Dopaminergic Regulation of Innate Immunity: a Review

INVITED REVIEW

Abstract

Dopamine (DA) is a neurotransmitter in the central nervous system as well as in peripheral tissues. Emerging evidence however points to DA also as a key transmitter between the nervous system and the immune system as well as a mediator produced and released by immune cells themselves. Dopaminergic pathways have received so far extensive attention in the adaptive branch of the immune system, where they play a role in health and disease such as multiple sclerosis, rheumatoid arthritis, cancer, and Parkinson’s disease. Comparatively little is known about DA and the innate immune response, although DA may affect innate immune system cells such as dendritic cells, macrophages, microglia, and neutrophils. The present review aims at providing a complete and exhaustive summary of currently available evidence about DA and innate immunity, and to become a reference for anyone potentially interested in the fields of immunology, neurosciences and pharmacology. A wide array of dopaminergic drugs is used in therapeutics for non-immune indications, such as Parkinson’s disease, hyperprolactinemia, shock, hypertension, with a usually favorable therapeutic index, and they might be relatively easily repurposed for immune-mediated disease, thus leading to innovative treatments at low price, with benefit for patients as well as for the healthcare systems.

Keywords

Dopamine Dopaminergic receptors Innate immunity Human disease Drug repurposing 

References

  1. Adluri RK, Singh AV, Skoyles J, Robins A, Parton J, Baker M, Mitchell IM (2010) The effect of fenoldopam and dopexamine on cytokine and endotoxin release following on-pump coronary artery bypass grafting: a prospective randomized double-blind trial. Heart Surg Forum 13:353–361. doi:10.1532/HSF98.20101073 CrossRefGoogle Scholar
  2. Ahern DJ, Brennan FM (2011) The role of natural killer cells in the pathogenesis of rheumatoid arthritis: major contributors or essential homeostatic modulators? Immunol Lett 136:115–121. doi:10.1016/j.imlet.2010.11.001 PubMedCrossRefGoogle Scholar
  3. Albizu L, Holloway T, González-Maeso J, Sealfon SC (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61:770–777. doi:10.1016/j.neuropharm.2011.05.023 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Altenburg SP, Martins MA, Silva PM, Bozza PT, Tibiriçá EV, Cordeiro RS, Castro-Faria-Neto HC (1995) Systemic neutrophilia observed during anaphylactic shock in rats is inhibited by dopaminergic antagonists. Int Arch Allergy Immunol 108:33–38PubMedCrossRefGoogle Scholar
  5. Altfeld M, Gale JM Jr (2015) Innate immunity against HIV-1 infection. Nat Immunol 16:554–562. doi:10.1038/ni.3157 PubMedCrossRefGoogle Scholar
  6. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. doi:10.1146/annurev-immunol-020711-074942 PubMedCrossRefGoogle Scholar
  7. Andersen PH, Gingrich JA, Bates MD, Dearry A, Falardeau P, Senogles SE, Caron MG (1990) Dopamine receptor subtypes: beyond the D1/D2 classification. Trends Pharmacol Sci 11:231–236PubMedCrossRefGoogle Scholar
  8. Arend WP (2001) The innate immune system in rheumatoid arthritis. Arthritis Rheum 44:2224–2234PubMedCrossRefGoogle Scholar
  9. Aringer M, Günther C, Lee-Kirsch MA (2013) Innate immune processes in lupus erythematosus. Clin Immunol 147:216–222. doi:10.1016/j.clim.2012.11.012 PubMedCrossRefGoogle Scholar
  10. Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A (2015) Vasopressors for the treatment of septic: systematic review and meta-analysis. PLoS One. doi:10.1371/journal.pone.0129305
  11. Baik SH, Cha MY, Hyun YM, Cho H, Hamza B, Kim DK, Han SH, Choi H, Kim KH, Moon M, Lee J, Kim M, Irimia D, Mook-Jung I (2014) Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiol Aging 35:1286–1292. doi:10.1016/j.neurobiolaging.2014.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bakota L, Ussif A, Jeserich G, Brandt R (2017) Systemic and network functions of the microtubule-associated protein tau: Implications for tau-based therapies Mol Cell Neurosci 16
  13. Bal A, Bachelot T, Savasta M, Manier M, Verna JM, Benabid AL, Feuerstein C (1994) Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Brain Res Mol Brain Res 23:204–212PubMedCrossRefGoogle Scholar
  14. Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124PubMedCrossRefGoogle Scholar
  15. Bayer BM, Daussin S, Hernandez M, Irvin L (1990) Morphine inhibition of lymphocyte activity is mediated by an opioid dependent mechanism. Neuropharmacology 29:369–374PubMedCrossRefGoogle Scholar
  16. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. doi:10.1124/pr.110.002642 PubMedCrossRefGoogle Scholar
  17. Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors - IUPHAR review 13. Br J Pharmacol 172:1–23. doi:10.1111/bph.12906 PubMedCrossRefGoogle Scholar
  18. Beck GC, Brinkkoetter P, Hanusch C, Schulte J, van Ackern K, van der Woude FJ, Yard BA (2004) Clinical review: immunomodulatory effects of dopamine in general inflammation. Crit Care 8:485–491. doi:10.1186/cc2879 PubMedCrossRefGoogle Scholar
  19. Bencsics A, Sershen H, Baranyi M, Hashim A, Lajtha A, Vizi ES (1997) Dopamine, as well as norepinephrine, is a link between noradrenergic nerve terminals and splenocytes. Brain Res 761:236–243PubMedCrossRefGoogle Scholar
  20. Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B, Schiller M, Green NL, Admon Y, Hakim F, Shen-Orr SS, Rolls A (2016) Activation of the reward system boosts innate and adaptive immunity. Nat Med 22:940–944. doi:10.1038/nm.4133 PubMedCrossRefGoogle Scholar
  21. Bergquist J, Ohlsson B, Tarkowski A (2000) Nuclear factor-kappa B is involved in the catecholaminergic suppression of immunocompetent cells. Ann N Y Acad Sci 917:281–289PubMedCrossRefGoogle Scholar
  22. Bernton EW, Meltzer MS, Holaday JW (1988) Suppression of macrophage activation and T-lymphocyte function in hypoprolactinemic mice. Science 239:401–404PubMedCrossRefGoogle Scholar
  23. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98. doi:10.1016/j.pneurobio.2005.06.004 PubMedCrossRefGoogle Scholar
  24. Blum K, Thanos PK, Gold MS (2014) Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol 5:919. doi:10.3389/fpsyg.2014.00919 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bodea LG, Wang Y, Linnartz-Gerlach B, Kopatz J, Sinkkonen L, Musgrove R, Kaoma T, Muller A, Vallar L, Di Monte DA, Balling R, Neumann H (2014) Neurodegeneration by activation of the microglial complement–phagosome pathway. J Neurosci 34:8546–8556. doi:10.1523/JNEUROSCI.5002-13.2014 PubMedCrossRefGoogle Scholar
  26. Boman HG (2003) Antimicrobial peptides: basic facts and emerging concepts. J Intern Med 254:197–215. doi:10.1046/j.1365-2796.2003.01228.x PubMedCrossRefGoogle Scholar
  27. Bonaventura J, Navarro G, Casadó-Anguera V, Azdad K, Rea W, Moreno E, Brugarolas M, Mallol J, Canela EI, Lluís C, Cortés A, Volkow ND, Schiffmann SN, Ferré S, Casadó V (2015) Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proc Natl Acad Sci U S A 112:E3609–E3618. doi:10.1073/pnas.1507704112 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Boneberg EM, von Seydlitz E, Pröpster K, Watzl H, Rockstroh B, Illges H (2006) D3 dopamine receptor mRNA is elevated in T cells of schizophrenic patients whereas D4 dopamine receptor mRNA is reduced in CD4+ −T cells. J Neuroimmunol 173:180–187. doi:10.1016/j.jneuroim.2005.11.018 PubMedCrossRefGoogle Scholar
  29. van den Boorn JG, Hartmann G (2013) Turning tumors into vaccines: co-opting the innate immune system. Immunity 39:27–37. doi:10.1016/j.immuni.2013.07.011 PubMedCrossRefGoogle Scholar
