Journal of Neuroimmune Pharmacology

, Volume 12, Issue 3, pp 504–520 | Cite as

HTLV-1 Infection and Neuropathogenesis in the Context of Rag1-/-γc-/- (RAG1-Hu) and BLT Mice

  • Rashida Ginwala
  • Breanna Caruso
  • Zafar K. Khan
  • Ajinkya Pattekar
  • Glen M. Chew
  • Michael J. Corley
  • Ronak Loonawat
  • Steven Jacobson
  • Sreesha Sreedhar
  • Lishomwa C. Ndhlovu
  • Pooja Jain
ORIGINAL ARTICLE

Abstract

To date, the lack of a suitable small animal model has hindered our understanding of Human T-cell lymphotropic virus (HTLV)-1 chronic infection and associated neuropathogenesis defined as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The host immune response plays a critical role in the outcome of HTLV-1 infection, which could be better tested in the context of humanized (hu) mice. Thus, we employ here the Balb/c-Rag1−/−γc−/− or Rag1 as well as Bone marrow-Liver-Thymic (BLT) mouse models for engraftment of human CD34+ hematopoietic stem cells. Flow cytometry and histological analyses confirmed reconstitution of Rag1 and BLT mice with human immune cells. Following HTLV-1 infection, proviral load (PVL) was detected in the blood of Rag-1 and BLT hu-mice as early as 2 weeks post-infection (wpi) with sustained elevation in the subsequent weeks followed by Tax expression. Additionally, infection was compared between adult and neonatal Rag1 mice with both PVL and Tax expression considerably higher in the adult Rag1 mice as compared to the neonates. Establishment of peripheral infection led to lymphocytic infiltration with concomitant Tax expression and resulting myelin disruption within the central nervous system of infected mice. In addition, up-regulation in the expression of several immune checkpoint mediators such as programmed cell death-1 (PD-1), T-cell Ig and ITIM domain (TIGIT), and T cell Ig and mucin domain-3 protein (Tim-3) were observed on CD8+ T cells in various organs including the CNS of infected hu-mice. Collectively, these studies represent the first attempt to establish HTLV-1 neuropathogenesis in the context of Rag-1 and BLT hu-mice as potential novel tools for understanding HTLV-1 neuropathogenesis and testing of novel therapies such as immune checkpoint blockade in the amelioration of chronic HTLV-1 infection.

