Advertisement

Journal of Neuroimmune Pharmacology

, Volume 13, Issue 1, pp 24–38 | Cite as

Chronic Silymarin, Quercetin and Naringenin Treatments Increase Monoamines Synthesis and Hippocampal Sirt1 Levels Improving Cognition in Aged Rats

  • F. Sarubbo
  • M. R. Ramis
  • C. Kienzer
  • S. Aparicio
  • S. Esteban
  • A. Miralles
  • D. MorantaEmail author
ORIGINAL ARTICLE

Abstract

Polyphenols have beneficial neurological effects delaying cognitive and motor decline in aging due to their antioxidant, antiinflammatory and neuroprotective properties. These effects could be related to SIRT1 activation (implicated in synaptic plasticity, memory and inflammation) and monoaminergic synthesis modulation. In this work, we studied in old male rats, the in vivo effects of long-term administration of different polyphenols (silymarin, quercetin and naringenin; 20 mg/kg/day i.p, 4 weeks) (Sprague-Dawley, 18 months) on cognition and motor coordination. We also analyzed in different brain regions: tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) activities, which mediate central monoaminergic neurotransmitters synthesis; and immunoreactivities of SIRT1 and NF-κB (total and acetylated forms). Results indicated that chronic polyphenolic treatments showed restorative effects on cognition and motor coordination consistently with the biochemical and molecular results. Polyphenols reversed the age-induced deficits in monoaminergic neurotransmitters (serotonin, noradrenaline, and dopamine), increasing TPH and TH activity. In addition, polyphenolic treatments increased SIRT1 levels and decreased NF-κB levels in hippocampus. These results confirm polyphenolic treatments as a valuable potential therapeutic strategy for attenuating inflamm-aging and brain function decline.

Keywords

Aging Cognition Polyphenols Monoamine synthesis SIRT1 NF-κb 

Notes

Acknowledgements

Authors thank the financial contribution of: Universitat de les Illes Balears (UIB)-Govern Balear (ECT 025 09), Pont La Caixa-UIB Program (7/2014) and MINECO, Madrid, Spain (SAF2014-55903-R). F. Sarubbo was supported by a UIB predoctoral contract and MR Ramis was supported by a predoctoral FPU Spanish Ministry of Education fellowship.

Compliance with Ethical Standards

The authors declare that they have no conflicts of interest, they have been informed, and consent to manuscript publication.

Human and Animal Rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the Bioethical Committee of the University of the Balearic Islands and with the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Directive 86/609/EEC).