  30. Borasio GD, Linke R, Schwarz J, Schlamp V, Abel A, Mozley PD, Tatsch K (1998) Dopaminergic deficit in amyotrophic lateral sclerosis assessed with [I-123] IPT single photon emission computed tomography. J Neurol Neurosurg Psychiatry 65:263–265PubMedPubMedCentralCrossRefGoogle Scholar
  31. Borrow P, Bhardwaj N (2008) Innate immune responses in primary HIV-1 infection. Curr Opin HIV AIDS 3:36–44. doi:10.1097/COH.0b013e3282f2bce7 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Boutajangout A, Wisniewski T (2013) The innate immune system in Alzheimer’s disease. Int J Cell Biol. doi:10.1155/2013/576383
  33. Brown DR, Price LD (2008) Catecholamines and sympathomimetic drugs decrease early salmonella typhimurium uptake into porcine Peyer's patches. FEMS Immunol Med Microbiol 52:29–35. doi:10.1111/j.1574-695X.2007.00348.x PubMedCrossRefGoogle Scholar
  34. Brown SW, Meyers RT, Brennan KM, Rumble JM, Narasimhachari N, Perozzi EF, Ryan JJ, Stewart JK, Fischer-Stenger K (2003) Catecholamines in a macrophage cell line. J Neuroimmunol 135:47–55PubMedCrossRefGoogle Scholar
  35. Cadman ET, Thysse KA, Bearder S, Cheung AY, Johnston AC, Lee JJ, Lawrence RA (2014) Eosinophils are important for protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae PLoS Pathog doi:10.1371/journal.ppat.1003988
  36. Cao X, Aballay A (2016) Neural inhibition of dopaminergic signaling enhances immunity in a cell-non-autonomous. Manner Curr Biol 26:2329–2334. doi:10.1016/j.cub.2016.06.036 PubMedCrossRefGoogle Scholar
  37. Capellino S, Cosentino M, Wolff C, Schmidt M, Grifka J, Straub RH (2010) Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann Rheum Dis 69:1853–1860. doi:10.1136/ard.2009.119701 PubMedCrossRefGoogle Scholar
  38. Capellino S, Cosentino M, Luini A, Bombelli R, Lowin T, Cutolo M, Marino F, Straub RH (2014) Increased expression of dopamine receptors in synovial fibroblasts from patients with rheumatoid arthritis. Arthritis Rheumatol 66:2685–2693. doi:10.1002/art.38746 PubMedCrossRefGoogle Scholar
  39. Capper-Loup C, Canales JJ, Kadaba N, Graybiel AM (2002) Concurrent activation of dopamine D1 and D2 receptors is required to evoke neural and behavioral phenotypes of cocaine sensitization. J Neurosci 22:6218–6227PubMedGoogle Scholar
  40. Carbone L, D'Agati V, Cheng JT, Appel GB (1989) Course and prognosis of human immunodeficiency virus-associated nephropathy. Am J Med 87:389–395PubMedCrossRefGoogle Scholar
  41. Carrington M, Alter G (2012) Innate immune control of HIV. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a007070
  42. Carvalho-Freitas MI, Anselmo-Franci JA, Teodorov E, Nasello AG, Palermo-Neto J, Felicio LF (2007) Reproductive experience modifies dopaminergic function, serum levels of prolactin, and macrophage activity in female rats. Life Sci 81:128–136. doi:10.1016/j.lfs.2007.04.032 PubMedCrossRefGoogle Scholar
  43. Carvalho-Freitas MI, Rodrigues-Costa EC, Nasello AG, Palermo-Neto J, Felicio LF (2008) In vitro macrophage activity: biphasic effect of prolactin and indirect evidence of dopaminergic modulation. Neuroimmunomodulation 15:131–139. doi:10.1159/000148196 PubMedCrossRefGoogle Scholar
  44. Carvalho-Freitas MI, Anselmo-Franci JA, Maiorka PC, Palermo-Neto J, Felicio LF (2011) Prolactin differentially modulates the macrophage activity of lactating rats: possible role of reproductive experience. J Reprod Immunol 89:38–45. doi:10.1016/j.jri.2010.12.008 PubMedCrossRefGoogle Scholar
  45. Casadó-Anguera V, Bonaventura J, Moreno E, Navarro G, Cortés A, Ferré S, Casadó V (2016) Evidence for the heterotetrameric structure of the adenosine A2A-dopamine D2 receptor complex. Biochem Soc Trans 44:595–600. doi:10.1042/BST20150276 PubMedCrossRefGoogle Scholar
  46. Cassani E, Cilia R, Laguna J, Barichella M, Contin M, Cereda E, Isaias IU, Sparvoli F, Akpalu A, Budu KO, Scarpa MT, Pezzoli G (2016) Mucuna pruriens For Parkinson's disease: low-cost preparation method, laboratory measures and pharmacokinetics profile. J Neurol Sci 365:175–180. doi:10.1016/j.Jns.2016.04.001 PubMedCrossRefGoogle Scholar
  47. Chang JY, Liu LZ (2000) Catecholamines inhibit microglial nitric oxide production. Brain Res Bull 52:525–530PubMedCrossRefGoogle Scholar
  48. Chanvillard C, Jacolik RF, Infante-Duarte C, Nayak RC (2013) The role of natural killer cells in multiple sclerosis and their therapeutic implications. Front Immunol. doi:10.3389/fimmu.2013.00063
  49. Chávez-Sánchez L, Espinosa-Luna JE, Chávez-Rueda K, Legorreta-Haquet MV, Montoya-Díaz E, Blanco-Favela F (2014) Innate immune system cells in atherosclerosis. Arch Med Res 45:1–14. doi:10.1016/j.arcmed.2013.11.007 PubMedCrossRefGoogle Scholar
  50. Chen ML, Tsai TC, Wang LK, Lin YY, Tsai YM, Lee MC, Tsai FM (2012) Risperidone modulates the cytokine and chemokine release of dendritic cells and induces TNF-α-directed cell apoptosis in neutrophils. Int Immunopharmacol 12:197–204. doi:10.1016/j.intimp.2011.11.011 PubMedCrossRefGoogle Scholar
  51. Chen ML, Wu S, Tsai TC, Wang LK, Tsai FM (2014) Regulation of neutrophil phagocytosis of Escherichia coli by antipsychotic drugs. Int Immunopharmacol 23:550–557. doi:10.1016/j.intimp.2014.09.030 PubMedCrossRefGoogle Scholar
  52. Chi DS, Qui M, Krishnaswamy G, Li C, Stone W (2003) Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric Oxide 8:127–132PubMedCrossRefGoogle Scholar
  53. Chung WS, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a020370
  54. Ciaramella A, Salani F, Bizzoni F, Orfei MD, Caltagirone C, Spalletta G, Bossù P (2016) Myeloid dendritic cells are decreased in peripheral blood of Alzheimer's disease patients in association with disease progression and severity of depressive symptoms. J Neuroinflammation 13:18. doi:10.1186/s12974-016-0483-0 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321. doi:10.1038/nrn3484 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Coley JS, Calderon TM, Gaskill PJ, Eugenin EA, Berman JW (2015) Dopamine increases CD14+CD16+ monocyte migration and adhesion in the context of substance abuse and HIV neuropathogenesis. PLoS One. doi:10.1371/journal.pone.0117450
  57. Cordano C, Pardini M, Cellerino M, Schenone A, Marino F, Cosentino M (2015) Levodopa-induced neutropenia. Parkinsonism Relat Disord 21:423–425. doi:10.1016/j.parkreldis.2015.02.002 PubMedCrossRefGoogle Scholar
  58. Cosentino M, Marino F (2013) Adrenergic and dopaminergic modulation of immunity in multiple sclerosis: teaching old drugs new tricks? J NeuroImmune Pharmacol 8:163–179. doi:10.1007/s11481-012-9410-z PubMedCrossRefGoogle Scholar
  59. Cosentino M, Marino F (2016) The second Insubria Autumn School on Neuroimmune pharmacology: repurposing established drugs for novel indications. J NeuroImmune Pharmacol 11:214–226. doi:10.1007/s11481-015-9649-2 PubMedCrossRefGoogle Scholar
  60. Cosentino M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Frigo G (2002) Stimulation with phytohaemagglutinin induces the synthesis of catecholamines in human peripheral blood mononuclear cells: role of protein kinase C and contribution of intracellular calcium. J Neuroimmunol 125:125–133PubMedCrossRefGoogle Scholar
  61. Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (2003) Unravelling dopamine (and catecholamine) physiopharmacology in lymphocytes: open questions. Trends Immunol 24:581–582PubMedCrossRefGoogle Scholar