Keywords

HTLV-1 Chronic viral infection Humanized mice RAG1 BLT 

References

  1. Abdelbary NH, Abdullah HM, Matsuzaki T, Hayashi D, Tanaka Y, Takashima H, Izumo S, Kubota R (2011) Reduced Tim-3 expression on human T-lymphotropic virus type I (HTLV-I) tax-specific cytotoxic T lymphocytes in HTLV-I infection. J Infect Dis 203:948–959CrossRefPubMedGoogle Scholar
  2. Akkina R, Berges BK, Palmer BE, Remling L, Neff CP, Kuruvilla J, Connick E, Folkvord J, Gagliardi K, Kassu A, Akkina SR (2011) Humanized Rag1−/− gammac−/− mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. PLoS One 6:e20169CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amorim CF, Souza AS, Diniz AG, Carvalho NB, Santos SB, Carvalho EM (2014) Functional activity of monocytes and macrophages in HTLV-1 infected subjects. PLoS Negl Trop Dis 8:e3399CrossRefPubMedPubMedCentralGoogle Scholar
  4. Banerjee P, Tripp A, Lairmore MD, Crawford L, Sieburg M, Ramos JC, Harrington W Jr, Beilke MA, Feuer G (2010) Adult T-cell leukemia/lymphoma development in HTLV-1-infected humanized SCID mice. Blood 115:2640–2648CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bangham CR (2008) HTLV-1 infection: role of CTL efficiency. Blood 112:2176–2177CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bangham CR (2009) CTL quality and the control of human retroviral infections. Eur J Immunol 39:1700–1712CrossRefPubMedGoogle Scholar
  7. Bangham CR, Meekings K, Toulza F, Nejmeddine M, Majorovits E, Asquith B, Taylor GP (2009) The immune control of HTLV-1 infection: selection forces and dynamics. Front Biosci (Landmark Ed) 14:2889–2903CrossRefGoogle Scholar
  8. Barmak K, Harhaj E, Grant C, Alefantis T, Wigdahl B (2003) Human T cell leukemia virus type I-induced disease: pathways to cancer and neurodegeneration. Virology 308:1–12CrossRefPubMedGoogle Scholar
  9. Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2−/−gamma c−/− (RAG-hu) mouse model. Retrovirology 3:76–89CrossRefPubMedPubMedCentralGoogle Scholar
  10. Biddison WE, Kubota R, Kawanishi T, Taub DD, Cruikshank WW, Center DM, Connor EW, Utz U, Jacobson S (1997) Human T cell leukemia virus type I (HTLV-I)-specific CD8+ CTL clones from patients with HTLV-I-associated neurologic disease secrete proinflammatory cytokines, chemokines, and matrix metalloproteinase. J Immunol 159:2018–2025PubMedGoogle Scholar
  11. Brunetto GS, Massoud R, Leibovitch EC, Caruso B, Johnson K, Ohayon J, Fenton K, Cortese I, Jacobson S (2014) Digital droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patients and identification of viral mutations. J Neuro-Oncol 20:341–351Google Scholar
  12. Cabral F, Arruda LB, de Araujo ML, Montanheiro P, Smid J, de Oliveira AC, Duarte AJ, Casseb J (2012) Detection of human T-cell lymphotropic virus type 1 in plasma samples. Virus Res 163:87–90CrossRefPubMedGoogle Scholar
  13. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13:227–242CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cook LB, Rowan AG, Melamed A, Taylor GP, Bangham CR (2012) HTLV-1-infected T cells contain a single integrated provirus in natural infection. Blood 120:3488–3490CrossRefPubMedPubMedCentralGoogle Scholar
  15. Coutinho R Jr, Grassi MF, Korngold AB, Olavarria VN, Galvao-Castro B, Mascarenhas RE (2014) Human T lymphotropic virus type 1 (HTLV-1) proviral load induces activation of T-lymphocytes in asymptomatic carriers. BMC Infect Dis 14:453CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dodon MD (2014) Of mice, men, and HTLV-1. Blood 123:303–304CrossRefPubMedGoogle Scholar
  17. Dudek TE, Allen TM (2013) HIV-specific CD8+ T-cell immunity in humanized Bone marrow-liver-thymus mice. J Infect Dis 208(Suppl 2):S150–S154CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, Bhoumik P, Boutwell CL, Power KA, Gladden AD, Battis L, Mellors EF, Tivey TR, Gao X, Altfeld M, Luster AD, Tager AM, Allen TM (2012) Rapid evolution of HIV-1 to functional CD8(+) T cell responses in humanized BLT mice. Sci Transl Med 4:143ra198CrossRefGoogle Scholar