References

  1. Adler A, Sinha S, Kawahara T, Zhang J, Segal E, Chang H (2007) Motif module map reveals enforcement of aging by continual NF-κB activity. Genes Dev 21:3244–3257CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alenina N, Klempin F (2015) The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res 277:49–57CrossRefPubMedGoogle Scholar
  3. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110CrossRefPubMedGoogle Scholar
  4. Barrett G, Bennie A, Trieu J, Ping S, Tsafoulis C (2009) The chronology of age-related spatial learning impairment in two rat strains, as tested by the Barnes maze. Behav Neurosci 123:533–538CrossRefPubMedGoogle Scholar
  5. Bishop N, Lu T, Yankner B (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cai W, Ramdas M, Zhu L, Chen X, Striker G, Vlassara H (2012) Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A 109:15888–15893CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chaudhuri AD, Yelamanchili SV, Fox HS (2013) MicroRNA-142 reduces monoamine oxidase a expression and activity in neuronal cells by downregulating SIRT1. PLoS One 8:e79579CrossRefPubMedGoogle Scholar
  8. Chen LF, Greene WC (2003) Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med (Berl) 81:549–557CrossRefGoogle Scholar
  9. Chen J, Zhou Y, Mueller-Steiner S, Chen L, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280:40364–40374CrossRefPubMedGoogle Scholar
  10. Chen J, Lin D, Zhang C, Li G, Zhang N, Ruan L, Yan Q, Li J, Yu X, Xie X, Pang C, Cao L, Pan J, Xu Y (2015) Antidepressant-like effects of ferulic acid: involvement of serotonergic and norepinergic systems. Metab Brain Dis 30:129–136CrossRefPubMedGoogle Scholar
  11. Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos E (2010) Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol 45:763–771CrossRefPubMedGoogle Scholar
  12. Collier T, Greene J, Felten D, Stevens S, Collier K (2004) Reduced cortical noradrenergic neurotransmission is associated with increased neophobia and impaired spatial memory in aged rats. Neurobiol Aging 25:209–221CrossRefPubMedGoogle Scholar
  13. Cools R (2011) Dopaminergic control of the striatum for high-level cognition. Curr Opin Neurobiol 21:402–407CrossRefPubMedGoogle Scholar
  14. De La Cruz C, Revilla E, Venero J, Ayala A, Cano J, Machado A (1996) Oxidative inactivation of tyrosine hydroxylase in substantia nigra of aged rat. Free Radic Biol Med 20:53–61CrossRefGoogle Scholar
  15. Deacon R, Rawlins J, Nicholas P (2002) Learning impairments of hippocampal-lesioned mice in a paddling pool. Behav Neurosci 116:472–478CrossRefPubMedGoogle Scholar
  16. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159(3):993–1002. doi: 10.1016/j.neuroscience.2009.01.017
  17. Esteban S, Garau C, Aparicio S, Moranta D, Barceló P, Fiol M, Rial R (2010a) Chronic melatonin treatment and its precursor L-tryptophan improve the monoaminergic neurotransmission and related behavior in the aged rat brain. J Pineal Res 48:170–177CrossRefPubMedGoogle Scholar
  18. Esteban S, Garau C, Aparicio S, Moranta D, Barceló P, Ramis M, Tresguerres J, Rial R (2010b) Improving effects of long-term growth hormone treatment on monoaminergic neurotransmission and related behavioral tests in aged rats. Rejuvenation Res 13:707–716CrossRefPubMedGoogle Scholar
  19. Flowers A, Lee JY, Acosta S, Hudson C, Small B, Sanberg CD, Bickford PC. (2015) NT-020 treatment reduces inflammation and augments Nrf-2 and Wnt signaling in aged rats. J Neuroinflammation. 12(1):174Google Scholar
  20. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefPubMedGoogle Scholar
  21. Furukawa A, Tada-Oikawa S, Kawanishi S, Oikawa S (2007) H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion. Cell Physiol Biochem 20:45–54CrossRefPubMedGoogle Scholar
  22. Gao J, Wang W, Mao Y, Gräff J, Guan J, Pan L (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gillum M, Kotas M, Erion D, Kursawe R, Chatterjee P, Nead K, Muise E, Hsiao J, Frederick D, Yonemitsu S, Banks A, Qiang L, Bhanot S, Olefsky J, Sears D, Caprio S, Shulman G (2011) SirT1 regulates adipose tissue inflammation. Diabetes 60:3235–3245CrossRefPubMedPubMedCentralGoogle Scholar
  24. Goyarzu P, Malin DH, Lau FC, Taglialatela G, Moon WD, Jennings R, Moy E, Moy D, Lippold S, Shukitt-Hale B, Joseph JA (2004) Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr Neurosci 7:75–83CrossRefPubMedGoogle Scholar
  25. Haider S, Saleem S, Perveen T, Tabassum S, Batool Z, Sadir S, Liaquat L, Madiha S (2014) Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. Age (Dordr) 36:9653CrossRefGoogle Scholar