  62. Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S (2005) Interferon-gamma and interferon-beta affect endogenous catecholamines in human peripheral blood mononuclear cells: implications for multiple sclerosis. J Neuroimmunol 162:112–121. doi:10.1016/j.jneuroim.2005.01.019 PubMedCrossRefGoogle Scholar
  63. Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642. doi:10.1182/blood-2006-01-028423 PubMedCrossRefGoogle Scholar
  64. Cosentino M, Colombo C, Mauri M, Ferrari M, Corbetta S, Marino F, Bono G, Lecchini S (2009) Expression of apoptosis-related proteins and of mRNA for dopaminergic receptors in peripheral blood mononuclear cells from patients with Alzheimer disease. Alzheimer Dis Assoc Disord 23:88–90PubMedCrossRefGoogle Scholar
  65. Cosentino M, Zaffaroni M, Trojano M, Giorelli M, Pica C, Rasini E, Bombelli R, Ferrari M, Ghezzi A, Comi G, Livrea P, Lecchini S, Marino F (2012) Dopaminergic modulation of CD4+CD25(high) regulatory T lymphocytes in multiple sclerosis patients during interferon-β therapy. Neuroimmunomodulation 19:283–292. doi:10.1159/000336981 PubMedCrossRefGoogle Scholar
  66. Cosentino M, Zaffaroni M, Marino F (2014) Levels of mRNA for dopaminergic receptor D5 in circulating lymphocytes may be associated with subsequent response to interferon-β in patients with multiple sclerosis. J Neuroimmunol 277:193–196. doi:10.1016/j.jneuroim.2014.10.009 PubMedCrossRefGoogle Scholar
  67. Cosentino M, Kustrimovic N, Marino F (2017) Autoimmunity in neurologic disease. In: Ikezu T, Gendelman H (eds) Neuroimmune pharmacology, 2nd edition, Spring, in pressGoogle Scholar
  68. Courties G, Moskowitz MA, Nahrendorf M (2014) The innate immune system after ischemic injury: lessons to be learned from the heart and brain. JAMA Neurol 71:233–236. doi:10.1001/jamaneurol.2013.5026 PubMedPubMedCentralCrossRefGoogle Scholar
  69. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL, Investigators SOAPII (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362:779–789. doi:10.1056/NEJMoa0907118 PubMedCrossRefGoogle Scholar
  70. De Backer D, Aldecoa C, Njimi H, Vincent JL (2012) Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med 40:725–730. doi:10.1097/CCM.0b013e31823778ee PubMedCrossRefGoogle Scholar
  71. De Kleer I, Willems F, Lambrecht B, Goriely S (2014) Ontogeny of myeloid cells. Front Immunol. doi:10.3389/fimmu.2014.00423
  72. Degn SE, Thiel S (2013) Humoral pattern recognition and the complement system. Scand J Immunol 78:181–193. doi:10.1111/sji.12070 PubMedCrossRefGoogle Scholar
  73. Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669. doi:10.4049/jimmunol.0900274 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Duffy SS, Perera CJ, Makker PG, Lees JG, Carrive P, Moalem-Taylor G (2016) Peripheral and central neuroinflammatory changes and pain behaviors in an animal model of multiple sclerosis. Front Immunol. doi:10.3389/fimmu.2016.00369
  75. Eichler I, Eichler HG, Rotter M, Kyrle PA, Gasic S, Korn A (1989) Plasma concentrations of free and sulfoconjugated dopamine, epinephrine, and norepinephrine in healthy infants and children. Klin Wochenschr 67:672–675PubMedCrossRefGoogle Scholar
  76. Eisenhofer G, Aneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H, Hunyady B, Mezey E (1997) Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82:3864–3871. doi:10.1210/jcem.82.11.4339 PubMedCrossRefGoogle Scholar
  77. Eisenhofer G, Goldstein DS, Sullivan P, Csako G, Brouwers FM, Lai EW, Adams KT, Pacak K (2005) Biochemical and clinical manifestations of dopamine-producing paragangliomas: utility of plasma Methoxytyramine. J Clin Endocrinol Metab 90:2068–2075. doi:10.1210/jc.2004-2025 PubMedCrossRefGoogle Scholar
  78. Erjefält JS (2014) Mast cells in human airways: the culprit? Eur Respir Rev 23:299–307. doi:10.1183/09059180.00005014 PubMedCrossRefGoogle Scholar
  79. Fahmy Wahba MG, Shehata Messiha BA, Abo-Saif AA (2015) Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur J Pharmacol 765:307–315. doi:10.1016/j.ejphar.2015.08.026 PubMedCrossRefGoogle Scholar
  80. Falgarone G, Jaen O, Boissier MC (2005) Role for innate immunity in rheumatoid arthritis. Joint Bone Spine 72:17–25. doi:10.1016/j.jbspin.2004.05.013 PubMedCrossRefGoogle Scholar
  81. Färber K, Pannasch U, Kettenmann H (2005) Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci 29:128–138. doi:10.1016/j.mcn.2005.01.003 PubMedCrossRefGoogle Scholar
  82. Farrar CA, Kupiec-Weglinski JW, Sacks SH (2013) The innate immune system and transplantation. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a015479
  83. Feldman JM, Lee EM, Castleberry CA (1987) Catecholamine and serotonin content of foods: effect on urinary excretion of homovanillic and 5-hydroxyindoleacetic acid. J Am Diet Assoc 87:1031–1035PubMedGoogle Scholar
  84. Feldman RS, Meyer JS, Quenzer LF (1997) Catecholamines. In: Principles of neuropsychopharmacology. Sinauer Associates Inc,Sunderland, Massachusets, USA, pp 277–344Google Scholar
  85. Ferrè S, Lluı’s C, Lanciego JL, Franco R (2010) Prime time for G-protein-coupledvreceptor heteromers as therapeutic targets for CNS disorders: the dopamine D(1)-D(3) receptor heteromer. CNS Neurol Disord Drug Targets 9:596–600PubMedCrossRefGoogle Scholar
  86. Ferrè S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortés A, Lluís C, Casadó V, Volkow ND (2016) Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer. Neuropharmacology 104:154–160. doi:10.1016/j.neuropharm.2015.05.028 PubMedCrossRefGoogle Scholar
  87. Flegr J (2007) Effects of Toxoplasma on human behavior. Schizophr Bull 33:757–760. doi:10.1093/schbul/sbl074 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Flegr J (2013) Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. J Exp Biol 216:127–133. doi:10.1242/jeb.073635 PubMedCrossRefGoogle Scholar
  89. Flierl MA, Rittirsch D, Chen AJ, Nadeau BA, Day DE, Sarma JV, Huber-Lang MS, Ward PA (2008) The complement anaphylatoxin C5a induces apoptosis in adrenomedullary cells during experimental sepsis. PLoS One. doi:10.1371/journal.pone.0002560
  90. Frederick AL, Yano H, Trifilieff P, Vishwasrao HD, Biezonski D, Mészáros J, Urizar E, Sibley DR, Kellendonk C, Sonntag KC, Graham DL, Colbran RJ, Stanwood GD, Javitch JA (2015) Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry 20:1373–1385. doi:10.1038/mp.2014.166 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, Woods AS, Agnati LF, Franco R (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26:209–220. doi:10.1002/mds.21440 PubMedCrossRefGoogle Scholar
  92. Gaiazzi M, Rasini E, Marino F, Zaffaroni M, Cosentino M (2016a) Dopaminergic receptors on human monocytes and peripheral blood dendritic cells. J NeuroImmune Pharmacol 11:214–226. doi:10.1007/s11481-015-9649-2 CrossRefGoogle Scholar
  93. Gaiazzi M, Rasini E, Marino F, Zaffaroni M, Cosentino M (2016b) Expression of dopaminergic receptors on human monocytes and peripheral blood dendritic cells. J NeuroImmune Pharmacol 11(Suppl 1):S1–S2. doi:10.1007/s11481-016-9661-1 Google Scholar
  94. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720. doi:10.1038/nri1180 PubMedCrossRefGoogle Scholar
  95. Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW (2009) Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol 175:1148–1159. doi:10.2353/ajpath.2009.081067 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Gaskill PJ, Carvallo L, Eugenin EA, Berman JW (2012) Characterization and function of the human macrophage dopaminergic system: implications for CNS disease and drug abuse. J Neuroinflammation. doi:10.1186/1742-2094-9-203
