Advertisement

Journal of Neuroimmune Pharmacology

, Volume 12, Issue 2, pp 219–232 | Cite as

Host-Virus Interaction of ZIKA Virus in Modulating Disease Pathogenesis

  • Nanda Kishore Routhu
  • Siddappa N. Byrareddy
INVITED REVIEW

Abstract

The Zika virus (ZIKV) is a newly emerging pathogen that has resulted in a worldwide epidemic. It primarily spreads either through infected Aedes aegypti or Aedes albopictus mosquitos leading to severe neurological disorders such as microcephaly and Guillain-Barré syndrome in susceptible individuals. The mode of ZIKV entry into specific cell types such as: epidermal keratinocytes, fibroblasts, immature dendritic cells (iDCs), and stem-cell-derived human neural progenitors has been determined through its major surface envelope glycoprotein. It has been known that oligosaccharides that are covalently linked to viral envelope proteins are crucial in defining host-virus interactions. However, the role of sugars/glycans in exploiting host-immune mechanisms and aiding receptor-mediated virus entry is not well defined. Therefore, this review focuses on host-pathogen interactions to better understand ZIKV pathogenesis.

Keywords

Host-virus interaction Zika virus Virus glycosylation Immunity Neuropathogenesis 

Notes

Acknowledgements

This work is supported in part by R01AI113883 and Nebraska Neuroscience Alliance Endowed Fund Award to SNB, and we thank Dr. Norgren and Robin Taylor for critical reading of the manuscript.

