Journal of Neuroimmune Pharmacology

, Volume 14, Issue 1, pp 52–67 | Cite as

HIV and the Macrophage: From Cell Reservoirs to Drug Delivery to Viral Eradication

  • Jonathan Herskovitz
  • Howard E. GendelmanEmail author


Macrophages serve as host cells, inflammatory disease drivers and drug runners for human immunodeficiency virus infection and treatments. Low-level viral persistence continues in these cells in the absence of macrophage death. However, the cellular microenvironment changes as a consequence of viral infection with aberrant production of pro-inflammatory factors and promotion of oxidative stress. These herald viral spread from macrophages to neighboring CD4+ T cells and end organ damage. Virus replicates in tissue reservoir sites that include the nervous, pulmonary, cardiovascular, gut, and renal organs. However, each of these events are held in check by antiretroviral therapy. A hidden and often overlooked resource of the macrophage rests in its high cytoplasmic nuclear ratios that allow the cell to sense its environment and rid it of the cellular waste products and microbial pathogens it encounters. These phagocytic and intracellular killing sensing mechanisms can also be used in service as macrophages serve as cellular carriage depots for antiretroviral nanoparticles and are able to deliver medicines to infectious disease sites with improved therapeutic outcomes. These undiscovered cellular functions can lead to reductions in persistent infection and may potentially facilitate the eradication of residual virus to eliminate disease.


Mononuclear phagocytes Monocyte-derived macrophages Human immunodeficiency virus Viral persistence Long acting slow effective release antiretroviral therapy Cell ontogeny Viral reservoirs 



We thank Drs. Benson Edagwa and Aditya Bade for their thoughtful discussions. This work was supported in part by NIH Grants R01 AG043540, P01 DA028555, P30 MH062261, R01 MH115860, R01 NS034239, R01 NS036126, and the Carol Swartz Emerging Neuroscience Fund.

Compliance with Ethical Standards

Conflict of Interest



  1. Aillet F, Masutani H, Elbim C, Raoul H, Chene L, Nugeyre MT, Paya C, Barre-Sinoussi F, Gougerot-Pocidalo MA, Israel N (1998) Human immunodeficiency virus induces a dual regulation of Bcl-2, resulting in persistent infection of CD4(+) T- or monocytic cell lines. J Virol 72:9698–9705PubMedPubMedCentralGoogle Scholar
  2. Aiuti F, Mezzaroma I (2006) Failure to reconstitute CD4+ T-cells despite suppression of HIV replication under HAART. AIDS Rev 8:88–97PubMedGoogle Scholar
  3. Alhetheel A, Yakubtsov Y, Abdkader K, Sant N, Diaz-Mitoma F, Kumar A, Kryworuchko M (2008) Amplification of the signal transducer and activator of transcription I signaling pathway and its association with apoptosis in monocytes from HIV-infected patients. AIDS 22:1137–1144PubMedGoogle Scholar
  4. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958PubMedGoogle Scholar
  5. Allouch A, David A, Amie SM, Lahouassa H, Chartier L, Margottin-Goguet F, Barre-Sinoussi F, Kim B, Saez-Cirion A, Pancino G (2014) Reply to Pauls et al.: p21 is a master regulator of HIV replication in macrophages through dNTP synthesis block. Proc Natl Acad Sci U S A 111:E1325–E1326PubMedPubMedCentralGoogle Scholar
  6. Amorim NA, da Silva EM, de Castro RO, da Silva-Januario ME, Mendonca LM, Bonifacino JS, da Costa LJ, daSilva LL (2014) Interaction of HIV-1 Nef protein with the host protein Alix promotes lysosomal targeting of CD4 receptor. J Biol Chem 289:27744–27756PubMedPubMedCentralGoogle Scholar
  7. Ancuta P, Kunstman KJ, Autissier P, Zaman T, Stone D, Wolinsky SM, Gabuzda D (2006) CD16+ monocytes exposed to HIV promote highly efficient viral replication upon differentiation into macrophages and interaction with T cells. Virology 344:267–276PubMedGoogle Scholar
  8. Aquaro S, Muscoli C, Ranazzi A, Pollicita M, Granato T, Masuelli L, Modesti A, Perno CF, Mollace V (2007) The contribution of peroxynitrite generation in HIV replication in human primary macrophages. Retrovirology 4:76PubMedPubMedCentralGoogle Scholar
  9. Arainga M, Su H, Poluektova LY, Gorantla S, Gendelman HE (2016) HIV-1 cellular and tissue replication patterns in infected humanized mice. Sci Rep 6:23513PubMedPubMedCentralGoogle Scholar
  10. Azzam R, Kedzierska K, Leeansyah E, Chan H, Doischer D, Gorry PR, Cunningham AL, Crowe SM, Jaworowski A (2006) Impaired complement-mediated phagocytosis by HIV type-1-infected human monocyte-derived macrophages involves a cAMP-dependent mechanism. AIDS Res Hum Retrovir 22:619–629PubMedGoogle Scholar
  11. Balagopal A, Ray SC, De Oca RM, Sutcliffe CG, Vivekanandan P, Higgins Y, Mehta SH, Moore RD, Sulkowski MS, Thomas DL, Torbenson MS (2009) Kupffer cells are depleted with HIV immunodeficiency and partially recovered with antiretroviral immune reconstitution. AIDS 23:2397–2404PubMedPubMedCentralGoogle Scholar
