, Zink MC (2004) Dysregulation of mitogen-activated protein kinase signaling pathways in simian immunodeficiency virus encephalitis. Am J Pathol 164:355–362.  https://doi.org/10.1016/S0002-9440(10)63125-2 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barger SW, Goodwin ME, Porter MM, Beggs ML (2007) Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem 101:1205–1213.  https://doi.org/10.1111/j.1471-4159.2007.04487.x CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bokhari SM, Yao H, Bethel-Brown C, Fuwang P, Williams R, Dhillon NK, Hegde R, Kumar A, Buch SJ (2009) Morphine enhances tat-induced activation in murine microglia. J Neuro-Oncol 15:219–228.  https://doi.org/10.1080/13550280902913628 Google Scholar
  4. Bruno AP, de Simone FI, Iorio V, de Marco M, Khalili K, Sariyer IK, Capunzo M, Nori SL, Rosati A (2014) HIV-1 tat protein induces glial cell autophagy through enhancement of BAG3 protein levels. Cell Cycle 13:3640–3644.  https://doi.org/10.4161/15384101.2014.952959 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Campbell GR, Rawat P, Bruckman RS, Spector SA (2015) Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog 11:e1005018.  https://doi.org/10.1371/journal.ppat.1005018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cao L, Fu M, Kumar S, Kumar A (2016a) Methamphetamine potentiates HIV-1 gp120-mediated autophagy via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death Dis 7:e2425.  https://doi.org/10.1038/cddis.2016.317 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cao L, Glazyrin A, Kumar S, Kumar A (2016b) Role of autophagy in HIV pathogenesis and drug abuse. Mol Neurobiol 54:5855–5867.  https://doi.org/10.1007/s12035-016-0118-6 CrossRefPubMedGoogle Scholar
  8. Conant K, Ma M, Nath A, Major EO (1996) Extracellular human immunodeficiency virus type 1 tat protein is associated with an increase in both NF-kappa B binding and protein kinase C activity in primary human astrocytes. J Virol 70:1384–1389PubMedPubMedCentralGoogle Scholar
  9. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95:3117–3121CrossRefPubMedPubMedCentralGoogle Scholar
  10. D'Aversa TG, Yu KO, Berman JW (2004) Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein tat. J Neuro-Oncol 10:86–97.  https://doi.org/10.1080/13550280490279807 Google Scholar
  11. D'Aversa TG, Eugenin EA, Berman JW (2005) NeuroAIDS: contributions of the human immunodeficiency virus-1 proteins tat and gp120 as well as CD40 to microglial activation. J Neurosci Res 81:436–446.  https://doi.org/10.1002/jnr.20486 CrossRefPubMedGoogle Scholar
  12. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252CrossRefPubMedGoogle Scholar
  13. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737.  https://doi.org/10.1038/nri3532 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95.  https://doi.org/10.1152/physrev.00018.2001 CrossRefPubMedGoogle Scholar
  15. El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF (2005) Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 tat. Glia 50:91–106.  https://doi.org/10.1002/glia.20148 CrossRefPubMedPubMedCentralGoogle Scholar
  16. El-Hage N et al (2006) HIV-1 tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia 53:132–146.  https://doi.org/10.1002/glia.20262 CrossRefPubMedPubMedCentralGoogle Scholar
  17. El-Hage N, Bruce-Keller AJ, Yakovleva T, Bazov I, Bakalkin G, Knapp PE, Hauser KF (2008) Morphine exacerbates HIV-1 tat-induced cytokine production in astrocytes through convergent effects on [ca(2+)](i), NF-kappaB trafficking and transcription. PLoS One 3:e4093.  https://doi.org/10.1371/journal.pone.0004093 CrossRefPubMedPubMedCentralGoogle Scholar
  18. El-Hage N, Rodriguez M, Dever SM, Masvekar RR, Gewirtz Da, Shacka JJ (2015) HIV-1 and morphine regulation of autophagy in microglia: limited interactions in the context of HIV-1 infection and opioid abuse. J Virol 89:1024–1035 doi: https://doi.org/10.1128/JVI.02022-14
  19. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 tat protein on cell growth and viral transactivation. J Virol 67:277–287PubMedPubMedCentralGoogle Scholar