  97. Gaskill PJ, Calderon TM, Coley JS, Berman JW (2013) Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J NeuroImmune Pharmacol 8:621–642. doi:10.1007/s11481-013-9443-y PubMedPubMedCentralCrossRefGoogle Scholar
  98. Gaskill PJ, Yano HH, Kalpana GV, Javitch JA, Berman JW (2014) Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS One. doi:10.1371/journal.pone.0108232
  99. Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287PubMedCrossRefGoogle Scholar
  100. Gendelman HE, Mosley RL (2015) A perspective on roles played by innate and adaptive immunity in the pathobiology of neurodegenerative disorders. J NeuroImmune Pharmacol 10:645–650. doi:10.1007/s11481-015-9639-4 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Gierut A, Perlman H, Pope RM (2010) Innate immunity and rheumatoid arthritis. Rheum Dis Clin N Am 36:271–296. doi:10.1016/j.rdc.2010.03.004 CrossRefGoogle Scholar
  102. Gomez F, Ruiz P, Briceño F, Rivera C, Lopez R (1999) Macrophage Fcgamma receptors expression is altered by treatment with dopaminergic drugs. Clin Immunol 90:375–387. doi:10.1006/clim.1998.4665 PubMedCrossRefGoogle Scholar
  103. González H, Contreras F, Prado C, Elgueta D, Franz D, Bernales S, Pacheco R (2013) Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson’s disease. J Immunol 190:5048–5056. doi:10.4049/jimmunol.1203121 PubMedCrossRefGoogle Scholar
  104. Green BT, Brown DR (2016) Interactions between bacteria and the gut mucosa: do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection? Adv Exp Med Biol 874:121–141. doi:10.1007/978-3-319-20215-0_5 PubMedGoogle Scholar
  105. Guillot-Sestier MV, Town T (2013) Innate immunity in Alzheimer's disease: a complex affair. CNS Neurol Disord Drug Targets 12:593–607PubMedPubMedCentralCrossRefGoogle Scholar
  106. Guillot-Sestier MV1, Doty KR1, Town T (2015) Innate immunity fights Alzheimer's disease. Trends Neurosci 38:674–681. doi:10.1016/j.tins.2015.08.008 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Hasbi A, O'Dowd BF, George SR (2011) Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain. doi:10.1186/1756-6606-4-26
  108. Haskó G, Szabó C, Merkel K, Bencsics A, Zingarelli B, Kvetan V, Vizi ES (1996) Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production by dopamine receptor agonists and antagonists in mice. Immunol Lett 49:143–147PubMedCrossRefGoogle Scholar
  109. Haskó G, Szabó C, Németh ZH, Deitch EA (2002) Dopamine suppresses IL-12 p40 production by lipopolysaccharide-stimulated macrophages via a beta-adrenoceptor-mediated mechanism. J Neuroimmunol 122:34–39PubMedCrossRefGoogle Scholar
  110. Heidari B (2011) Rheumatoid arthritis: early diagnosis and treatment outcomes. Caspian J Intern Med 2:161–170PubMedPubMedCentralGoogle Scholar
  111. Heneka MT, Golenbock DT, Latz E (2015) Innate immunity in Alzheimer's disease. Nat Immunol 16:229–236. doi:10.1038/ni.3102 PubMedCrossRefGoogle Scholar
  112. Hernandez-Pedro NY, Espinosa-Ramirez G, de la Cruz VP, Pineda B, Sotelo J (2013) Initial Immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol. doi:10.1155/2013/413465
  113. Hertwig L, Pache F, Romero-Suarez S, Stürner KH, Borisow N, Behrens J, Bellmann-Strobl J, Seeger B, Asselborn N, Ruprecht K, Millward JM, Infante-Duarte C, Paul F (2016) Distinct functionality of neutrophils in multiple sclerosis and neuromyelitis optica. Mult Scler 22:160–173. doi:10.1177/1352458515586084 PubMedCrossRefGoogle Scholar
  114. Hollenberg SM (2007) Vasopressor support in septic shock. Chest 132:1678–1687. doi:10.1378/chest.07-0291 PubMedCrossRefGoogle Scholar
  115. Huck JH, Freyer D, Böttcher C, Mladinov M, Muselmann-Genschow C, Thielke M, Gladow N, Bloomquist D, Mergenthaler P, Priller J (2015) De novo expression of dopamine D2 receptors on microglia after stroke. J Cereb Blood Flow Metab 35:1804–1811. doi:10.1038/jcbfm.2015.128 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35(11):1503–1519PubMedCrossRefGoogle Scholar
  117. Jadidi-Niaragh F, Shegarfi H, Naddafi F, Mirshafiey A (2012) The role of natural killer cells in Alzheimer's disease. Scand J Immunol 76:451–456. doi:10.1111/j.1365-3083.2012.02769.x PubMedCrossRefGoogle Scholar
  118. Jones KA, Thomsen C (2013) The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 53:52–62. doi:10.1016/j.mcn.2012.10.002 PubMedCrossRefGoogle Scholar
  119. Jose PA, Eisner GM, Felder RA (2003) Regulation of blood pressure by dopamine receptors. Nephron Physiol 95:19–27CrossRefGoogle Scholar
  120. Kaplan MJ (2013) Role of neutrophils in systemic autoimmune diseases. Arthritis Res Ther. doi:10.1186/ar4325
  121. Karasuyama H, Yamanishi Y (2014) Basophils have emerged as a key player in immunity. Curr Opin Immunol 31:1–7. doi:10.1016/j.coi.2014.07.004 PubMedCrossRefGoogle Scholar
  122. Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T1 (2011) Nonredundant roles of basophils in immunity. Annu Rev Immunol 29:45–69. doi:10.1146/annurev-immunol-031210-101257 PubMedCrossRefGoogle Scholar
  123. Katritch V, Reynolds KA, Cherezov V, Hanson MA, Roth CB, Yeager M, Abagyan R (2009) Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J Mol Recognit 22(4):307–318. doi:10.1002/jmr.949 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384. doi:10.1038/ni.1863 PubMedCrossRefGoogle Scholar
  125. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650. doi:10.1016/j.immuni.2011.05.006 PubMedCrossRefGoogle Scholar
  126. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553. doi:10.1152/physrev.00011.2010 PubMedCrossRefGoogle Scholar
  127. Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci U S A 98:1964–1969. doi:10.1073/pnas.98.4.1964 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Hwang JS, Seok H, Choi H, Lee DG, Kim JI, Kim H (2014) Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin. Biochem Biophys Res Commun 448:292–297. doi:10.1016/j.bbrc.2014.04.105 PubMedCrossRefGoogle Scholar
  129. Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7:338–353. doi:10.1016/j.nurt.2010.07.006 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Kokkinou I, Fragoulis EG, Vassilacopoulou D (2009) The U937 macrophage cell line expresses enzymatically active L-Dopa decarboxylase. J Neuroimmunol 216:51–58. doi:10.1016/j.jneuroim.2009.09.001 PubMedCrossRefGoogle Scholar
  131. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175. doi:10.1038/nri3399 PubMedCrossRefGoogle Scholar
  132. Koyama Y (2015) Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci. doi:10.3389/fncel.2015.00261
  133. Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D (2015) Neutrophils: between host Defence, immune modulation, and tissue injury. PLoS Pathog. doi:10.1371/journal.ppat.1004651
  134. Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172:433–440CrossRefGoogle Scholar
  135. Kumar V, Sharma A (2010) Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 10:1325–1334. doi:10.1016/j.intimp.2010.08.012 PubMedCrossRefGoogle Scholar
  136. Kushwah R, Hu J (2011) Complexity of dendritic cell subsets and their function in the host immune system. Immunology 133:409–419. doi:10.1111/j.1365-2567.2011.03457.x PubMedPubMedCentralCrossRefGoogle Scholar
  137. Kustrimovic N, Rasini E, Legnaro M, Marino F, Cosentino M (2014) Expression of dopaminergic receptors on human CD4+ T lymphocytes: flow cytometric analysis of naive and memory subsets and relevance for the neuroimmunology of neurodegenerative disease. J NeuroImmune Pharmacol 9:302–312. doi:10.1007/s11481-014-9541-5 PubMedCrossRefGoogle Scholar