  12. Baron MH, Isern J, Fraser ST (2012) The embryonic origins of erythropoiesis in mammals. Blood 119:4828–4837PubMedPubMedCentralGoogle Scholar
  13. Beers SA, Chan CH, James S, French RR, Attfield KE, Brennan CM, Ahuja A, Shlomchik MJ, Cragg MS, Glennie MJ (2008) Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 112:4170–4177PubMedGoogle Scholar
  14. Benveniste O, Flahault A, Rollot F, Elbim C, Estaquier J, Pedron B, Duval X, Dereuddre-Bosquet N, Clayette P, Sterkers G, Simon A, Ameisen JC, Leport C (2005) Mechanisms involved in the low-level regeneration of CD4+ cells in HIV-1-infected patients receiving highly active antiretroviral therapy who have prolonged undetectable plasma viral loads. J Infect Dis 191:1670–1679PubMedGoogle Scholar
  15. Bhaskaran N, Ghosh SK, Yu X, Qin S, Weinberg A, Pandiyan P, Ye F (2017) Kaposi's sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle 16:1611–1621PubMedPubMedCentralGoogle Scholar
  16. Bocchino M, Ledru E, Debord T, Gougeon ML (2001) Increased priming for interleukin-12 and tumour necrosis factor alpha in CD64 monocytes in HIV infection: modulation by cytokines and therapy. AIDS 15:1213–1223PubMedGoogle Scholar
  17. Bouwman FH, Skolasky RL, Hes D, Selnes OA, Glass JD, Nance-Sproson TE, Royal W, Dal Pan GJ, McArthur JC (1998) Variable progression of HIV-associated dementia. Neurology 50:1814–1820PubMedGoogle Scholar
  18. Boyette LB, Macedo C, Hadi K, Elinoff BD, Walters JT, Ramaswami B, Chalasani G, Taboas JM, Lakkis FG, Metes DM (2017) Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One 12:e0176460PubMedPubMedCentralGoogle Scholar
  19. Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW (2011) Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 267:109–123PubMedGoogle Scholar
  20. Cavert W, Notermans DW, Staskus K, Wietgrefe SW, Zupancic M, Gebhard K, Henry K, Zhang ZQ, Mills R, McDade H, Schuwirth CM, Goudsmit J, Danner SA, Haase AT (1997) Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science 276:960–964PubMedGoogle Scholar
  21. Cenac A, Gaudeau S, Vernant P (1975) Pericardial effusions and mediastinal radiotherapy. 4 cases. Nouv Press Med 4:185–187Google Scholar
  22. Cervasi B, Paiardini M, Serafini S, Fraternale A, Menotta M, Engram J, Lawson B, Staprans SI, Piedimonte G, Perno CF, Silvestri G, Magnani M (2006) Administration of fludarabine-loaded autologous red blood cells in simian immunodeficiency virus-infected sooty mangabeys depletes pSTAT-1-expressing macrophages and delays the rebound of viremia after suspension of antiretroviral therapy. J Virol 80:10335–10345PubMedPubMedCentralGoogle Scholar
  23. Chao JR, Wang JM, Lee SF, Peng HW, Lin YH, Chou CH, Li JC, Huang HM, Chou CK, Kuo ML, Yen JJ, Yang-Yen HF (1998) mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol Cell Biol 18:4883–4898PubMedPubMedCentralGoogle Scholar
  24. Chaudhry A, Das SR, Jameel S, George A, Bal V, Mayor S, Rath S (2008) HIV-1 Nef induces a Rab11-dependent routing of endocytosed immune costimulatory proteins CD80 and CD86 to the Golgi. Traffic 9:1925–1935PubMedGoogle Scholar
  25. Chaudhry A, Verghese DA, Das SR, Jameel S, George A, Bal V, Mayor S, Rath S (2009) HIV-1 Nef promotes endocytosis of cell surface MHC class II molecules via a constitutive pathway. J Immunol 183:2415–2424PubMedGoogle Scholar
  26. Cheng-Mayer C, Liu R, Landau NR, Stamatatos L (1997) Macrophage tropism of human immunodeficiency virus type 1 and utilization of the CC-CKR5 coreceptor. J Virol 71:1657–1661PubMedPubMedCentralGoogle Scholar
  27. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW Jr, Sowder RC 2nd, Barsov E, Hood BL, Fisher RJ, Nagashima K, Conrads TP, Veenstra TD, Lifson JD, Ott DE (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80:9039–9052PubMedPubMedCentralGoogle Scholar
  28. Cobb A, Roberts LK, Palucka AK, Mead H, Montes M, Ranganathan R, Burkeholder S, Finholt JP, Blankenship D, King B, Sloan L, Harrod AC, Levy Y, Banchereau J (2011) Development of a HIV-1 lipopeptide antigen pulsed therapeutic dendritic cell vaccine. J Immunol Methods 365:27–37Google Scholar
  29. Cross SA, Cook DR, Chi AW, Vance PJ, Kolson LL, Wong BJ, Jordan-Sciutto KL, Kolson DL (2011) Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. J Immunol 187:5015–5025PubMedPubMedCentralGoogle Scholar
  30. Dalakas MC, Cupler EJ (1996) Neuropathies in HIV infection. Baillieres Clin Neurol 5:199–218PubMedGoogle Scholar
  31. Dash PK, Gendelman HE, Roy U, Balkundi S, Alnouti Y, Mosley RL, Gelbard HA, McMillan J, Gorantla S, Poluektova LY (2012) Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. AIDS 26:2135–2144PubMedPubMedCentralGoogle Scholar
  32. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735PubMedPubMedCentralGoogle Scholar