References

  1. Alcon-LePoder S, Drouet MT, Roux P, Frenkiel MP, Arborio M, Durand-Schneider AM, Maurice M, Le Blanc I, Gruenberg J, Flamand M (2005) The secreted form of dengue virus nonstructural protein NS1 is endocytosed by hepatocytes and accumulates in late endosomes: implications for viral infectivity. J Virol 79:11403–11411PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aliota MT, Caine EA, Walker EC, Larkin KE, Camacho E, Osorio JE (2016) Characterization of lethal zika virus infection in AG129 mice. PLoS Negl Trop Dis 10:e0004682PubMedPubMedCentralCrossRefGoogle Scholar
  3. Al-Qahtani AA, Nazir N, Al-Anazi MR, Rubino S, Al-Ahdal MN (2016) Zika virus: a new pandemic threat. J Infect Dev Ctries 10:201–207PubMedCrossRefGoogle Scholar
  4. Amaral DC, Rachid MA, Vilela MC, Campos RD, Ferreira GP, Rodrigues DH, Lacerda-Queiroz N, Miranda AS, Costa VV, Campos MA, Kroon EG, Teixeira MM, Teixeira AL (2011) Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. J Neuroinflammation 8:23PubMedPubMedCentralCrossRefGoogle Scholar
  5. Araujo AQ, Silva MT, Araujo AP (2016a) Zika virus-associated neurological disorders: a review. Brain 139:2122–2130PubMedCrossRefGoogle Scholar
  6. Araujo LM, Ferreira ML, Nascimento OJ (2016b) Guillain-Barre syndrome associated with the zika virus outbreak in Brazil. Arq Neuropsiquiatr 74:253–255PubMedCrossRefGoogle Scholar
  7. Bayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S, Marques ET Jr, Cherry S, Sadovsky Y, Coyne CB (2016) Type III Interferons produced by human placental trophoblasts confer protection against zika virus infection. Cell Host Microbe 19:705–712PubMedCrossRefGoogle Scholar
  8. Bayless NL, Greenberg RS, Swigut T, Wysocka J, Blish CA (2016) Zika virus infection induces cranial neural crest cells to produce cytokines at levels detrimental for neurogenesis. Cell Host Microbe 20:423–428PubMedCrossRefGoogle Scholar
  9. Benarroch D, Egloff MP, Mulard L, Guerreiro C, Romette JL, Canard B (2004) A structural basis for the inhibition of the NS5 dengue virus mRNA 2′-O-methyltransferase domain by ribavirin 5′-triphosphate. J Biol Chem 279:35638–35643PubMedCrossRefGoogle Scholar
  10. Bollati M et al (2009) Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antivir Res 87:125–148PubMedCrossRefGoogle Scholar
  11. Boonnak K, Dambach KM, Donofrio GC, Tassaneetrithep B, Marovich MA (2010) Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. J Virol 85:1671–1683PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brault JB, Khou C, Basset J, Coquand L, Fraisier V, Frenkiel MP, Goud B, Manuguerra JC, Pardigon N, Baffet AD (2016) Comparative analysis between flaviviruses reveals specific neural stem cell tropism for zika virus in the mouse developing Neocortex. EBioMedicine 10:71–76PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brinkworth RI, Fairlie DP, Leung D, Young PR (1999) Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. J Gen Virol 80(Pt 5):1167–1177PubMedCrossRefGoogle Scholar
  14. Broutet N, Krauer F, Riesen M, Khalakdina A, Almiron M, Aldighieri S, Espinal M, Low N, Dye C (2016) Zika virus as a cause of neurologic disorders. N Engl J Med 374:1506–1509PubMedCrossRefGoogle Scholar
  15. Cao-Lormeau VM, Musso D (2014) Emerging arboviruses in the Pacific. Lancet 384:1571–1572PubMedCrossRefGoogle Scholar
  16. Cao-Lormeau VM et al (2016) Guillain-Barre syndrome outbreak associated with zika virus infection in French Polynesia: a case-control study. Lancet 387:1531–1539PubMedCrossRefGoogle Scholar
  17. Chambers TJ, Weir RC, Grakoui A, McCourt DW, Bazan JF, Fletterick RJ, Rice CM (1990) Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc Natl Acad Sci U S A 87:8898–8902PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chang YS, Liao CL, Tsao CH, Chen MC, Liu CI, Chen LK, Lin YL (1999) Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. J Virol 73:6257–6264PubMedPubMedCentralGoogle Scholar
  19. Che P, Tang H, Li Q (2013) The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology 446:303–313PubMedCrossRefGoogle Scholar