  19. Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE (2015) Inhibitory receptors beyond T cell exhaustion. Front Immunol 6:310CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fuzii HT, da Silva Dias GA, de Barros RJ, Falcao LF, Quaresma JA (2014) Immunopathogenesis of HTLV-1-assoaciated myelopathy/tropical spastic paraparesis (HAM/TSP). Life Sci 104:9–14CrossRefPubMedGoogle Scholar
  21. Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, Gendelman HE, Poluektova L (2010) Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol 177:2938–2949CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hajj HE, Nasr R, Kfoury Y, Dassouki Z, Nasser R, Kchour G, Hermine O, de The H, Bazarbachi A (2012) Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol 3:333CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hanon E, Hall S, Taylor GP, Saito M, Davis R, Tanaka Y, Usuku K, Osame M, Weber JN, Bangham CR (2000) Abundant tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes. Blood 95:1386–1392PubMedGoogle Scholar
  24. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hyun J, Ramos JC, Toomey N, Balachandran S, Lavorgna A, Harhaj E, Barber GN (2015) Oncogenic HTLV-1 tax suppression of primary innate immune signaling pathways. J Virol 89:4880–4893Google Scholar
  26. Ito R, Takahashi T, Katano I, Ito M (2012) Current advances in humanized mouse models. Cell Mol Immunol 9:208–214CrossRefPubMedPubMedCentralGoogle Scholar
  27. Izumo S (2010) Neuropathology of HTLV-1-associated myelopathy (HAM/TSP): the 50th anniversary of Japanese society of Neuropathology. Neuropathology 30:480–485PubMedGoogle Scholar
  28. Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S (1990) Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature 348:245–248CrossRefPubMedGoogle Scholar
  29. Kozako T, Yoshimitsu M, Akimoto M, White Y, Matsushita K, Soeda S, Shimeno H, Kubota R, Izumo S, Arima N (2011) Programmed death-1 (PD-1)/PD-1 ligand pathway-mediated immune responses against human T-lymphotropic virus type 1 (HTLV-1) in HTLV-1-associated myelopathy/tropical spastic paraparesis and carriers with autoimmune disorders. Hum Immunol 72:1001–1006CrossRefPubMedGoogle Scholar
  30. Kubota R, Soldan SS, Martin R, Jacobson S (2002) Selected cytotoxic T lymphocytes with high specificity for HTLV-I in cerebrospinal fluid from a HAM/TSP patient. J Neuro-Oncol 8:53–57Google Scholar
  31. Lairmore MD (2014) Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: insights in transmission and pathogenesis. Annu Rev Anim Biosci 2:189–208CrossRefPubMedGoogle Scholar
  32. Lairmore MD, Silverman L, Ratner L (2005) Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 24:6005–6015CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG (2006) Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 108:487–492CrossRefPubMedGoogle Scholar
  34. Legrand N, Weijer K, Spits H (2006) Experimental models to study development and function of the human immune system in vivo. J Immunol 176:2053–2058CrossRefPubMedGoogle Scholar
  35. Lepoutre V, Jain P, Quann K, Wigdahl B, Khan ZK (2009) Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease. Front Biosci (Landmark Ed) 14:1152–1168CrossRefGoogle Scholar
  36. Levin MC, Jacobson S (1997) HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP): a chronic progressive neurologic disease associated with immunologically mediated damage to the central nervous system. J Neuro-Oncol 3:126–140Google Scholar
  37. Levin MC, Lee SM, Kalume F, Morcos Y, Dohan FC Jr, Hasty KA, Callaway JC, Zunt J, Desiderio D, Stuart JM (2002) Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat Med 8:509–513CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li F, Cowley DO, Banner D, Holle E, Zhang L, Su L (2014) Efficient genetic manipulation of the NOD-Rag1−/−IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology. Sci Rep 4:5290CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liu W, Nair G, Vuolo L, Bakshi A, Massoud R, Reich DS, Jacobson S (2014) In vivo imaging of spinal cord atrophy in neuroinflammatory diseases. Ann Neurol 76:370–378CrossRefPubMedPubMedCentralGoogle Scholar