  33. De Luca A, Ciancio BC, Larussa D, Murri R, Cingolani A, Rizzo MG, Giancola ML, Ammassari A, Ortona L (2002) Correlates of independent HIV-1 replication in the CNS and of its control by antiretrovirals. Neurology 59:342–347PubMedGoogle Scholar
  34. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O'Brien SJ (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter AIDS cohort study, multicenter hemophilia cohort study, san Francisco City cohort, ALIVE study. Science 273:1856–1862PubMedGoogle Scholar
  35. DeFalco T, Bhattacharya I, Williams AV, Sams DM, Capel B (2014) Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci U S A 111:E2384–E2393PubMedPubMedCentralGoogle Scholar
  36. Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES (2005) Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307:1630–1634PubMedGoogle Scholar
  37. Desch AN, Gibbings SL, Clambey ET, Janssen WJ, Slansky JE, Kedl RM, Henson PM, Jakubzick C (2014) Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat Commun 5:4674PubMedPubMedCentralGoogle Scholar
  38. Desmedt M, Rottiers P, Dooms H, Fiers W, Grooten J (1998) Macrophages induce cellular immunity by activating Th1 cell responses and suppressing Th2 cell responses. J Immunol 160:5300–5308PubMedGoogle Scholar
  39. Desport M (2010) Lentiviruses and macrophages: molecular and cellular interactions. Caister Academic Press, NorkfolkGoogle Scholar
  40. Dirk BS, Pawlak EN, Johnson AL, Van Nynatten LR, Jacob RA, Heit B, Dikeakos JD (2016) HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling. Sci Rep 6:37021PubMedPubMedCentralGoogle Scholar
  41. Dou H, Destache CJ, Morehead JR, Mosley RL, Boska MD, Kingsley J, Gorantla S, Poluektova L, Nelson JA, Chaubal M, Werling J, Kipp J, Rabinow BE, Gendelman HE (2006) Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108:2827–2835PubMedPubMedCentralGoogle Scholar
  42. Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669PubMedPubMedCentralGoogle Scholar
  43. Dumas A, Le-Bury G, Marie-Anais F, Herit F, Mazzolini J, Guilbert T, Bourdoncle P, Russell DG, Benichou S, Zahraoui A, Niedergang F (2015) The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol 211:359–372PubMedPubMedCentralGoogle Scholar
  44. Edagwa B, McMillan J, Sillman B, Gendelman HE (2017) Long-acting slow effective release antiretroviral therapy. Expert Opin Drug Deliv 14:1281–1291PubMedPubMedCentralGoogle Scholar
  45. El-Far M, Isabelle C, Chomont N, Bourbonniere M, Fonseca S, Ancuta P, Peretz Y, Chouikh Y, Halwani R, Schwartz O, Madrenas J, Freeman GJ, Routy JP, Haddad EK, Sekaly RP (2013) Down-regulation of CTLA-4 by HIV-1 Nef protein. PLoS One 8:e54295PubMedPubMedCentralGoogle Scholar
  46. Espert L, Varbanov M, Robert-Hebmann V, Sagnier S, Robbins I, Sanchez F, Lafont V, Biard-Piechaczyk M (2009) Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection. PLoS One 4:e5787PubMedPubMedCentralGoogle Scholar
  47. Espinosa V, Rivera A (2012) Cytokines and the regulation of fungus-specific CD4 T cell differentiation. Cytokine 58:100–106PubMedGoogle Scholar
  48. Flannagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366PubMedGoogle Scholar
  49. Foley JF, Yu CR, Solow R, Yacobucci M, Peden KW, Farber JM (2005) Roles for CXC chemokine ligands 10 and 11 in recruiting CD4+ T cells to HIV-1-infected monocyte-derived macrophages, dendritic cells, and lymph nodes. J Immunol 174:4892–4900PubMedGoogle Scholar
  50. Freeling JP, Koehn J, Shu C, Sun J, Ho RJ (2015) Anti-HIV drug-combination nanoparticles enhance plasma drug exposure duration as well as triple-drug combination levels in cells within lymph nodes and blood in primates. AIDS Res Hum Retrovir 31:107–114PubMedGoogle Scholar
  51. van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415–435PubMedPubMedCentralGoogle Scholar
  52. van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46:845–852PubMedPubMedCentralGoogle Scholar
  53. Gallo RC (1998) Some aspects of the pathogenesis of HIV-1-associated Kaposi's sarcoma. J Natl Cancer Inst Monogr 1998:55–57Google Scholar
  54. Gelbard HA, Epstein LG (1995) HIV-1 encephalopathy in children. Curr Opin Pediatr 7:655–662PubMedGoogle Scholar
  55. Gendelman HE, Baca LM, Turpin J, Kalter DC, Hansen B, Orenstein JM, Dieffenbach CW, Friedman RM, Meltzer MS (1990) Regulation of HIV replication in infected monocytes by IFN-alpha. Mechanisms for viral restriction. J Immunol 145:2669–2676PubMedGoogle Scholar
  56. Gerber PP, Cabrini M, Jancic C, Paoletti L, Banchio C, von Bilderling C, Sigaut L, Pietrasanta LI, Duette G, Freed EO, Basile Gde S, Moita CF, Moita LF, Amigorena S, Benaroch P, Geffner J, Ostrowski M (2015) Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J Cell Biol 209:435–452PubMedPubMedCentralGoogle Scholar