  20. Chen HW, King K, Tu J, Sanchez M, Luster AD, Shresta S (2013) The roles of IRF-3 and IRF-7 in innate antiviral immunity against dengue virus. J Immunol 191:4194–4201PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chotiwan N, Roehrig JT, Schlesinger JJ, Blair CD, Huang CY (2014) Molecular determinants of dengue virus 2 envelope protein important for virus entry in Fcgamma RIIA-mediated antibody-dependent enhancement of infection. Virology 456-457:238–246PubMedCrossRefGoogle Scholar
  22. Crabtree MB, Kinney RM, Miller BR (2005) Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch Virol 150:771–786PubMedCrossRefGoogle Scholar
  23. Crook KR, Miller-Kittrell M, Morrison CR, Scholle F (2014) Modulation of innate immune signaling by the secreted form of the West Nile virus NS1 glycoprotein. Virology 458-459:172–182PubMedCrossRefGoogle Scholar
  24. Cugola FR et al (2016) The Brazilian zika virus strain causes birth defects in experimental models. Nature 534:267–271PubMedPubMedCentralGoogle Scholar
  25. Daep CA, Munoz-Jordan JL, Eugenin EA (2014) Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus. J Neuro-Oncol 20:539–560Google Scholar
  26. Dai L, Song J, Lu X, Deng YQ, Musyoki AM, Cheng H, Zhang Y, Yuan Y, Song H, Haywood J, Xiao H, Yan J, Shi Y, Qin CF, Qi J, Gao GF (2016) Structures of the zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 19:696–704PubMedCrossRefGoogle Scholar
  27. Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, Rana TM (2016) Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19:258–265PubMedCrossRefGoogle Scholar
  28. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau VM, Malasit P, Rey FA, Mongkolsapaya J, Screaton GR (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol 17:1102–1108PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dick GW (1952) Zika virus. II. Pathogenicity and physical properties. Trans R Soc Trop Med Hyg 46:521–534PubMedCrossRefGoogle Scholar
  30. Dick GW, Kitchen SF, Haddow AJ (1952) Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46:509–520PubMedCrossRefGoogle Scholar
  31. Droll DA, Krishna Murthy HM, Chambers TJ (2000) Yellow fever virus NS2B-NS3 protease: charged-to-alanine mutagenesis and deletion analysis define regions important for protease complex formation and function. Virology 275:335–347PubMedCrossRefGoogle Scholar
  32. Dudley DM et al (2016) A rhesus macaque model of Asian-lineage zika virus infection. Nat Commun 7:12204PubMedPubMedCentralCrossRefGoogle Scholar
  33. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2543PubMedCrossRefGoogle Scholar
  34. Edeling MA, Diamond MS, Fremont DH (2014) Structural basis of flavivirus NS1 assembly and antibody recognition. Proc Natl Acad Sci U S A 111:4285–4290PubMedPubMedCentralCrossRefGoogle Scholar
  35. Falgout B, Pethel M, Zhang YM, Lai CJ (1991) Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65:2467–2475PubMedPubMedCentralGoogle Scholar
  36. Feito MJ, Gomez-Gutierrez J, Ayora S, Alonso JC, Peterson D, Gavilanes F (2008) Insights into the oligomerization state-helicase activity relationship of West Nile virus NS3 NTPase/helicase. Virus Res 135:166–174PubMedCrossRefGoogle Scholar
  37. Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD, Lanciotti RS, Tesh RB (2011) Probable non-vector-borne transmission of zika virus, Colorado, USA. Emerg Infect Dis 17:880–882PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gale M Jr, Tan SL, Katze MG (2000) Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev 64:239–280PubMedPubMedCentralCrossRefGoogle Scholar
  39. Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, Nascimento JM, Brindeiro R, Tanuri A, Rehen SK (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352:816–818PubMedCrossRefGoogle Scholar
  40. Gebhard LG, Kaufman SB, Gamarnik AV (2012) Novel ATP-independent RNA annealing activity of the dengue virus NS3 helicase. PLoS One 7:e36244PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gupta G, Lim L, Song J (2015) NMR and MD studies reveal that the isolated dengue NS3 protease is an intrinsically disordered chymotrypsin fold which absolutely requests NS2B for correct folding and functional dynamics. PLoS One 10:e0134823PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hacker K, White L, de Silva AM (2009) N-linked glycans on dengue viruses grown in mammalian and insect cells. J Gen Virol 90:2097–2106PubMedPubMedCentralCrossRefGoogle Scholar