  20. Espert L, Varbanov M, Robert-Hebmann V, Sagnier S, Robbins I, Sanchez F, Lafont V, Biard-Piechaczyk M (2009) Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection. PLoS One 4:e5787.  https://doi.org/10.1371/journal.pone.0005787 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41.  https://doi.org/10.1038/cr.2013.168 CrossRefPubMedGoogle Scholar
  22. Fields J, Dumaop W, Elueteri S, Campos S, Serger E, Trejo M, Kosberg K, Adame A, Spencer B, Rockenstein E, He JJ, Masliah E (2015) HIV-1 tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci 35:1921–1938.  https://doi.org/10.1523/JNEUROSCI.3207-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Friedman H, Pross S, Klein TW (2006) Addictive drugs and their relationship with infectious diseases. FEMS Immunol Med Microbiol 47:330–342.  https://doi.org/10.1111/j.1574-695X.2006.00097.x CrossRefPubMedGoogle Scholar
  24. Gurwell JA, Nath A, Sun Q, Zhang J, Martin KM, Chen Y, Hauser KF (2001) Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 tat protein in striatal neurons in vitro. Neuroscience 102:555–563CrossRefPubMedPubMedCentralGoogle Scholar
  25. Haughey NJ, Holden CP, Nath A, Geiger JD (1999) Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem 73:1363–1374CrossRefPubMedGoogle Scholar
  26. Haughey NJ, Nath A, Mattson MP, Slevin JT, Geiger JD (2001) HIV-1 tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. J Neurochem 78:457–467CrossRefPubMedGoogle Scholar
  27. Hauser KF, El-Hage N, Buch S, Nath A, Tyor WR, Bruce-Keller AJ, Knapp PE (2006) Impact of opiate-HIV-1 interactions on neurotoxic signaling. J NeuroImmune Pharmacol 1(1):98–105.  https://doi.org/10.1007/s11481-005-9000-4 CrossRefPubMedGoogle Scholar
  28. Hauser KF, el-Hage N, Stiene-Martin A, Maragos WF, Nath A, Persidsky Y, Volsky DJ, Knapp PE (2007) HIV-1 neuropathogenesis: glial mechanisms revealed through substance abuse. J Neurochem 100:567–586.  https://doi.org/10.1111/j.1471-4159.2006.04227.x CrossRefPubMedGoogle Scholar
  29. Hauser KF, Fitting S, Dever SM, Podhaizer EM, Knapp PE (2012) Opiate drug use and the pathophysiology of neuroAIDS. Curr HIV Res 10:435–452CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of endolysosomes in HIV-1 tat-induced neurotoxicity. ASN Neuro 4:243–252.  https://doi.org/10.1042/AN20120017 CrossRefPubMedGoogle Scholar
  31. Jones M, Olafson K, Del Bigio MR, Peeling J, Nath A (1998) Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol 57:563–570CrossRefPubMedGoogle Scholar
  32. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728.  https://doi.org/10.1093/emboj/19.21.5720 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kaul N, Forman HJ (1996) Activation of NF kappa B by the respiratory burst of macrophages. Free Radic Biol Med 21:401–405CrossRefPubMedGoogle Scholar
  34. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994.  https://doi.org/10.1038/35073667 CrossRefPubMedGoogle Scholar
  35. Kiriyama Y, Nochi H (2015) The function of autophagy in neurodegenerative diseases. Int J Mol Sci 16:26797–26812.  https://doi.org/10.3390/ijms161125990 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz DA, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7:1273–1294.  https://doi.org/10.4161/auto.7.11.17661 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213.  https://doi.org/10.1016/j.virusres.2005.04.009 CrossRefPubMedGoogle Scholar
  38. Kruman II, Nath A, Mattson MP (1998) HIV-1 protein tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288.  https://doi.org/10.1006/exnr.1998.6958 CrossRefPubMedGoogle Scholar
  39. Kruman II, Nath A, Maragos WF, Chan SL, Jones M, Rangnekar VM, Jakel RJ, Mattson MP (1999) Evidence that Par-4 participates in the pathogenesis of HIV encephalitis. Am J Pathol 155:39–46.  https://doi.org/10.1016/S0002-9440(10)65096-1 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V (2009) Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186:255–268.  https://doi.org/10.1083/jcb.200903070 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Liu Z, Qiao L, Zhang Y, Zang Y, Shi Y, Liu K, Zhang X, Lu X, Yuan L, Su B, Zhang T, Wu H, Chen D (2017) ASPP2 plays a dual role in gp120-induced autophagy and apoptosis of neuroblastoma cells. Front Neurosci 11:150.  https://doi.org/10.3389/fnins.2017.00150 PubMedPubMedCentralGoogle Scholar