  57. Gill AJ, Kovacsics CE, Vance PJ, Collman RG, Kolson DL (2015) Induction of Heme Oxygenase-1 deficiency and associated glutamate-mediated neurotoxicity is a highly conserved HIV phenotype of chronic macrophage infection that is resistant to antiretroviral therapy. J Virol 89:10656–10667PubMedPubMedCentralGoogle Scholar
  58. Giralt M, Domingo P, Villarroya F (2009) HIV-1 infection and the PPARgamma-dependent control of adipose tissue physiology. PPAR Res 2009:607902PubMedGoogle Scholar
  59. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762PubMedGoogle Scholar
  60. Gnanadhas DP, Dash PK, Sillman B, Bade AN, Lin Z, Palandri DL, Gautam N, Alnouti Y, Gelbard HA, McMillan J, Mosley RL, Edagwa B, Gendelman HE, Gorantla S (2017) Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs. J Clin Invest 127:857–873PubMedPubMedCentralGoogle Scholar
  61. Gorantla S, Dou H, Boska M, Destache CJ, Nelson J, Poluektova L, Rabinow BE, Gendelman HE, Mosley RL (2006) Quantitative magnetic resonance and SPECT imaging for macrophage tissue migration and nanoformulated drug delivery. J Leukoc Biol 80:1165–1174PubMedGoogle Scholar
  62. Gordan S, Biburger M, Nimmerjahn F (2015) bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol Rev 268:52–65PubMedGoogle Scholar
  63. Gordon S (2016) Elie Metchnikoff, the man and the myth. J Innate Immun 8:223–227PubMedGoogle Scholar
  64. Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75:10073–10089PubMedPubMedCentralGoogle Scholar
  65. Gousset K, Ablan SD, Coren LV, Ono A, Soheilian F, Nagashima K, Ott DE, Freed EO (2008) Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog 4:e1000015PubMedPubMedCentralGoogle Scholar
  66. Guillemard E, Jacquemot C, Aillet F, Schmitt N, Barre-Sinoussi F, Israel N (2004) Human immunodeficiency virus 1 favors the persistence of infection by activating macrophages through TNF. Virology 329:371–380PubMedGoogle Scholar
  67. Guo D, Zhang G, Wysocki TA, Wysocki BJ, Gelbard HA, Liu XM, McMillan JM, Gendelman HE (2014a) Endosomal trafficking of nanoformulated antiretroviral therapy facilitates drug particle carriage and HIV clearance. J Virol 88:9504–9513PubMedPubMedCentralGoogle Scholar
  68. Guo D, Li T, McMillan J, Sajja BR, Puligujja P, Boska MD, Gendelman HE, Liu XM (2014b) Small magnetite antiretroviral therapeutic nanoparticle probes for MRI of drug biodistribution. Nanomedicine (Lond) 9:1341–1352Google Scholar
  69. Guo D, Zhou T, Arainga M, Palandri D, Gautam N, Bronich T, Alnouti Y, McMillan J, Edagwa B, Gendelman HE (2017) Creation of a long-acting Nanoformulated 2′,3′-Dideoxy-3'-Thiacytidine. J Acquir Immune Defic Syndr 74:e75-e83PubMedGoogle Scholar
  70. Gupta P, Collins KB, Ratner D, Watkins S, Naus GJ, Landers DV, Patterson BK (2002) Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system. J Virol 76:9868–9876PubMedPubMedCentralGoogle Scholar
  71. Hercus TR, Broughton SE, Ekert PG, Ramshaw HS, Perugini M, Grimbaldeston M, Woodcock JM, Thomas D, Pitson S, Hughes T, D'Andrea RJ, Parker MW, Lopez AF (2012) The GM-CSF receptor family: mechanism of activation and implications for disease. Growth Factors 30:63–75PubMedGoogle Scholar
  72. Hopkinson-Woolley J, Hughes D, Gordon S, Martin P (1994) Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci 107(Pt 5):1159–1167PubMedGoogle Scholar
  73. Hubert P, Heitzmann A, Viel S, Nicolas A, Sastre-Garau X, Oppezzo P, Pritsch O, Osinaga E, Amigorena S (2011) Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy. Cancer Res 71:5134–5143PubMedGoogle Scholar
  74. Iordanskiy S, Santos S, Bukrinsky M (2013) Nature, nurture and HIV: the effect of producer cell on viral physiology. Virology 443:208–213PubMedPubMedCentralGoogle Scholar
  75. Jakubzick CV, Randolph GJ, Henson PM (2017) Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 17:349–362PubMedGoogle Scholar
  76. Jambo KC, Banda DH, Afran L, Kankwatira AM, Malamba RD, Allain TJ, Gordon SB, Heyderman RS, Russell DG, Mwandumba HC (2014) Asymptomatic HIV-infected individuals on antiretroviral therapy exhibit impaired lung CD4(+) T-cell responses to mycobacteria. Am J Respir Crit Care Med 190:938–947PubMedPubMedCentralGoogle Scholar
  77. Jung A, Maier R, Vartanian JP, Bocharov G, Jung V, Fischer U, Meese E, Wain-Hobson S, Meyerhans A (2002) Recombination: multiply infected spleen cells in HIV patients. Nature 418:144PubMedGoogle Scholar
  78. Kadiu I, Gendelman HE (2011a) Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network. J Proteome Res 10:3225–3238PubMedPubMedCentralGoogle Scholar
  79. Kadiu I, Gendelman HE (2011b) Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J NeuroImmune Pharmacol 6:658–675PubMedPubMedCentralGoogle Scholar
  80. Kadiu I, Nowacek A, McMillan J, Gendelman HE (2011) Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine (Lond) 6:975–994Google Scholar
  81. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K (2016) Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 6(1).