  43. Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC (2012) Genetic characterization of zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6:e1477PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P, Talignani L, Thomas F, Cao-Lormeau VM, Choumet V, Briant L, Despres P, Amara A, Yssel H, Misse D (2015) Biology of zika virus infection in human skin cells. J Virol 89:8880–8896PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hanners NW, Eitson JL, Usui N, Richardson RB, Wexler EM, Konopka G, Schoggins JW (2016) Western zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects. Cell Rep 15:2315–2322PubMedCrossRefGoogle Scholar
  46. Henderson BE, Cheshire PP, Kirya GB, Lule M (1970) Immunologic studies with yellow fever and selected African group B arboviruses in rhesus and vervet monkeys. AmJTrop Med Hyg 19:110–118Google Scholar
  47. Holmes EC (1998) Molecular epidemiology and evolution of emerging infectious diseases. Br Med Bull 54:533–543PubMedCrossRefGoogle Scholar
  48. Hombach J, Friede M, Moorphy V, Costello A, Kieny MP (2016) Developing a vaccine against zika. BMJ 355:i5923PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hughes RA, Cornblath DR (2005) Guillain-Barre syndrome. Lancet 366:1653–1666PubMedCrossRefGoogle Scholar
  50. Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, Roberts E, Hampshire DJ, Crow YJ, Mighell AJ, Karbani G, Jafri H, Rashid Y, Mueller RF, Markham AF, Woods CG (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71:136–142PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jacobs MG, Robinson PJ, Bletchly C, Mackenzie JM, Young PR (2000) Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB J 14:1603–1610PubMedCrossRefGoogle Scholar
  52. Jamil Z, Waheed Y, Durrani TZ (2016) Zika virus, a pathway to new challenges. Asian Pac J Trop Med 9:626–629PubMedCrossRefGoogle Scholar
  53. Jaspan HB, Lawn SD, Safrit JT, Bekker LG (2006) The maturing immune system: implications for development and testing HIV-1 vaccines for children and adolescents. AIDS 20:483–494PubMedCrossRefGoogle Scholar
  54. Jemielity S, Wang JJ, Chan YK, Ahmed AA, Li W, Monahan S, Bu X, Farzan M, Freeman GJ, Umetsu DT, Dekruyff RH, Choe H (2013) TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog 9:e1003232PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kindhauser MK, Allen T, Frank V, Santhana RS, Dye C (2016) Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ 94:675–686CPubMedPubMedCentralCrossRefGoogle Scholar
  56. Klema VJ, Ye M, Hindupur A, Teramoto T, Gottipati K, Padmanabhan R, Choi KH (2016) Dengue virus nonstructural protein 5 (NS5) assembles into a dimer with a unique methyltransferase and polymerase Interface. PLoS Pathog 12:e1005451PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kostyuchenko VA, Lim EX, Zhang S, Fibriansah G, Ng TS, Ooi JS, Shi J, Lok SM (2016) Structure of the thermally stable zika virus. Nature 533:425–428PubMedGoogle Scholar
  58. Ladner JT, Wiley MR, Prieto K, Yasuda CY, Nagle E, Kasper MR, Reyes D, Vasilakis N, Heang V, Weaver SC, Haddow A, Tesh RB, Sovann L, Palacios G (2016) Complete genome sequences of five zika virus isolates. Genome Announc 4Google Scholar
  59. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR (2008) Genetic and serologic properties of zika virus associated with an epidemic, yap state, Micronesia, 2007. Emerg Infect Dis 14:1232–1239PubMedPubMedCentralCrossRefGoogle Scholar
  60. Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA (2008) Role of nonstructural protein NS2A in flavivirus assembly. J Virol 82:4731–4741PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li XD, Shan C, Deng CL, Ye HQ, Shi PY, Yuan ZM, Gong P, Zhang B (2014) The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl Trop Dis 8:e2891PubMedPubMedCentralCrossRefGoogle Scholar
  62. Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L, Qin CF, Xu Z (2016a) Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19:120–126PubMedCrossRefGoogle Scholar