  40. Manuel SL, Sehgal M, Connolly J, Makedonas G, Khan ZK, Gardner J, Betts MR, Jain P (2013a) Lack of recall response to tax in ATL and HAM/TSP patients but not in asymptomatic carriers of human T-cell leukemia virus type 1. J Clin Immunol 33:1223–1239CrossRefPubMedPubMedCentralGoogle Scholar
  41. Manuel SL, Sehgal M, Khan ZK, Goedert JJ, Betts MR, Jain P (2013b) An altered maturation and adhesion phenotype of dendritic cells in diseased individuals compared to asymptomatic carriers of human T cell leukemia virus type 1. AIDS Res Hum Retrovir 29:1273–1285PubMedPubMedCentralGoogle Scholar
  42. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–1322CrossRefPubMedGoogle Scholar
  43. Morgan O (2011) HTLV-1 associated myelopathy/tropical spastic paraparesis: how far have we come? West Indian Med J 60:505–512PubMedGoogle Scholar
  44. Nagai M, Osame M (2003) Human T-cell lymphotropic virus type I and neurological diseases. J Neuro-Oncol 9:228–235Google Scholar
  45. Ndhlovu LC, Leal FE, Hasenkrug AM, Jha AR, Carvalho KI, Eccles-James IG, Bruno FR, Vieira RG, York VA, Chew GM, Jones RB, Tanaka Y, Neto WK, Sanabani SS, Ostrowski MA, Segurado AC, Nixon DF, Kallas EG (2011) HTLV-1 tax specific CD8+ T cells express low levels of Tim-3 in HTLV-1 infection: implications for progression to neurological complications. PLoS Negl Trop Dis 5:e1030CrossRefPubMedPubMedCentralGoogle Scholar
  46. Olavarria VN, Gomes Ado N, Kruschewsky Rde A, Galvao-Castro B, Grassi MF (2012) Evolution of HTLV-1 proviral load in patients from Salvador, Brazil. Braz J Infect Dis 16:357–360CrossRefPubMedGoogle Scholar
  47. Oliere S, Douville R, Sze A, Belgnaoui SM, Hiscott J (2011) Modulation of innate immune responses during human T-cell leukemia virus (HTLV-1) pathogenesis. Cytokine Growth Factor Rev 22:197–210CrossRefPubMedGoogle Scholar
  48. Panfil AR, Al-Saleem JJ, Green PL (2013) Animal models utilized in HTLV-1 research. Virology (Auckl) 4:49–59Google Scholar
  49. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011CrossRefPubMedGoogle Scholar
  50. Publicover J, Goodsell A, Nishimura S, Vilarinho S, Wang ZE, Avanesyan L, Spolski R, Leonard WJ, Cooper S, Baron JL (2011) IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. J Clin Invest 121:1154–1162CrossRefPubMedPubMedCentralGoogle Scholar
  51. Saito M, Bangham CR (2012) Immunopathogenesis of human T-cell leukemia virus type-1-associated myelopathy/tropical spastic paraparesis: recent perspectives. Leuk Res Treatment 2012:259045PubMedPubMedCentralGoogle Scholar
  52. Seung E, Dudek TE, Allen TM, Freeman GJ, Luster AD, Tager AM (2013) PD-1 blockade in chronically HIV-1-infected humanized mice suppresses viral loads. PLoS One 8:e77780CrossRefPubMedPubMedCentralGoogle Scholar
  53. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107CrossRefPubMedGoogle Scholar
  54. Veselinovic M, Neff CP, Mulder LR, Akkina R (2012) Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology 432:505–510CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yari A, Rezaee SA, Valizadeh N, Rajaee T, Jazayeri SM, Soltani M, Norouzi M (2014) Evaluation of HTLV-1 activity in HAM/TSP patients using proviral load and tax mRNA expression after in vitro lymphocyte activation. Iran J Basic Med Sci 17:531–536PubMedPubMedCentralGoogle Scholar
  56. Yoshida M (2005) Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 24:5931–5937CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Rashida Ginwala
    • 1
  • Breanna Caruso
    • 2
  • Zafar K. Khan
    • 1
  • Ajinkya Pattekar
    • 1
  • Glen M. Chew
    • 3
  • Michael J. Corley
    • 3
  • Ronak Loonawat
    • 1
  • Steven Jacobson
    • 2
  • Sreesha Sreedhar
    • 1
  • Lishomwa C. Ndhlovu
    • 3
  • Pooja Jain
    • 1
  1. 1.Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaUSA
  2. 2.Viral Immunology Section, Neuroimmunology BranchNational Institutes of HealthBethesdaUSA
  3. 3.Department of Tropical Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluUSA

Personalised recommendations