  82. Kanmogne GD, Singh S, Roy U, Liu X, McMillan J, Gorantla S, Balkundi S, Smith N, Alnouti Y, Gautam N, Zhou Y, Poluektova L, Kabanov A, Bronich T, Gendelman HE (2012) Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Int J Nanomedicine 7:2373–2388PubMedPubMedCentralGoogle Scholar
  83. Kawamura T, Koyanagi Y, Nakamura Y, Ogawa Y, Yamashita A, Iwamoto T, Ito M, Blauvelt A, Shimada S (2008) Significant virus replication in Langerhans cells following application of HIV to abraded skin: relevance to occupational transmission of HIV. J Immunol 180:3297–3304PubMedGoogle Scholar
  84. Keblesh JP, Reiner BC, Liu J, Xiong H (2008) Pathogenesis of human immunodeficiency virus Type-1 (HIV-1)-associated dementia: role of voltage-gated potassium channels. Retrovirology (Auckl) 2:1–10Google Scholar
  85. Kedzierska K, Azzam R, Ellery P, Mak J, Jaworowski A, Crowe SM (2003) Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J Clin Virol 26:247–263PubMedGoogle Scholar
  86. Kelly J, Beddall MH, Yu D, Iyer SR, Marsh JW, Wu Y (2008) Human macrophages support persistent transcription from unintegrated HIV-1 DNA. Virology 372:300–312PubMedGoogle Scholar
  87. Kevadiya BD, Bade AN, Woldstad C, Edagwa BJ, McMillan JM, Sajja BR, Boska MD, Gendelman HE (2017) Development of europium doped core-shell silica cobalt ferrite functionalized nanoparticles for magnetic resonance imaging. Acta Biomater 49:507–520PubMedGoogle Scholar
  88. Kindt TJ, Goldsby RA, Osborne BA, Kuby J (2007) Kuby immunology, 6th edn. W.H. Freeman, New YorkGoogle Scholar
  89. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654PubMedGoogle Scholar
  90. Kotler DP (2005) HIV infection and the gastrointestinal tract. AIDS 19:107–117PubMedGoogle Scholar
  91. Kottilil S, Chun TW, Moir S, Liu S, McLaughlin M, Hallahan CW, Maldarelli F, Corey L, Fauci AS (2003) Innate immunity in human immunodeficiency virus infection: effect of viremia on natural killer cell function. J Infect Dis 187:1038–1045PubMedGoogle Scholar
  92. Koziel H, Kim S, Reardon C, Li X, Garland R, Pinkston P, Kornfeld H (1999) Enhanced in vivo human immunodeficiency virus-1 replication in the lungs of human immunodeficiency virus-infected persons with Pneumocystis carinii pneumonia. Am J Respir Crit Care Med 160:2048–2055PubMedGoogle Scholar
  93. Kutza J, Fields K, Grimm TA, Clouse KA (2002) Inhibition of HIV replication and macrophage colony-stimulating factor production in human macrophages by antiretroviral agents. AIDS Res Hum Retrovir 18:619–625PubMedGoogle Scholar
  94. Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V (2009) Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186:255–268PubMedPubMedCentralGoogle Scholar
  95. Langford TD, Letendre SL, Marcotte TD, Ellis RJ, McCutchan JA, Grant I, Mallory ME, Hansen LA, Archibald S, Jernigan T, Masliah E, Group H (2002) Severe, demyelinating leukoencephalopathy in AIDS patients on antiretroviral therapy. AIDS 16:1019–1029PubMedPubMedCentralGoogle Scholar
  96. Larson SR, Atif SM, Gibbings SL, Thomas SM, Prabagar MG, Danhorn T, Leach SM, Henson PM, Jakubzick CV (2016) Ly6C(+) monocyte efferocytosis and cross-presentation of cell-associated antigens. Cell Death Differ 23:997–1003PubMedPubMedCentralGoogle Scholar
  97. Le T (2017) First aid for the USMLE step 1 2017. McGraw-Hill Medical, New YorkGoogle Scholar
  98. Le Douce V, Herbein G, Rohr O, Schwartz C (2010) Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology 7:32PubMedPubMedCentralGoogle Scholar
  99. Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A 96:5215–5220PubMedPubMedCentralGoogle Scholar
  100. Leeansyah E, Wines BD, Crowe SM, Jaworowski A (2007) The mechanism underlying defective Fcgamma receptor-mediated phagocytosis by HIV-1-infected human monocyte-derived macrophages. J Immunol 178:1096–1104PubMedGoogle Scholar
  101. Li S, Juarez J, Alali M, Dwyer D, Collman R, Cunningham A, Naif HM (1999) Persistent CCR5 utilization and enhanced macrophage tropism by primary blood human immunodeficiency virus type 1 isolates from advanced stages of disease and comparison to tissue-derived isolates. J Virol 73:9741–9755PubMedPubMedCentralGoogle Scholar
  102. Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, Yzaguirre AD, Cai X, Cortes M, Maijenburg MW, Tober J, Dzierzak E, Orkin SH, Tan K, North TE, Speck NA (2014) Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 28:2597–2612PubMedPubMedCentralGoogle Scholar
  103. Li W, Tong HI, Gorantla S, Poluektova LY, Gendelman HE, Lu Y (2016) Neuropharmacologic approaches to restore the Brain's microenvironment. J NeuroImmune Pharmacol 11:484–494PubMedPubMedCentralGoogle Scholar
  104. Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC (2015) Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 6:6413.