  63. Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N, Tang W, Terskikh AV, Shresta S, Gleeson JG (2016b) Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19:593–598PubMedCrossRefGoogle Scholar
  64. Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, Ge J, Wang S, Goldman SA, Zlokovic BV, Zhao Z, Jung JU (2016) Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19:663–671PubMedCrossRefGoogle Scholar
  65. Lindenbach BD, Rice CM (1999) Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621PubMedPubMedCentralGoogle Scholar
  66. Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59:23–61PubMedCrossRefGoogle Scholar
  67. Liu WJ, Sedlak PL, Kondratieva N, Khromykh AA (2002) Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J Virol 76:10766–10775PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lu G, Gong P (2013) Crystal structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9:e1003549PubMedPubMedCentralCrossRefGoogle Scholar
  69. Luo D, Xu T, Hunke C, Gruber G, Vasudevan SG, Lescar J (2008) Crystal structure of the NS3 protease-helicase from dengue virus. J Virol 82:173–183PubMedCrossRefGoogle Scholar
  70. Lupton K (2016) Zika virus disease: a public health emergency of international concern. Br J Nurs 25(198):200–192Google Scholar
  71. Mackenzie JM, Khromykh AA, Jones MK, Westaway EG (1998) Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245:203–215PubMedCrossRefGoogle Scholar
  72. Macnamara FN (1954) Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 48:139–145PubMedCrossRefGoogle Scholar
  73. Malet H, Egloff MP, Selisko B, Butcher RE, Wright PJ, Roberts M, Gruez A, Sulzenbacher G, Vonrhein C, Bricogne G, Mackenzie JM, Khromykh AA, Davidson AD, Canard B (2007) Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282:10678–10689PubMedCrossRefGoogle Scholar
  74. Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L, Schneider Ade B, Zimler R, Talton J, Cobb RR, Ruzic I, Smith-Gagen J, Janies D, Wilson J (2016) Zika virus: medical countermeasure development challenges. PLoS Negl Trop Dis 10:e0004530PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mangada MM, Rothman AL (2005) Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol 175:2676–2683PubMedCrossRefGoogle Scholar
  76. Markoff L, Falgout B, Chang A (1997) A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 233:105–117PubMedCrossRefGoogle Scholar
  77. Martines RB, Bhatnagar J, Keating MK, Silva-Flannery L, Muehlenbachs A, Gary J, Goldsmith C, Hale G, Ritter J, Rollin D, Shieh WJ, Luz KG, Ramos AM, Davi HP, Kleber de Oliveria W, Lanciotti R, Lambert A, Zaki S (2016) Notes from the field: evidence of zika virus infection in brain and placental tissues from two congenitally infected newborns and two fetal losses--Brazil, 2015. MMWR Morb Mortal Wkly Rep 65:159–160PubMedCrossRefGoogle Scholar
  78. Miller S, Krijnse-Locker J (2008) Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol 6:363–374PubMedCrossRefGoogle Scholar
  79. Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R (2007) The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J Biol Chem 282:8873–8882PubMedCrossRefGoogle Scholar
  80. Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, Garber C, Noll M, Klein RS, Noguchi KK, Mysorekar IU, Diamond MS (2016) Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165:1081–1091PubMedCrossRefGoogle Scholar
  81. Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodusek V, Vizjak A, Pizem J, Petrovec M, Avsic Zupanc T (2016) Zika virus associated with microcephaly. N Engl J Med 374:951–958PubMedCrossRefGoogle Scholar
  82. Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79:1223–1231PubMedPubMedCentralCrossRefGoogle Scholar
  83. Monath TP, Wilson DC, Casals J (1973) The 1970 yellow fever epidemic in Okwoga District, Benue plateau state, Nigeria. 3. Serological responses in persons with and without pre-existing heterologous group B immunity. Bull World Health Organ 49:235–244PubMedPubMedCentralGoogle Scholar
  84. Muller DA, Young PR (2013) The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antivir Res 98:192–208PubMedCrossRefGoogle Scholar