  138. Kustrimovic N, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Comi C, Mauri M, Minafra B, Riboldazzi G, Sanchez-Guajardo V, Marino F, Cosentino M (2016) Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson's disease. Sci Rep. doi:10.1038/srep33738
  139. Lee MS (2014) Role of innate immunity in the pathogenesis of type 1 and type 2 diabetes. J Korean Med Sci 29:1038–1041. doi:10.3346/jkms.2014.29.8.1038 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Leite F, Lima M, Marino F, Cosentino M, Ribeiro L. (2016) Dopaminergic receptors and tyrosine hydroxylase expression in peripheral blood mononuclear cells: a distinct pattern in central obesity. PLoS one 25;11(1):e0147483.Google Scholar
  141. Levine AP, Segal AW (2013) What is wrong with granulocytesin inflammatory bowel diseases? Dig Dis 31:321–327. doi:10.1159/000354686 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Levite M (2012) Nerve-driven immunity neurotransmitters and neuropeptides in the immune system. In: Nerve-Driven Immunology Springer (ed). Vienna, Austria and New York, USA, pp 1–45Google Scholar
  143. Levite M (2015) Dopamine and T cells: receptors, direct and potent effects, endogenous production and abnormalities in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 216:42–89. doi:10.1111/apha.12476 CrossRefGoogle Scholar
  144. Li H, Cuzner ML, Newcombe J (1996) Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathol Appl Neurobiol 22:207–215PubMedCrossRefGoogle Scholar
  145. Li Y, Tan MS, Jiang T, Tan L (2014) Microglia in Alzheimer's disease. Biomed Res Int. doi:10.1155/2014/437483
  146. Liang H, Wang X, Chen H, Song L, Ye L, Wang SH, Wang YJ, Zhou L, Ho WZ (2008) Methamphetamine enhances HIV infection of macrophages. Am J Pathol 172:1617–1624. doi:10.2353/ajpath.2008.070971 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Liaskou E, Wilson DV, Oo YH (2012) Innate immune cells in liver inflammation. Mediat Inflamm. doi:10.1155/2012/949157
  148. Lin MH, Apolloni A, Cutillas V, Sivakumaran H, Martin S, Li D, Wei T, Wang R, Jin H, Spann K, Harrich D (2015) A mutant tat protein inhibits HIV-1 reverse transcription by targeting the reverse transcription complex. J Virol 89:4827–4836. doi:10.1128/JVI.03440-14 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Lindgren N, Usiello A, Goiny M, Haycock J, Erbs E, Greengard P, Hokfelt T, Borrelli E, Fisone G (2003) Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc Natl Acad Sci U S A 100:4305–4309. doi:10.1073/pnas.0730708100 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Liu J, Wang F, Huang C, Long LH, Wu WN, Cai F, Wang JH, Ma LQ, Chen JG (2009) Activation of phosphatidylinositol-linked novel D1 dopamine receptor contributes to the calcium mobilization in cultured rat prefrontal cortical astrocytes. Cell Mol Neurobiol 29:317–328. doi:10.1007/s10571-008-9323-9 PubMedCrossRefGoogle Scholar
  151. Liu Z, Shi Z, Liu J, Wang Y (2014) HIV transactivator of transcription enhances methamphetamine-induced Parkinson’s-like behavior in the rats. Neuroreport 25:860–864. doi:10.1097/WNR.0000000000000199 PubMedCentralCrossRefGoogle Scholar
  152. Lopez OL, Wisnieski SR, Becker JT, Boller F, DeKosky ST (1997) Extrapyramidal signs in patients with probable Alzheimer disease. Arch Neurol 54:969–975PubMedCrossRefGoogle Scholar
  153. Łukasiewicz S, Błasiak E, Szafran-Pilch K, Dziedzicka-Wasylewska M (2016) Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics - in vitro studies. J Neurochem 137:549–560. doi:10.1111/jnc.13582 PubMedCrossRefGoogle Scholar
  154. Lumeng CN (2013) Innate immune activation in obesity. Mol Aspects Med 34:12–29. doi:10.1016/j.mam.2012.10.002 PubMedCrossRefGoogle Scholar
  155. Lutzky V, Hannawi S, Thomas R (2007) Cells of the synovium in rheumatoid arthritis. Dendritic cells. Arthritis Res Ther 9:219. doi:10.1186/ar2200 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Maggio R, Millan MJ (2010) Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance. Curr Opin Pharmacol 10:100–107. doi:10.1016/j.coph.2009.10.001 PubMedCrossRefGoogle Scholar
  157. Malaspina A, Puentes F, Amor S (2015) Int Immunol 27:117–129. doi:10.1093/intimm/dxu099 PubMedCrossRefGoogle Scholar
  158. Manches O, Frleta D, Bhardwaj N (2014) Dendritic cells in progression and pathology of HIV infection. Trends Immunol 35:114–122. doi:10.1016/j.it.2013.10.003 PubMedCrossRefGoogle Scholar
  159. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531. doi:10.1038/nri3024 PubMedCrossRefGoogle Scholar
  160. Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH (2014) Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 122:91–128. doi:10.1016/B978-0-12-800267-4.00003-1 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45:55–71. doi:10.1007/s00726-011-1186-6 PubMedCrossRefGoogle Scholar
  162. Marino F, Cosentino M (2016) Multiple sclerosis: repurposing dopaminergic drugs for MS--the evidence mounts. Nat Rev Neurol 12:191–192. doi:10.1038/nrneurol.2016.33 PubMedCrossRefGoogle Scholar
  163. Martin G, Forte P, Luchsinger A, Mendoza F, Urbina-Quintana A, Hernandez Pieretti O, Romero E, Velasco M (1993) Effect of intravenous dopamine on blood pressure and plasma insulin in hypertensive patients. Eur J Clin Pharmacol 45:503–505PubMedCrossRefGoogle Scholar
  164. Martin HL, Alsaady I, Howell G, Prandovszky E, Peers C, Robinson P, McConkey GA (2015) Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells. Neuroscience 306:50–62. doi:10.1016/j.neuroscience.2015.08.005 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Martorana A, Koch G (2014) Is dopamine involved in Alzheimer's disease? Front Aging Neurosci 6:252. doi:10.3389/fnagi.2014.00252 PubMedPubMedCentralGoogle Scholar
  166. Mastroeni D, Grover A, Leonard B, Joyce JN, Coleman PD, Kozik B, Bellinger DL, Rogers J (2009) Microglial responses to dopamine in a cell culture model of Parkinson's disease. Neurobiol Aging 30:1805–1817. doi:10.1016/j.neurobiolaging.2008.01.001 PubMedCrossRefGoogle Scholar
  167. Matsumoto A, Ohta N, Goto Y, Kashiwa Y, Yamamoto S, Fujino Y (2015) Haloperidol suppresses murine dendritic cell maturation and priming of the T helper 1–type immune response. Anesth Analg 120:895–902. doi:10.1213/ANE.0000000000000606 PubMedCrossRefGoogle Scholar
  168. Matsuoka T (1990) A sedative effect of dopamine on the respiratory burst in neonatal polymorphonuclear leukocytes. Pediatr Res 28:24–27. doi:10.1203/00006450-199007000-00006 PubMedCrossRefGoogle Scholar
  169. Mayo L, Quintana FJ, Weiner HL (2012) The innate immune system in demyelinating disease. Immunol Rev 248:170–187. doi:10.1111/j.1600-065X.2012.01135.x PubMedPubMedCentralCrossRefGoogle Scholar
  170. McConkey GA, Martin HL, Bristow GC, Webster JP (2013) Toxoplasma gondii infection and behaviour – location, location, location? J Exp Biol 216:113–119. doi:10.1242/jeb.074153 PubMedPubMedCentralCrossRefGoogle Scholar
  171. McDonald RH, Goldberg LI, McNay JL, Tuttle NP (1964) Effect of dopamine in man: augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow. J Clin Invest 43:1116–1124. doi:10.1172/JCI104996 PubMedPubMedCentralCrossRefGoogle Scholar
  172. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219. doi:10.1056/NEJMra1004965 PubMedCrossRefGoogle Scholar
  173. McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132:34–40PubMedCrossRefGoogle Scholar
  174. Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650. doi:10.1038/374647a0 PubMedCrossRefGoogle Scholar
  175. Meli R, Mattace Raso G, Calignano A (2014) Role of innate immune response in non-alcoholic fatty liver disease: metabolic complications and therapeutic tools. Front Immunol. doi:10.3389/fimmu.2014.00177