  105. Lima VD, Harrigan R, Murray M, Moore DM, Wood E, Hogg RS, Montaner JS (2008) Differential impact of adherence on long-term treatment response among naive HIV-infected individuals. AIDS 22:2371–2380PubMedGoogle Scholar
  106. Locati M, Zhou D, Luini W, Evangelista V, Mantovani A, Sozzani S (1994) Rapid induction of arachidonic acid release by monocyte chemotactic protein-1 and related chemokines. Role of Ca2+ influx, synergism with platelet-activating factor and significance for chemotaxis. J Biol Chem 269:4746–4753PubMedGoogle Scholar
  107. Lorenzo-Redondo R, Fryer HR, Bedford T, Kim EY, Archer J, Pond SLK, Chung YS, Penugonda S, Chipman J, Fletcher CV, Schacker TW, Malim MH, Rambaut A, Haase AT, McLean AR, Wolinsky SM (2016) Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530:51–56PubMedPubMedCentralGoogle Scholar
  108. Magnani M, Rossi L, Brandi G, Schiavano GF, Montroni M, Piedimonte G (1992) Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: in vitro and in vivo studies. Proc Natl Acad Sci U S A 89:6477–6481PubMedPubMedCentralGoogle Scholar
  109. Magnani M, Casabianca A, Fraternale A, Brandi G, Gessani S, Williams R, Giovine M, Damonte G, De Flora A, Benatti U (1996) Synthesis and targeted delivery of an azidothymidine homodinucleotide conferring protection to macrophages against retroviral infection. Proc Natl Acad Sci U S A 93:4403–4408PubMedPubMedCentralGoogle Scholar
  110. Magnani M, Balestra E, Fraternale A, Aquaro S, Paiardini M, Cervasi B, Casabianca A, Garaci E, Perno CF (2003) Drug-loaded red blood cell-mediated clearance of HIV-1 macrophage reservoir by selective inhibition of STAT1 expression. J Leukoc Biol 74:764–771PubMedGoogle Scholar
  111. Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, Aunis D, Rohr O (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26:412–423PubMedPubMedCentralGoogle Scholar
  112. Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, Traore I, Hsieh CC, Dia MC, Gueye EH, et al. (1994) Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265:1587–1590Google Scholar
  113. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13PubMedPubMedCentralGoogle Scholar
  114. Marziali M, De Santis W, Carello R, Leti W, Esposito A, Isgro A, Fimiani C, Sirianni MC, Mezzaroma I, Aiuti F (2006) T-cell homeostasis alteration in HIV-1 infected subjects with low CD4 T-cell count despite undetectable virus load during HAART. AIDS 20:2033–2041PubMedGoogle Scholar
  115. Marzocchetti A, Cingolani A, Giambenedetto SD, Ammassari A, Giancola ML, Cauda R, Antinori A, Luca AD (2005) Macrophage chemoattractant protein-1 levels in cerebrospinal fluid correlate with containment of JC virus and prognosis of acquired immunodeficiency syndrome--associated progressive multifocal leukoencephalopathy. J Neuro-Oncol 11:219–224Google Scholar
  116. Mazzolini J, Herit F, Bouchet J, Benmerah A, Benichou S, Niedergang F (2010) Inhibition of phagocytosis in HIV-1-infected macrophages relies on Nef-dependent alteration of focal delivery of recycling compartments. Blood 115:4226–4236PubMedGoogle Scholar
  117. McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4:543–555PubMedGoogle Scholar
  118. McGrath KE, Frame JM, Palis J (2015) Early hematopoiesis and macrophage development. Semin Immunol 27:379–387PubMedGoogle Scholar
  119. Meltzer MS, Skillman DR, Gomatos PJ, Kalter DC, Gendelman HE (1990) Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu Rev Immunol 8:169–194PubMedGoogle Scholar
  120. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604PubMedGoogle Scholar
  121. Michels K, Nemeth E, Ganz T, Mehrad B (2015) Hepcidin and host defense against infectious diseases. PLoS Pathog 11:e1004998PubMedPubMedCentralGoogle Scholar
  122. Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86PubMedGoogle Scholar
  123. Moorjani H, Craddock BP, Morrison SA, Steigbigel RT (1996) Impairment of phagosome-lysosome fusion in HIV-1-infected macrophages. J Acquir Immune Defic Syndr Hum Retrovirol 13:18–22PubMedGoogle Scholar
  124. Moser M (2001) Regulation of Th1/Th2 development by antigen-presenting cells in vivo. Immunobiology 204:551–557PubMedGoogle Scholar
  125. Mosoian A, Zhang L, Hong F, Cunyat F, Rahman A, Bhalla R, Panchal A, Saiman Y, Fiel MI, Florman S, Roayaie S, Schwartz M, Branch A, Stevenson M, Bansal MB (2017) Frontline science: HIV infection of Kupffer cells results in an amplified proinflammatory response to LPS. J Leukoc Biol 101:1083–1090PubMedGoogle Scholar
  126. Murray HW, Cohn ZA (1980) Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation. J Exp Med 152:1596–1609PubMedGoogle Scholar
  127. Murray JM, Emery S, Kelleher AD, Law M, Chen J, Hazuda DJ, Nguyen BY, Teppler H, Cooper DA (2007) Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase. AIDS 21:2315–2321PubMedGoogle Scholar