  85. Munoz-Jordan JL (2009) Subversion of interferon by dengue virus. Curr Top Microbiol Immunol 338:35–44Google Scholar
  86. Murphy BR, Whitehead SS (2011) Immune response to dengue virus and prospects for a vaccine. Annu Rev Immunol 29:587–619PubMedCrossRefGoogle Scholar
  87. Musso D (2015) Zika virus transmission from French Polynesia to Brazil. Emerg Infect Dis 21:1887PubMedPubMedCentralCrossRefGoogle Scholar
  88. Musso D, Gubler DJ (2016) Zika Virus. Clin Microbiol Rev 29:487–524PubMedCrossRefGoogle Scholar
  89. Musso D, Nilles EJ, Cao-Lormeau VM (2014a) Rapid spread of emerging zika virus in the Pacific area. Clin Microbiol Infect 20:O595–O596PubMedCrossRefGoogle Scholar
  90. Musso D, Nhan T, Robin E, Roche C, Bierlaire D, Zisou K, Shan Yan A, Cao-Lormeau VM, Broult J (2014b) Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill 19Google Scholar
  91. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM (2015) Potential sexual transmission of zika virus. Emerg Infect Dis 21:359–361PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mustafa MS, Rasotgi V, Jain S, Gupta V (2015) Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med J Armed Forces India 71:67–70PubMedCrossRefGoogle Scholar
  93. Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5:e926PubMedPubMedCentralCrossRefGoogle Scholar
  94. Navarro-Sanchez E, Despres P, Cedillo-Barron L (2005) Innate immune responses to dengue virus. Arch Med Res 36:425–435PubMedCrossRefGoogle Scholar
  95. Nishiura H, Kinoshita R, Mizumoto K, Yasuda Y, Nah K (2016) Transmission potential of zika virus infection in the South Pacific. Int J Infect Dis 45:95–97PubMedCrossRefGoogle Scholar
  96. Noronha L, Zanluca C, Azevedo ML, Luz KG, Santos CN (2016) Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz 111:287–293PubMedPubMedCentralCrossRefGoogle Scholar
  97. Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastere S, Valour F, Baudouin L, Mallet H, Musso D, Ghawche F (2014) Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013. Euro Surveill 19Google Scholar
  98. Olagnier D, Amatore D, Castiello L, Ferrari M, Palermo E, Diamond MS, Palamara AT, Hiscott J (2016) Dengue virus Immunopathogenesis: lessons applicable to the emergence of zika virus. J Mol Biol 428:3429–3448PubMedCrossRefGoogle Scholar
  99. de Oliveira PC, Pavoni DP, Queiroz MH, de Borba L, Goldenberg S, dos Santos CN, Krieger MA (2005) Dengue virus infections: comparison of methods for diagnosing the acute disease. J Clin Virol 32:272–277CrossRefGoogle Scholar
  100. Palmer DR, Sun P, Celluzzi C, Bisbing J, Pang S, Sun W, Marovich MA, Burgess T (2005) Differential effects of dengue virus on infected and bystander dendritic cells. J Virol 79:2432–2439PubMedPubMedCentralCrossRefGoogle Scholar
  101. Peiris JS, Porterfield JS (1979) Antibody-mediated enhancement of flavivirus replication in macrophage-like cell lines. Nature 282:509–511PubMedCrossRefGoogle Scholar
  102. Perera-Lecoin M, Meertens L, Carnec X, Amara A (2014) Flavivirus entry receptors: an update. Viruses 6:69–88CrossRefGoogle Scholar
  103. Priyamvada L, Quicke KM, Hudson WH, Onlamoon N, Sewatanon J, Edupuganti S, Pattanapanyasat K, Chokephaibulkit K, Mulligan MJ, Wilson PC, Ahmed R, Suthar MS, Wrammert J (2016) Human antibody responses after dengue virus infection are highly cross-reactive to zika virus. Proc Natl Acad Sci U S A 113:7852–7857PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pryor MJ, Gualano RC, Lin B, Davidson AD, Wright PJ (1998) Growth restriction of dengue virus type 2 by site-specific mutagenesis of virus-encoded glycoproteins. J Gen Virol 79(Pt 11):2631–2639PubMedCrossRefGoogle Scholar
  105. Qian X et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254PubMedCrossRefGoogle Scholar
  106. Quicke KM, Bowen JR, Johnson EL, McDonald CE, Ma H, O'Neal JT, Rajakumar A, Wrammert J, Rimawi BH, Pulendran B, Schinazi RF, Chakraborty R, Suthar MS (2016) Zika virus infects human placental macrophages. Cell Host Microbe 20:83–90PubMedCrossRefGoogle Scholar