  176. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258PubMedCrossRefGoogle Scholar
  177. Mendell JR, Chase TN, Engel WK (1971) Amyotrophic lateral sclerosis: metabolism of central monoamines and treatment with L-dopa. Trans Am Neurol Assoc 96:284–286PubMedGoogle Scholar
  178. Midde NM, Yuan Y, Quizon PM, Sun WL, Huang X, Zhan CG, Zhu J (2015) Mutations at tyrosine 88, lysine 92 and tyrosine 470 of human dopamine transporter result in an attenuation of HIV-1 tat-induced inhibition of dopamine transport. J NeuroImmune Pharmacol 10:122–135. doi:10.1007/s11481-015-9583-3 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225PubMedGoogle Scholar
  180. Mobini M, Kashi Z, Mohammad Pour AR, Adibi E (2011) The effect of Cabergoline on clinical and laboratory findings in active rheumatoid arthritis. Iran Red Crescent Med J 13:749–750PubMedPubMedCentralGoogle Scholar
  181. Moisse K, Strong MJ (2006) Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:1083–1093PubMedCrossRefGoogle Scholar
  182. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907. doi:10.1101/gad.188326.112 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Moraga-Amaro R, Jerez-Baraona JM, Simon F, Stehberg J (2014) Role of astrocytes in memory and psychiatric disorders. J Physiol Paris 108:240–251. doi:10.1016/j.jphysparis.2014.08.005 PubMedCrossRefGoogle Scholar
  184. Moretta L, Pietra G, Montaldo E, Vacca P, Pende D, Falco M, Del Zotto G, Locatelli F, Moretta A, Mingari MC (2014) Human NK cells: from surface receptors to the therapy of leukemias and solid tumors. Front Immunol. doi:10.3389/fimmu.2014.00087
  185. Mori T, Kabashima K, Fukamachi S, Kuroda E, Sakabe J, Kobayashi M, Nakajima S, Nakano K, Tanaka Y, Matsushita S, Nakamura M, Tokura Y (2013) D1-like dopamine receptors antagonist inhibits cutaneous immune reactions mediated by Th2 and mast cells. J Dermatol Sci 71:37–44. doi:10.1016/j.jdermsci.2013.03.008 PubMedCrossRefGoogle Scholar
  186. Murata K, Noda K, Kohno K, Samejima M (1988) Bioavailability and pharmacokinetics of oral dopamine in dogs. J Pharm Sci 77:565–568PubMedCrossRefGoogle Scholar
  187. Murdock BJ, Bender DE, Kashlan SR, Figueroa-Romero C, Backus C, Callaghan BC, Goutman SA, Feldman EL (2016) Increased ratio of circulating neutrophils to monocytes in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e242. doi:10.1212/NXI.0000000000000242 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M (2012) Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol 242:60–71. doi:10.1016/j.jneuroim.2011.11.009 PubMedCrossRefGoogle Scholar
  189. Nagata E, Ogino M, Iwamoto K, Kitagawa Y, Iwasaki Y, Yoshii F, Ikeda JE; ALS Consortium Investigators (2016) PLoS One 24;11:e0149509. doi: 10.1371/journal.pone.0149509
  190. Nakagome K, Imamura M, Okada H, Kawahata K, Inoue T, Hashimoto K, Harada H, Higashi T, Takagi R, Nakano K, Hagiwara K, Kanazawa M, Dohi M, Nagata M, Matsushita S (2011) Dopamine D1-like receptor antagonist attenuates Th17-mediated immune response and ovalbumin antigen-induced neutrophilic airway inflammation. J Immunol 186:5975–5982PubMedCrossRefGoogle Scholar
  191. Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S (2008) Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 373:286–291. doi:10.1016/j.bbrc.2008.06.012 PubMedCrossRefGoogle Scholar
  192. Nakano K, Higashi T, Takagi R, Hashimoto K, Tanaka Y, Matsushita S (2009) Dopamine released by dendritic cells polarizes Th2 differentiation. Int Immunol 21:645–654. doi:10.1093/intimm/dxp033 PubMedCrossRefGoogle Scholar
  193. Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186:3745–3752. doi:10.4049/jimmunol.1002475 PubMedCrossRefGoogle Scholar
  194. Nakashioya H, Nakano K, Watanabe N, Miyasaka N, Matsushita S, Kohsaka H (2011) Therapeutic effect of D1-like dopamine receptor antagonist on collagen-induced arthritis of mice. Mod Rheumatol 21:260–266. doi:10.1007/s10165-010-0387-2 PubMedCrossRefGoogle Scholar
  195. Nam ST, Kim DH, Lee MB, Nam HJ, Kang JK, Park MJ, Lee IH, Seok H, Lee DG, Hwang JS, Kim H (2013) Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis. Biochem Biophys Res Commun 437:35–40. doi:10.1016/j.bbrc.2013.06.031 PubMedCrossRefGoogle Scholar
  196. Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. doi:10.1146/annurev-immunol-032713-120240 PubMedPubMedCentralCrossRefGoogle Scholar
  197. Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, Krashia P, Rizzo FR, Marino R, Federici M, De Bartolo P, Aversa D, Dell'Acqua MC, Cordella A, Sancandi M, Keller F, Petrosini L, Puglisi-Allegra S, Mercuri NB, Coccurello R, Berretta N, D'Amelio M (2017) Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun 8:14727. doi:10.1038/ncomms14727 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Noris M, Remuzzi G (2013) Overview of complement activation and regulation. Semin Nephrol 33:479–492. doi:10.1016/j.semnephrol.2013.08.001 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Nottet HSLM, Gendelman HE (1995) Unravelling the neuroimmune mechanisms for the HIV-1-associated cognitive/motor complex. Immunol Today 16:441–448PubMedCrossRefGoogle Scholar
  200. Olsson Y (1974) Mast cells in plaques of multiple sclerosis. Acta Neurol Scand 50:611–618PubMedCrossRefGoogle Scholar
  201. O'Reilly S (2014) Innate immunity in systemic sclerosis pathogenesis. Clin Sci (Lond) 126:329–337. doi:10.1042/CS20130367 CrossRefGoogle Scholar
  202. Pacheco R, Contreras F, Zouali M (2014) The dopaminergic system in autoimmune diseases. Front Immunol. doi:10.3389/fimmu.2014.00117
  203. Pacheco R, Prado CE, Barrientos Mj, Benales S (2009) Role of dopamine in the physiology of T cells and dendritic cells. J Neuroimmunol 216:8–19Google Scholar
  204. Pannell M, Szulzewsky F, Matyash V, Wolf SA, Kettenmann H (2014) The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-γ, and IL-4. Glia 62:667–679. doi:10.1002/glia.22633 PubMedCrossRefGoogle Scholar
  205. Parihar A, Eubank TD, Doseff AI (2010) Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun 2:204–215. doi:10.1159/000296507 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345. doi:10.1007/s00401-015-1513-1 PubMedCrossRefGoogle Scholar
  207. Pereira A, McLaren A, Bell WR, Copolov D, Dean B (2003) Potential clozapine target sites on peripheral hematopoietic cells and stromal cells of the bone marrow. Pharmacogenomics J 3:227–234. doi:10.1038/sj.tpj.6500179 PubMedCrossRefGoogle Scholar
  208. Perez-Sepulveda A, Torres MJ, Khoury M, Illanes SE (2014) Innate immune system and preeclampsia. Front Immunol. doi:10.3389/fimmu.2014.00244
  209. Perreault ML, Hasbi A, O'Dowd BF, George SR (2014) Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 39:156–168. doi:10.1038/npp.2013.148 PubMedCrossRefGoogle Scholar
  210. Phani S, Re DB, Przedborski S (2012) The role of the innate immune system in ALS. Front Pharmacol. doi:10.3389/fphar.2012.00150
  211. Pinoli M, Schembri L, Scanzano A, Legnaro M, Rasini E, Luini A, de Eguileor M, Pulze L, Marino F, Cosentino M (2016a) Production of proinflammatory mediators by human neutrophils during long-term culture. Int J Clin Exp Pathol 9:1858–1866Google Scholar
  212. Pinoli M, Rasini E, Legnaro M, De Eguileor M, Pulze L, Cosentino M, Marino F (2016b) Dopamine affects migration and morphology of human neutrophils through D1-like dopaminergic receptors. J NeuroImmune Pharmacol 11:S1–S2. doi:10.1007/s11481-016-9661-1 Google Scholar