  128. Nicol MQ, Mathys JM, Pereira A, Ollington K, Ieong MH, Skolnik PR (2008) Human immunodeficiency virus infection alters tumor necrosis factor alpha production via toll-like receptor-dependent pathways in alveolar macrophages and U1 cells. J Virol 82:7790–7798PubMedPubMedCentralGoogle Scholar
  129. Nowacek AS, Balkundi S, McMillan J, Roy U, Martinez-Skinner A, Mosley RL, Kanmogne G, Kabanov AV, Bronich T, Gendelman HE (2011) Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release 150:204–211PubMedGoogle Scholar
  130. Obrist R, Reilly R, Leavitt T, Knapp RC, Bast RC Jr (1983) Monocyte chemotaxis mediated by formyl-methionyl-leucyl-phenylalanine conjugated with monoclonal antibodies against human ovarian carcinoma. Int J Immunopharmacol 5:307–314PubMedGoogle Scholar
  131. Pardo CA, McArthur JC, Griffin JW (2001) HIV neuropathy: insights in the pathology of HIV peripheral nerve disease. J Peripher Nerv Syst 6:21–27PubMedGoogle Scholar
  132. Pelchen-Matthews A, Kramer B, Marsh M (2003) Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 162:443–455PubMedPubMedCentralGoogle Scholar
  133. Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD (1997) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–191PubMedGoogle Scholar
  134. Persidsky Y, Gendelman HE (2002) Murine models for human immunodeficiency virus type 1-associated dementia: the development of new treatment testing paradigms. J Neuro-Oncol 8(Suppl 2):49–52Google Scholar
  135. Pino M, Erkizia I, Benet S, Erikson E, Fernandez-Figueras MT, Guerrero D, Dalmau J, Ouchi D, Rausell A, Ciuffi A, Keppler OT, Telenti A, Krausslich HG, Martinez-Picado J, Izquierdo-Useros N (2015) HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology 12:37PubMedPubMedCentralGoogle Scholar
  136. Pistoia V (1991) Granulocyte-macrophage colony stimulating factor (GM-CSF); sources, targets and mechanism of action. Leukemia 5(Suppl 1):114–118PubMedGoogle Scholar
  137. Polin RA, Abman SH, Rowitch D, Benitz WE (2016) Fetal and neonatal physiology (5th edn, vol 2). Elsevier, Philadelphia, pp 1208–1216Google Scholar
  138. Poluektova L, Moran T, Zelivyanskaya M, Swindells S, Gendelman HE, Persidsky Y (2001) The regulation of alpha chemokines during HIV-1 infection and leukocyte activation: relevance for HIV-1-associated dementia. J Neuroimmunol 120:112–128PubMedGoogle Scholar
  139. Polyak S, Chen H, Hirsch D, George I, Hershberg R, Sperber K (1997) Impaired class II expression and antigen uptake in monocytic cells after HIV-1 infection. J Immunol 159:2177–2188PubMedGoogle Scholar
  140. Potula R, Ramirez SH, Knipe B, Leibhart J, Schall K, Heilman D, Morsey B, Mercer A, Papugani A, Dou H, Persidsky Y (2008) Peroxisome proliferator-activated receptor-gamma activation suppresses HIV-1 replication in an animal model of encephalitis. AIDS 22:1539–1549PubMedPubMedCentralGoogle Scholar
  141. Pozzi LA, Maciaszek JW, Rock KL (2005) Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells. J Immunol 175:2071–2081PubMedGoogle Scholar
  142. Puligujja P, McMillan J, Kendrick L, Li T, Balkundi S, Smith N, Veerubhotla RS, Edagwa BJ, Kabanov AV, Bronich T, Gendelman HE, Liu XM (2013) Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, retention, antiretroviral activities and biodistribution for reduction of human immunodeficiency virus infections. Nanomedicine 9:1263–1273PubMedGoogle Scholar
  143. Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat Inflamm 2013:480739Google Scholar
  144. Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, Conway S, Orkin SH, Yoder MC, Mikkola HK (2008) The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2:252–263PubMedPubMedCentralGoogle Scholar
  145. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapouméroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725PubMedGoogle Scholar
  146. Santana-de Anda K, Gomez-Martin D, Soto-Solis R, Alcocer-Varela J (2013) Plasmacytoid dendritic cells: key players in viral infections and autoimmune diseases. Semin Arthritis Rheum 43:131–136PubMedGoogle Scholar
  147. Satpathy AT, Wu X, Albring JC, Murphy KM (2012) Re(de)fining the dendritic cell lineage. Nat Immunol 13:1145–1154PubMedPubMedCentralGoogle Scholar
  148. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90PubMedGoogle Scholar
  149. Scriven JE, Rhein J, Hullsiek KH, von Hohenberg M, Linder G, Rolfes MA, Williams DA, Taseera K, Meya DB, Meintjes G, Boulware DR, Team C (2015) Early ART after Cryptococcal meningitis is associated with cerebrospinal fluid Pleocytosis and macrophage activation in a multisite randomized trial. J Infect Dis 212:769–778PubMedPubMedCentralGoogle Scholar
  150. Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S (2012) Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med 209:653–660PubMedPubMedCentralGoogle Scholar