  42. Mabrouk K, Van Rietschoten J, Vives E, Darbon H, Rochat H, Sabatier JM (1991) Lethal neurotoxicity in mice of the basic domains of HIV and SIV rev proteins. Study of these regions by circular dichroism. FEBS Lett 289:13–17CrossRefPubMedGoogle Scholar
  43. Mayne M, Bratanich AC, Chen P, Rana F, Nath A, Power C (1998) HIV-1 tat molecular diversity and induction of TNF-alpha: implications for HIV-induced neurological disease. Neuroimmunomodulation 5:184–192.  https://doi.org/10.1159/000026336 CrossRefPubMedGoogle Scholar
  44. McKnight NC et al (2014) Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet 10:e1004626.  https://doi.org/10.1371/journal.pgen.1004626 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mehla R, Chauhan A (2015) HIV-1 differentially modulates autophagy in neurons and astrocytes. J Neuroimmunol 285:106–118.  https://doi.org/10.1016/j.jneuroim.2015.06.001 CrossRefPubMedGoogle Scholar
  46. Meulendyke KA, Croteau JD, Zink MC (2014) HIV life cycle, innate immunity and autophagy in the central nervous system. Curr Opin HIV AIDS 9:565–571.  https://doi.org/10.1097/COH.0000000000000106 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545CrossRefPubMedGoogle Scholar
  48. Nath A (2002) Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2):S193–S198.  https://doi.org/10.1086/344528 CrossRefPubMedGoogle Scholar
  49. Nath A, Conant K, Chen P, Scott C, Major EO (1999) Transient exposure to HIV-1 tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon J Biol Chem 274:17098–17102PubMedGoogle Scholar
  50. New DR, Ma M, Epstein LG, Nath A, Gelbard HA (1997) Human immunodeficiency virus type 1 tat protein induces death by apoptosis in primary human neuron cultures. J Neuro-Oncol 3:168–173Google Scholar
  51. Norman JP, Perry SW, Reynolds HM, Kiebala M, de Mesy Bentley KL, Trejo M, Volsky DJ, Maggirwar SB, Dewhurst S, Masliah E, Gelbard HA (2008) HIV-1 tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS One 3:e3731.  https://doi.org/10.1371/journal.pone.0003731 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Philippon V, Vellutini C, Gambarelli D, Harkiss G, Arbuthnott G, Metzger D, Roubin R, Filippi P (1994) The basic domain of the lentiviral tat protein is responsible for damages in mouse brain: involvement of cytokines. Virology 205:519–529.  https://doi.org/10.1006/viro.1994.1673 CrossRefPubMedGoogle Scholar
  53. Pocernich CB, Sultana R, Mohmmad-Abdul H, Nath A, Butterfield DA (2005) HIV-dementia, tat-induced oxidative stress, and antioxidant therapeutic considerations. Brain Res Brain Res Rev 50:14–26.  https://doi.org/10.1016/j.brainresrev.2005.04.002 CrossRefPubMedGoogle Scholar
  54. Pulliam L, Herndier BG, Tang NM, McGrath MS (1991) Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 87:503–512.  https://doi.org/10.1172/JCI115024 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rodriguez M, Kaushik A, Lapierre J, Dever SM, El-Hage N, Nair M (2017a) Electro-magnetic Nano-particle bound Beclin1 siRNA crosses the blood-brain barrier to attenuate the inflammatory effects of HIV-1 infection in vitro. J NeuroImmune Pharmacol 12:120–132.  https://doi.org/10.1007/s11481-016-9688-3 CrossRefPubMedGoogle Scholar
  56. Rodriguez M, Lapierre J, Ojha C, Estrada-Bueno H, Dever S, Gewirtz D, Kashanchi F, el-Hage N (2017b) Importance of autophagy in mediating human immunodeficiency virus (HIV) and morphine-induced metabolic dysfunction and inflammation in human astrocytes. Viruses 9:201.  https://doi.org/10.3390/v9080201 CrossRefPubMedCentralGoogle Scholar
  57. Rodriguez M, Lapierre J, Ojha CR, Kaushik A, Batrakova E, Kashanchi F, Dever SM, Nair M, el-Hage N (2017c) Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci Rep 7:1862.  https://doi.org/10.1038/s41598-017-01819-9 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rogers TJ, Peterson PK (2003) Opioid G protein-coupled receptors: signals at the crossroads of inflammation. Trends Immunol 24:116–121CrossRefPubMedGoogle Scholar