  213. Pizzolato G, Chierichetti F, Fabbri M, Cagnin A, Dam M, Ferlin G, Battistin L (1996) Reduced striatal dopamine receptors in Alzheimer's disease: single photon emission tomography study with the D2 tracer [123I]-IBZM. Neurology 47:1065–1068PubMedCrossRefGoogle Scholar
  214. Podolec Z, Vetulani J, Bednarczyk B, Szczeklik A (1979) Central dopamine receptors regulate blood eosinophilia in the rat. Allergy 34:103–110PubMedCrossRefGoogle Scholar
  215. Prado C, Contreras F, Gonzalez H, Diaz P, Elgueta D, Barrientos M, Herrada AA, Lladser A, Bernales S, Pacheco R (2012) Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J Immunol 188:3062–3070. doi:10.4049/jimmunol.1103096 PubMedCrossRefGoogle Scholar
  216. Prado C, Bernales S, Pacheco R (2013) Modulation of T-cell mediated immunity by dopamine receptor D5. Endocr Metab Immune Disord Drug Targets 13:184–194PubMedCrossRefGoogle Scholar
  217. Qian L, Flood PM (2008) Microglial cells and Parkinson’s disease. Immunol Res 41:155–164. doi:10.1007/s12026-008-8018-0 PubMedCrossRefGoogle Scholar
  218. Raine CS (2016) Multiple sclerosis: the resolving lesion revealed. J Neuroimmunol. doi:10.1016/j.jneuroim.2016.05.021
  219. Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A (2007) Neuroinflammation in Alzheimer's disease and Parkinson's disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246. doi:10.1016/S0074-7742(07)82012-5 PubMedCrossRefGoogle Scholar
  220. Rönnberg E, Calounova G, Pejler G (2012) Mast cells express tyrosine hydroxylase and store dopamine in a serglycin-dependent manner. Biol Chem 393:107–112. doi:10.1515/BC-2011-220 PubMedCrossRefGoogle Scholar
  221. Rosenbaum JT, Kim HW (2013) Innate immune signals in autoimmune and autoinflammatory uveitis. Int Rev Immunol 32:68–75. doi:10.3109/08830185.2012.750132 PubMedCrossRefGoogle Scholar
  222. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174. doi:10.1146/annurev.immunol.24.021605.090720 PubMedCrossRefGoogle Scholar
  223. Rubí B, Maechler P (2010) Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance. Endocrinology 151:5570–5581. doi:10.1210/en.2010-0745 PubMedCrossRefGoogle Scholar
  224. Sandifer JP, Jones AE (2012) Dopamine versus norepinephrine for the treatment of septic shock EBEM commentators. Ann Emerg Med 60:372–373. doi:10.1016/j.annemergmed.2012.04.012 PubMedCrossRefGoogle Scholar
  225. Saresella M, Marventano I, Calabrese E, Piancone F, Rainone V, Gatti A, Alberoni M, Nemni R, Clerici M (2014) A complex proinflammatory role for peripheral monocytes in Alzheimer's disease. J Alzheimers Dis 38:403–413. doi:10.3233/JAD-131160 PubMedGoogle Scholar
  226. Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24:525–528. doi:10.1016/j.bbi.2009.10.015 PubMedCrossRefGoogle Scholar
  227. Saurer TB, Carrigan KA, Ijames SG, Lysle DT (2004) Morphine-induced alterations of immune status are blocked by the dopamine D2-like receptor agonist 7-OH-DPAT. J Neuroimmunol 148:54–62. doi:10.1016/j.jneuroim.2003.11.006 PubMedCrossRefGoogle Scholar
  228. Saxena M, Yeretssian G (2014) NOD-like receptors: master regulators of inflammation and cancer. Front Immunol. doi:10.3389/fimmu.2014.00327
  229. Sayed BA, Christy AL, Walker ME, Brown MA (2010) Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 184:6891–6900. doi:10.4049/jimmunol.1000126 PubMedCrossRefGoogle Scholar
  230. Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol. doi:10.3389/fphar.2015.00171
  231. Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206. doi:10.1038/nrn1870 PubMedCrossRefGoogle Scholar
  232. Seol IW, Kuo NY, Kim KM (2004) Effects of dopaminergic drugs on mast cell degranulation and nitric oxide generation in RAW 264.7 cells. Arch Pharm Res 27:94–8Google Scholar
  233. Shegarfi H, Naddafi F, Mirshafiey A (2012) Natural killer cells and their role in rheumatoid arthritis: friend or foe? ScientificWorldJournal. doi:10.1100/2012/491974
  234. Shen MY, Perreault ML, Bambico FR, Jones-Tabah J, Cheung M, Fan T, Nobrega JN, George SR (2015) Rapid anti-depressant and anxiolytic actions following dopamine D1-D2 receptor heteromer inactivation. Eur Neuropsychopharmacol 25:2437–2448. doi:10.1016/j.euroneuro.2015.09.004 PubMedCrossRefGoogle Scholar
  235. Shenoy S, Ganesh A, Rishil A, Doshil V, Lankala S, Molnar J, Kogilwaimath S (2011) Dopamine versus norepinephrine in septic shock: a meta-analysis. Crit Care 15:89. doi:10.1186/cc9509) CrossRefGoogle Scholar
  236. Sibley DR, Monsma FJ Jr, Shen Y (1993) Molecular neurobiology of dopaminergic receptors. Int Rev Neurobiol 35:391–415PubMedCrossRefGoogle Scholar
  237. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810. doi:10.1001/jama.2016.0287 PubMedPubMedCentralCrossRefGoogle Scholar
  238. So CH, Verma V, Alijaniaram M, Cheng R, Rashid AJ, O’Dowd BF et al (2009) Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol Pharmacol 75:843–854. doi:10.1124/mol.108.051805 PubMedPubMedCentralCrossRefGoogle Scholar
  239. Sofroniew M, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. doi:10.1007/s00401-009-0619-8 PubMedCrossRefGoogle Scholar
  240. Sookhai S, Wang JH, McCourt M, O'Connell D, Redmond HP (1999) Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism. Surgery 126:314–322PubMedCrossRefGoogle Scholar
  241. Sookhai S, Wang JH, Winter D, Power C, Kirwan W, Redmond HP (2000) Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome. Shock 14:295–299PubMedCrossRefGoogle Scholar
  242. Steinbach K, Piedavent M, Bauer S, Neumann JT, Friese MA (2013) Neutrophils amplify autoimmune central nervous system infiltrates by maturing local APCs. J Immunol 191:4531–4539. doi:10.4049/jimmunol.1202613 PubMedCrossRefGoogle Scholar
  243. Takahashi H, Snow BJ, Bhatt MH, Peppard R, Eisen A, Calne DB (1993) Evidence for a dopaminergic deficit in sporadic amyotrophic lateral sclerosis on positron emission scanning. Lancet 342:1016–1018PubMedCrossRefGoogle Scholar
  244. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. doi:10.1016/j.cell.2010.01.022 PubMedCrossRefGoogle Scholar
  245. Takkenberg JJ, Czer LS, Fishbein MC, Luthringer DJ, Quartel AW, Mirocha J, Queral CA, Blanche C, Trento A (2004) Eosinophilic myocarditis in patients awaiting heart transplantation. Crit Care Med 32:714–721PubMedCrossRefGoogle Scholar
  246. Tanaka S, Ishii A, Ohtaki H, Shioda S, Yoshida T, Numazawa S (2013) Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J Neuroinflammation. doi:10.1186/1742-2094-10-143
  247. Tarazona R, Gonzalez-Garcia A, Zamzami N, Marchetti P, Ruiz-Gajo M, von Rooijen N, Martinez C, Kroemer G (1995) Chlorpromazine amplifies macrophage-dependent IL-10 production in vivo. J Immunol 154:861–870PubMedGoogle Scholar
  248. Tayebati SK, Lokhandwala MF, Amenta F (2011) Dopamine and vascular dynamics control: present status and future perspectives. Curr Neurovasc Res 8:246–257PubMedCrossRefGoogle Scholar
  249. Teunis MA, Heijnen CJ, Cools AR, Kavelaars A (2004) Reduced splenic natural killer cell activity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrino 29:1058–1064. doi:10.1016/j.psyneuen.2003.09.007 CrossRefGoogle Scholar
  250. Theorell J, Gustavsson AL, Tesi B, Sigmundsson K, Ljunggren HG, Lundbäck T, Bryceson YT (2014) Immunomodulatory activity of commonly used drugs on fc-receptor-mediated human natural killer cell activation. Cancer Immunol Immunother 63:627–641. doi:10.1007/s00262-014-1539-6 PubMedCrossRefGoogle Scholar
  251. Tolle LB, Standiford TJ (2013) Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol 229:145–156. doi:10.1002/path.4124 PubMedCrossRefGoogle Scholar