  151. Shiramizu B, Gartner S, Cho M, Liu Y, Pyron N, Valcour V, Shikuma C (2004) Assessment of HIV-1 DNA copies per cell by real-time polymerase chain reaction. Front Biosci 9:255–261PubMedGoogle Scholar
  152. Sillman B, Bade AN, Dash PK, Bhargavan B, Kocher T, Mathews S, Su H, Kanmogne GD, Poluektova LY, Gorantla S, McMillan J, Gautam N, Alnouti Y, Edagwa B, Gendelman HE (2018) Creation of a long-acting nanoformulated dolutegravir. Nat Commun 9:443PubMedPubMedCentralGoogle Scholar
  153. Singh MV, Davidson DC, Jackson JW, Singh VB, Silva J, Ramirez SH, Maggirwar SB (2014) Characterization of platelet-monocyte complexes in HIV-1-infected individuals: possible role in HIV-associated neuroinflammation. J Immunol 192:4674–4684PubMedPubMedCentralGoogle Scholar
  154. Singh D, McMillan J, Hilaire J, Gautam N, Palandri D, Alnouti Y, Gendelman HE, Edagwa B (2016) Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine (Lond) 11:1913–1927Google Scholar
  155. Slauch JM (2011) How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol 80:580–583PubMedPubMedCentralGoogle Scholar
  156. Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, Bessis A, Ginhoux F, Garel S (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:1271–1279PubMedGoogle Scholar
  157. Steinman RM, Cohn ZA (2007) Pillars article: identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973. 137: 1142-1162. J Immunol 178:5–25PubMedGoogle Scholar
  158. Steinman RM, Witmer MD (1978) Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci U S A 75:5132–5136PubMedPubMedCentralGoogle Scholar
  159. Struyf S, Menten P, Lenaerts JP, Put W, D'Haese A, De Clercq E, Schols D, Proost P, Van Damme J (2001) Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol 31:2170–2178PubMedGoogle Scholar
  160. Subramanian Vignesh K, Landero Figueroa JA, Porollo A, Caruso JA, Deepe GS Jr (2013) Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity 39:697–710PubMedGoogle Scholar
  161. Sun B, Rempel HC, Pulliam L (2004) Loss of macrophage-secreted lysozyme in HIV-1-associated dementia detected by SELDI-TOF mass spectrometry. AIDS 18:1009–1012PubMedGoogle Scholar
  162. Sung TL, Rice AP (2009) miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog 5:e1000263PubMedPubMedCentralGoogle Scholar
  163. Swingler S, Mann AM, Zhou J, Swingler C, Stevenson M (2007) Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein. PLoS Pathog 3:1281–1290PubMedGoogle Scholar
  164. Taiwo B, Hicks C, Eron J (2010) Unmet therapeutic needs in the new era of combination antiretroviral therapy for HIV-1. J Antimicrob Chemother 65:1100–1107PubMedGoogle Scholar
  165. Tomlinson GS, Bell LC, Walker NF, Tsang J, Brown JS, Breen R, Lipman M, Katz DR, Miller RF, Chain BM, Elkington PT, Noursadeghi M (2014) HIV-1 infection of macrophages dysregulates innate immune responses to Mycobacterium tuberculosis by inhibition of interleukin-10. J Infect Dis 209:1055–1065PubMedGoogle Scholar
  166. Walker WE, Kurscheid S, Joshi S, Lopez CA, Goh G, Choi M, Barakat L, Francis J, Fisher A, Kozal M, Zapata H, Shaw A, Lifton R, Sutton RE, Fikrig E (2015) Increased levels of macrophage inflammatory proteins result in resistance to R5-tropic HIV-1 in a subset of elite controllers. J Virol 89:5502–5514PubMedPubMedCentralGoogle Scholar
  167. Williams SA, Greene WC (2007) Regulation of HIV-1 latency by T-cell activation. Cytokine 39:63–74PubMedPubMedCentralGoogle Scholar
  168. World Health Organization (2016) People receiving ART by region, 2000–2016Google Scholar
  169. Zaccheo D, Pistoia V, Castellucci M, Martinoli C (1989) Isolation and characterization of Hofbauer cells from human placental villi. Arch Gynecol Obstet 246:189–200PubMedGoogle Scholar
  170. Zhang G, Guo D, Dash PK, Arainga M, Wiederin JL, Haverland NA, Knibbe-Hollinger J, Martinez-Skinner A, Ciborowski P, Goodfellow VS, Wysocki TA, Wysocki BJ, Poluektova LY, Liu XM, McMillan JM, Gorantla S, Gelbard HA, Gendelman HE (2016) The mixed lineage kinase-3 inhibitor URMC-099 improves therapeutic outcomes for long-acting antiretroviral therapy. Nanomedicine 12:109–122PubMedGoogle Scholar
  171. Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, Weissman D, Cohen O, Rubbert A, Lam G, Vaccarezza M, Kennedy PE, Kumaraswami V, Giorgi JV, Detels R, Hunter J, Chopek M, Berger EA, Fauci AS, Nutman TB, Murphy PM (1997) Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3:23–36PubMedPubMedCentralGoogle Scholar
  172. Zink MC, Uhrlaub J, DeWitt J, Voelker T, Bullock B, Mankowski J, Tarwater P, Clements J, Barber S (2005) Neuroprotective and anti-human immunodeficiency virus activity of minocycline. JAMA 293:2003–2011PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical CenterOmahaUSA

Personalised recommendations