  26. Halliwell B, Zentella A, Gomez E, Kershenobich D (1997) Antioxidants and human disease: a general introduction. Nutr Rev 55:S44–S49CrossRefPubMedGoogle Scholar
  27. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300CrossRefPubMedGoogle Scholar
  28. Herskovits AZ, Guarente L (2013) Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res 23:746–758CrossRefPubMedPubMedCentralGoogle Scholar
  29. Herskovits AZ, Guarente L. (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81(3):471–483Google Scholar
  30. Hirai S, Kim Y, Goto T, Kang M, Yoshimura M, Obata A, Yu R, Kawada T (2007) Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci 81:1272–1279CrossRefPubMedGoogle Scholar
  31. Hubbard BP, Gomes AP, Dai H et al (2013) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339:1216–1219CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hussain A, Mitra A (2000) Effect of aging on tryptophan hydroxylase in rat brain: implications on serotonin level. Drug Metab Dispos 28:1038–1042PubMedGoogle Scholar
  33. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A (2013) Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25:1939–1948CrossRefPubMedGoogle Scholar
  34. Khan M, Khan M, Khan A, Ahmed ME, Ishrat T, Tabassum R, Vaibhav K, Ahmad A, Islam F (2012) Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular - streptozotocin in rat model. Neurochem Int 61:1081–1093CrossRefPubMedGoogle Scholar
  35. Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai T (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5:3779–3827CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. Neuroscience 26:7723–7729CrossRefPubMedGoogle Scholar
  37. Lemon N, Aydin-Abidin S, Funke K, Manahan-Vaughan D (2009) Locus coeruleus activation facilitates memory encoding and induces hippocampal LTD that depends on β-adrenergic receptor activation. Cereb Cortex 19:2827–2837CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li S, Cullen W, Anwyl R, Rowan M (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6:526–531CrossRefPubMedGoogle Scholar
  39. Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara JM, Guarente L (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147:1459–1472CrossRefPubMedPubMedCentralGoogle Scholar
  40. Meneses A (1999) 5-HT system and cognition. Neurosci Biobehav Rev 23:1111–1125CrossRefPubMedGoogle Scholar
  41. Michán S, Li Y, Chou M, Parrella E, Ge H, Long J, Allard J, Lewis K, Miller M, Xu W, Mervis R, Chen J, Guerin K, Smith L, McBurney M, Sinclair D, Baudry M, de Cabo R, Longo V (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30:9695–9707CrossRefPubMedPubMedCentralGoogle Scholar
  42. Moranta D, Esteban S, García-Sevilla J (2009) Chronic treatment and withdrawal of the cannabinoid agonist WIN 55,212-2 modulate the sensitivity of presynaptic receptors involved in the regulation of monoamine syntheses in rat brain. Naunyn Schmiedeberg's Arch Pharmacol 379:61–72CrossRefGoogle Scholar
  43. Moranta D, Barceló P, Aparicio S, Garau C, Sarubbo F, Ramis M, Nicolau C, Esteban S (2014) Intake of melatonin increases tryptophan hydroxylase type 1 activity in aged rats: preliminary study. Exp Gerontol 49:1–4CrossRefPubMedGoogle Scholar
  44. Murchison C, Zhang X, Zhang W, Ouyang M, Lee A, Thomas S (2004) A distinct role for norepinephrine in memory retrieval. Cell 117:131–143CrossRefPubMedGoogle Scholar
  45. Nencini C, Giorgi G, Micheli L (2007) Protective effect of silymarin on oxidative stress in rat brain. Phytomedicine 14:129–135CrossRefPubMedGoogle Scholar
  46. Ng F, Wijaya L, Tang B (2015) SIRT1 in the brain-connections with aging-associated disorders and lifespan. Front Cell Neurosci 9:64PubMedPubMedCentralGoogle Scholar
  47. Oppenheimer H, Gabay O, Meir H, Haze A, Kandel L, Liebergall M, Gagarina V, Lee E, Dvir-Ginzberg M (2012) 75-Kd Sirtuin 1 blocks tumor necrosis Factor α-mediated apoptosis in human osteoarthritic chondrocytes. Arthritis Rheum 64:718–728CrossRefPubMedPubMedCentralGoogle Scholar
  48. Osorio F, Bárcena C, Soria-Valles C, Ramsay A, de Carlos F, Cobo J, Fueyo A, Freije J, López-Otín C (2012) Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 26:2311–2324CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278CrossRefGoogle Scholar
  50. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers J, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve A, Pasinetti G (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754CrossRefPubMedGoogle Scholar
  51. Quintas A, De Solís AJ, Díez-Guerra FJ, Carrascosa JM, Bogoñez E (2012) Age-associated decrease of SIRT1 expression in rat hippocampus. Prevention by late onset caloric restriction. Exp Gerontol 47:198–201CrossRefPubMedGoogle Scholar