  252. Torres-Rosas R, Yehia G, Peña G, Mishra P, del Rocio T-BM, Moreno-Eutimio MA, Arriaga-Pizano LA, Isibasi A, Ulloa L (2014) Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 20:291–295. doi:10.1038/nm.3479 PubMedPubMedCentralCrossRefGoogle Scholar
  253. Trabold B, Gruber M, Fröhlich D (2007) Functional and phenotypic changes in polymorphonuclear neutrophils induced by catecholamines. Scand Cardiovasc J 41:59–64. doi:10.1080/14017430601085948 PubMedCrossRefGoogle Scholar
  254. Usiello A, Baik JH, Rougé-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203. doi:10.1038/35041572 PubMedCrossRefGoogle Scholar
  255. Vaarmann A, Ghandi S, Abramov AY (2010) Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 285:25018–25023. doi:10.1074/jbc.M110.111450 PubMedPubMedCentralCrossRefGoogle Scholar
  256. VanItallie TB (2017) Alzheimer's disease: innate immunity gone awry? Metabolism 69S:S41–S49. doi:10.1016/j.metabol.2017.01.014 PubMedCrossRefGoogle Scholar
  257. van Horssen J, Witte ME, Schreibelt G, de Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta 1812:141–150. doi:10.1016/j.bbadis.2010.06.011
  258. Vasu TS, Cavallazzi R, Hirani A, Kaplan G, Leiby B, Marik PE (2012) Norepinephrine or dopamine for septic shock: systematic review of randomized clinical trials. J Intensive Care Med 27:172–178. doi:10.1177/0885066610396312 PubMedCrossRefGoogle Scholar
  259. Ventura AM, Shieh HH, Bousso A, Goes PF, Fernandes IC, de Souza DC et al (2015) Dopamine increases mortality in pediatric septic shock. Crit Care Med 43:2292–2302. doi:10.1016/j.jpeds.2015.10.073 PubMedCrossRefGoogle Scholar
  260. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510. doi:10.1038/ni1582 PubMedCrossRefGoogle Scholar
  261. Vogels OJ, Veltman J, Oyen WJ, Horstink MW (2000) Decreased striatal dopamine D2 receptor binding in amyotrophic lateral sclerosis (ALS) and multiple system atrophy (MSA): D2 receptor down-regulation versus striatal cell degeneration. J Neurol Sci 180:62–65PubMedCrossRefGoogle Scholar
  262. Vyas A (2015) Mechanisms of host behavioral change in Toxoplasma gondii rodent association. PLoS Pathog. doi:10.1371/journal.ppat.1004935
  263. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E (2005) Natural-killer cells and dendritic cells : "l'union fait la force". Blood 106:2252–2258. doi:10.1182/blood-2005-03-1154 PubMedCrossRefGoogle Scholar
  264. Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener. doi:10.1186/s40035-015-0042-0
  265. Waschbisch A, Manzel A, Linker RA, Lee DH (2011) Vascular pathology in multiple sclerosis: mind boosting or myth busting? Exp Transl Stroke Med. doi:10.1186/2040-7378-3-7
  266. Watanabe Y, Nakayama T, Nagakubo D, Hieshima K, Jin Z, Katou F, Hashimoto K, Yoshie O (2006) Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J Immunol 176:848–856PubMedCrossRefGoogle Scholar
  267. Webster JP (2007) The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophr Bull 33:752–756. doi:10.1093/schbul/sbl073 PubMedPubMedCentralCrossRefGoogle Scholar
  268. Wenisch C, Parschalk B, Weiss A, Zedwitz-Liebenstein K, Hahsler B, Wenisch H, Georgopoulos A, Graninger W (1996) High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production. Clin Diagn Lab Immunol 3:423–428PubMedPubMedCentralGoogle Scholar
  269. Williams DW, Eugenin EA, Calderon TM, Berman JW (2012) Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol 91:401–415. doi:10.1189/jlb.0811394 PubMedPubMedCentralCrossRefGoogle Scholar
  270. Williams DW, Veenstra M, Gaskill PJ, Morgello S, Calderon TM, Berman JW (2014) Monocytes mediate HIV neuropathogenesis: mechanisms that contribute to HIV associated neurocognitive disorders. Curr HIV Res 12:85–96PubMedPubMedCentralCrossRefGoogle Scholar
  271. Won SJ, Chuang YC, Huang WT, Liu HS, Lin MT (1995) Suppression of natural killer cell activity in mouse spleen lymphocytes by several dopamine receptor antagonists. Experientia 51:343–348PubMedCrossRefGoogle Scholar
  272. Wright HL, Moots RJ, Edwards SW (2014) The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol 10:593–601. doi:10.1038/nrrheum.2014.80 PubMedCrossRefGoogle Scholar
  273. Xu B, Peter O (2011) Dopamine versus noradrenaline in septic shock. Australas Med J 4:571–574. doi:10.4066/AMJ.2011.761 PubMedPubMedCentralCrossRefGoogle Scholar
  274. Yamazaki M, Matsuoka T, Yasui K, Komiyama A, Akabane T (1989) Dopamine inhibition of superoxide anion production by polymorphonuclear leukocytes. J Allergy Clin Immunol 83:967–972PubMedCrossRefGoogle Scholar
  275. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73. doi:10.1016/j.cell.2014.11.047 PubMedCrossRefGoogle Scholar
  276. Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M, Ghezzi A, Comi G, Lecchini S, Cosentino M (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214:315–321. doi:10.1016/j.expneurol.2008.08.015 PubMedCrossRefGoogle Scholar
  277. Zalkind S (2001) Ilya Mechnikov: His Life and Work. Honolulu, Hawaii. University Press of the Pacific, pp 78–210Google Scholar
  278. Zanassi P, Paolillo M, Montecucco A, Avvedimento EV, Schinelli S (1999) Pharmacological and molecular evidence for dopamine D(1) receptor expression by striatal astrocytes in culture. J Neurosci Res 58:544–552PubMedCrossRefGoogle Scholar
  279. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48. doi:10.1189/jlb.0403147 PubMedCrossRefGoogle Scholar
  280. Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, Montresor A, Carlucci T, Nanì S, Tosadori G, Calciano L, Catalucci D, Berton G, Bonetti B, Constantin G (2015) Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21:880–886. doi:10.1038/nm.3913 PubMedCrossRefGoogle Scholar
  281. Zhang Z, Chen K (2016) Vasoactive agents for the treatment of sepsis. Ann Transl med. Doi:10.21037/atm.2016.08.58
  282. Zhang X, Zhou Z, Wang D, Li A, Yin Y, Gu X, Ding F, Zhen X, Zhou J (2009) Activation of phosphatidylinositol-linked D1-like receptor modulates FGF-2 expression in astrocytes via IP3-dependent Ca2+ signaling. J Neurosci 29:7766–7775. doi:10.1523/JNEUROSCI.0389-09.2009 PubMedCrossRefGoogle Scholar
  283. Zhao W, Beers DR, Appel SH (2013a) Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J NeuroImmune Pharmacol 8:888–899. doi:10.1007/s11481-013-9489-x PubMedPubMedCentralCrossRefGoogle Scholar
  284. Zhao W, Huang Y, Liu Z, Cao BB, Peng YP, Qiu YH (2013b) Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS One. doi:10.1371/journal.pone.0065860
  285. Zhu XH, Zellweger R, Ayala A, Chaudry IH (1996) Prolactin inhibits the increased cytokine gene expression in Kupffer cells following haemorrhage. Cytokine 8:134–140. doi:10.1006/cyto.1996.0019 PubMedCrossRefGoogle Scholar
  286. Zhu XH, Zellweger R, Wichmann MW, Ayala A, Chaudry IH (1997) Effects of prolactin and metoclopramide on macrophage cytokine gene expression in late sepsis. Cytokine 9:437–446. doi:10.1006/cyto.1996.0186 PubMedCrossRefGoogle Scholar
  287. Ziegler-Heitbrock L (2015) Blood monocytes and their subsets: established features and open questions. Front Immunol. doi:10.3389/fimmu.2015.00423
  288. Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf WP, Grozdanov V, Thiemann M, Fundel-Clemes K, Freischmidt A, Holzmann K, Strobel B, Weydt P, Witting A, Thal DR, Helferich AM, Hengerer B, Gottschalk KE, Hill O, Kluge M, Ludolph AC, Danzer KM, Weishaupt JH (2016) Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 132:391–411. doi:10.1007/s00401-016-1548-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Center of Research in Medical PharmacologyUniversity of InsubriaVareseItaly

Personalised recommendations