  59. Ronaldson PT, Bendayan R (2006) HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol Pharmacol 70:1087–1098.  https://doi.org/10.1124/mol.106.025973 CrossRefPubMedGoogle Scholar
  60. Sagnier S, Daussy CF, Borel S, Robert-Hebmann V, Faure M, Blanchet FP, Beaumelle B, Biard-Piechaczyk M, Espert L (2015) Autophagy restricts HIV-1 infection by selectively degrading tat in CD4+ T lymphocytes. J Virol 89:615–625.  https://doi.org/10.1128/JVI.02174-14 CrossRefPubMedGoogle Scholar
  61. Saribas AS, Khalili K, Sariyer IK (2015) Dysregulation of autophagy by HIV-1 Nef in human astrocytes. Cell Cycle 14:2899–2904.  https://doi.org/10.1080/15384101.2015.1069927 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Steele AD, Henderson EE, Rogers TJ (2003) Mu-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology 309:99–107CrossRefPubMedGoogle Scholar
  63. Steiner J, Haughey N, Li W, Venkatesan A, Anderson C, Reid R, Malpica T, Pocernich C, Butterfield DA, Nath A (2006) Oxidative stress and therapeutic approaches in HIV dementia. Antioxid Redox Signal 8:2089–2100.  https://doi.org/10.1089/ars.2006.8.2089 CrossRefPubMedGoogle Scholar
  64. Shi B, Raina J, Lorenzo A, Busciglio J, Gabuzda D (1998) Neuronal apoptosis induced by HIV-1 tat protein and TNF-alpha: potentiation of neurotoxicity mediated by oxidative stress and implications for HIV-1 dementia. J Neuro-Oncol 4:281–290Google Scholar
  65. Silverstein PS, Shah A, Weemhoff J, Kumar S, Singh DP, Kumar A (2012) HIV-1 gp120 and drugs of abuse: interactions in the central nervous system. Curr HIV Res 10:369–383CrossRefPubMedPubMedCentralGoogle Scholar
  66. Salminen A, Kaarniranta K, Kauppinen A (2013) Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 12:520–534.  https://doi.org/10.1016/j.arr.2012.11.004 CrossRefPubMedGoogle Scholar
  67. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581CrossRefPubMedGoogle Scholar
  68. Sun Q, Fan J, Billiar TR, Scott MJ (2017) Inflammasome and autophagy regulation - a two-way street. Mol Med 23:1.  https://doi.org/10.2119/molmed.2017.00077 Google Scholar
  69. Trillo-Pazos G, McFarlane-Abdulla E, Campbell IC, Pilkington GJ, Everall IP (2000) Recombinant nef HIV-IIIB protein is toxic to human neurons in culture. Brain Res 864:315–326CrossRefPubMedGoogle Scholar
  70. Turchan-Cholewo J, Dimayuga FO, Ding Q, Keller JN, Hauser KF, Knapp PE, Bruce-Keller AJ (2008) Cell-specific actions of HIV-tat and morphine on opioid receptor expression in glia. J Neurosci Res 86:2100–2110.  https://doi.org/10.1002/jnr.21653 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Turchan-Cholewo J, Dimayuga FO, Gupta S, Keller JN, Knapp PE, Hauser KF, Bruce-Keller AJ (2009) Morphine and HIV-tat increase microglial-free radical production and oxidative stress: possible role in cytokine regulation. J Neurochem 108:202–215.  https://doi.org/10.1111/j.1471-4159.2008.05756.x CrossRefPubMedGoogle Scholar
  72. Vogel BE, Lee SJ, Hildebrand A, Craig W, Pierschbacher MD, Wong-Staal F, Ruoslahti E (1993) A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV tat protein and vitronectin. J Cell Biol 121:461–468CrossRefPubMedGoogle Scholar
  73. Wei Y, Sinha S, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4:949–951CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100:15077–15082.  https://doi.org/10.1073/pnas.2436255100 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhou D, Spector SA (2008) Human immunodeficiency virus type-1 infection inhibits autophagy. AIDS (London, England) 22:695–699.  https://doi.org/10.1097/QAD.0b013e3282f4a836 CrossRefGoogle Scholar
  76. Zou S, Fitting S, Hahn YK, Welch SP, El-Hage N, Hauser KF, Knapp PE (2011) Morphine potentiates neurodegenerative effects of HIV-1 tat through actions at mu-opioid receptor-expressing glia. Brain 134:3616–3631.  https://doi.org/10.1093/brain/awr281 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jessica Lapierre
    • 1
  • Myosotys Rodriguez
    • 1
  • Chet Raj Ojha
    • 1
  • Nazira El-Hage
    • 1
  1. 1.Department of ImmunologyFlorida International University, Herbert Wertheim College of MedicineMiamiUSA

Personalised recommendations