  52. Ramis M, Sarubbo F, Sola J, Aparicio S, Garau C, Miralles A, Esteban S (2013) Cognitive improvement by acute growth hormone is mediated by NMDA and AMPA receptors and MEK pathway. Prog Neuro-Psychopharmacol Biol Psychiatry 45:11–20CrossRefGoogle Scholar
  53. Ramis M, Sarubbo F, Terrasa J, Moranta D, Aparicio S, Miralles A, Esteban S (2016) Chronic α-tocopherol increases central monoamines synthesis and improves cognitive and motor abilities in old rats. Rejuvenation Res 19:159–171CrossRefPubMedGoogle Scholar
  54. Rueda-Orozco P, Soria-Gomez E, Montes-Rodriguez CJ, Martínez-Vargas M, Galicia O, Navarro L, Prospero-García O (2008) A potential function of endocannabinoids in the selection of a navigation strategy by rats. Psychopharmacology 198:565–576CrossRefPubMedGoogle Scholar
  55. Salminen A, Ojala J, Huuskonen J, Kauppinen A, Suuronen T, Kaarniranta K (2008) Interaction of aging-associated signaling cascades: inhibition of NF-κB signaling by longevity factors FoxOs and SIRT1. Cell Mol Life Sci 65:1049–1058CrossRefPubMedGoogle Scholar
  56. Salminen A, Kaarniranta K, Kauppinen A (2013) Crosstalk between oxidative stress and SIRT1: impact on the aging process. Int J Mol Sci 14:3834–3859CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sarubbo F, Ramis M, Aparicio S, Ruiz L, Esteban S, Miralles A, Moranta D (2015) Improving effect of chronic resveratrol treatment on central monoamine synthesis and cognition in aged rats. Age (Dordr) 37:9777CrossRefGoogle Scholar
  58. Sastre-Coll A, Esteban S, García-Sevilla JA (1999) Effects of imidazoline receptor ligands on monoamine synthesis in the rat brain in vivo. Naunyn Schmiedeberg's Arch Pharmacol 360:50–62CrossRefGoogle Scholar
  59. Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306CrossRefPubMedGoogle Scholar
  60. Sharma S, Rakoczy S, Brown-Borg H (2010) Assessment of spatial memory in mice. Life Sci 87:521–536CrossRefPubMedGoogle Scholar
  61. Tangney CC, Rasmussen HE (2013) Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep 15:324CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tilstra J, Robinson A, Wang J, Gregg S, Clauson C, Reay D, Nasto L, St Croix C, Usas A, Vo N, Huard J, Clemens P, Stolz D, Guttridge D, Watkins S, Garinis G, Wang Y, Niedernhofer L, Robbins P (2012) NF-κB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 122:2601–2612CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tsunemi A, Utsuyama M, Seidler B, Kobayashi S, Hirokawa K (2005) Age-related decline of brain monoamines in mice is reversed to young level by Japanese herbal medicine. Neurochem Res 30:75–81CrossRefPubMedGoogle Scholar
  64. Venkataraman K, Khurana S, Tai T (2013) Oxidative stress in aging-matters of the heart and mind. Int J Mol Sci 14:17897–17925CrossRefPubMedPubMedCentralGoogle Scholar
  65. Walther DJ, Peter JU, Bashammakh S, Hörtnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76CrossRefPubMedGoogle Scholar
  66. Xie J, Zhang X, Zhang L (2013) Negative regulation of inflammation by SIRT1. Pharmacol Res 67:60–67CrossRefPubMedGoogle Scholar
  67. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105:13421–13426CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yañez M, Fraiz N, Cano E, Orallo E (2006) Inhibitory effects of cis- and transresveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem Biofis Res Commun 344:688–695CrossRefGoogle Scholar
  69. Yang H, Bi Y, Xue L, Wang J, Lu Y, Zhang Z, Chen X, Chu Y, Yang R, Wang R, Liu G (2015) Multifaceted modulation of SIRT1 in cancer and inflammation. Crit Rev Oncog 20:49–64CrossRefPubMedGoogle Scholar
  70. Yao H, Chung S, Hwang J, Rajendrasozhan S, Sundar I, Dean D, McBurney M, Guarente L, Gu W, Rönty M, Kinnula VVL, Rahman I (2012) SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest 122:2032–2045CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yeung F, Hoberg JJE, Ramsey CSC, Keller MMD, Jones DRD, Frye RRA, Mayo MMW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang H, Li L, Gao P, Chen H, Zhang R, Wei Y, Al E (2010) Involvement of the p65/RelA subunit of NF-κB in TNF-α-induced SIRT1 expression in vascular smooth muscle cells. Biochem Biophys Res Commun 397:569–575CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • F. Sarubbo
    • 1
  • M. R. Ramis
    • 1
  • C. Kienzer
    • 1
  • S. Aparicio
    • 1
  • S. Esteban
    • 1
  • A. Miralles
    • 1
  • D. Moranta
    • 1
    Email author
  1. 1.Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la SaludUniversidad de las Islas Baleares (UIB)Palma de MallorcaSpain

Personalised recommendations