  107. Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, Auguste AJ, Langsjoen RM, Paessler S, Vasilakis N, Weaver SC (2016) Characterization of a novel murine model to study zika virus. AmJTrop Med Hyg 94:1362–1369CrossRefGoogle Scholar
  108. Sarno M, Sacramento GA, Khouri R, do Rosario MS, Costa F, Archanjo G, Santos LA, Nery N, Jr Vasilakis N, Ko AI, de Almeida AR (2016) Zika virus infection and stillbirths: a case of Hydrops Fetalis, Hydranencephaly and fetal demise. PLoS Negl Trop Dis 10:e0004517PubMedPubMedCentralCrossRefGoogle Scholar
  109. Shao Q, Herrlinger S, Yang SL, Lai F, Moore JM, Brindley MA, Chen JF (2016) Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development 143:4127–4136PubMedCrossRefGoogle Scholar
  110. Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, Kuhn RJ (2016) The 3.8 a resolution cryo-EM structure of zika virus. Science 352:467–470PubMedPubMedCentralCrossRefGoogle Scholar
  111. Smithburn KC (1952) Neutralizing antibodies against certain recently isolated viruses in the sera of human beings residing in East Africa. J Immunol 69:223–234PubMedGoogle Scholar
  112. Stettler K et al (2016) Specificity, cross-reactivity, and function of antibodies elicited by zika virus infection. Science 353:823–826PubMedCrossRefGoogle Scholar
  113. Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C, Fang-Hoover J, Harris E, Pereira L (2016) Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe 20:155–166PubMedCrossRefGoogle Scholar
  114. Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J, Zhang F, Lee EM, Christian KM, Didier RA, Jin P, Song H, Ming GL (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–590PubMedCrossRefGoogle Scholar
  115. Tappe D, Rissland J, Gabriel M, Emmerich P, Gunther S, Held G, Smola S, Schmidt-Chanasit J (2014) First case of laboratory-confirmed Zika virus infection imported into Europe, November 2013. Euro Surveill 19Google Scholar
  116. Tappe D, Perez-Giron JV, Zammarchi L, Rissland J, Ferreira DF, Jaenisch T, Gomez-Medina S, Gunther S, Bartoloni A, Munoz-Fontela C, Schmidt-Chanasit J (2015) Cytokine kinetics of zika virus-infected patients from acute to reconvalescent phase. Med Microbiol Immunol 205:269–273PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829PubMedPubMedCentralCrossRefGoogle Scholar
  118. Tautz N, Kaiser A, Thiel HJ (2000) NS3 serine protease of bovine viral diarrhea virus: characterization of active site residues, NS4A cofactor domain, and protease-cofactor interactions. Virology 273:351–363PubMedCrossRefGoogle Scholar
  119. Umareddy I, Tang KF, Vasudevan SG, Devi S, Hibberd ML, Gu F (2008) Dengue virus regulates type I interferon signalling in a strain-dependent manner in human cell lines. J Gen Virol 89:3052–3062PubMedCrossRefGoogle Scholar
  120. Vasconcelos-Santos DV, Andrade GM, Caiaffa WT (2016) Zika virus, microcephaly, and ocular findings. JAMA Ophthalmol 134:946PubMedCrossRefGoogle Scholar
  121. Vasudevan SG, Johansson M, Brooks AJ, Llewellyn LE, Jans DA (2001) Characterisation of inter- and intra-molecular interactions of the dengue virus RNA dependent RNA polymerase as potential drug targets. Farmaco 56:33–36PubMedCrossRefGoogle Scholar
  122. Wakerley BR, Yuki N (2013) Infectious and noninfectious triggers in Guillain-Barre syndrome. Expert Rev Clin Immunol 9:627–639PubMedCrossRefGoogle Scholar
  123. Wang P, Hu K, Luo S, Zhang M, Deng X, Li C, Jin W, Hu B, He S, Li M, Du T, Xiao G, Zhang B, Liu Y, Hu Q (2015) DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein. Virology 488:108–119PubMedCrossRefGoogle Scholar
  124. Watrin L, Ghawche F, Larre P, Neau JP, Mathis S, Fournier E (2016) Guillain-Barre syndrome (42 cases) occurring during a zika virus outbreak in French Polynesia. Medicine (Baltimore) 95:e3257CrossRefGoogle Scholar
  125. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N (2016) Zika virus: history, emergence, biology, and prospects for control. Antivir Res 130:69–80PubMedCrossRefGoogle Scholar
  126. Wells MF, Salick MR, Wiskow O, Ho DJ, Worringer KA, Ihry RJ, Kommineni S, Bilican B, Klim JR, Hill EJ, Kane LT, Ye C, Kaykas A, Eggan K (2016) Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from zika virus infection. Cell Stem Cell 19:703–708PubMedCrossRefGoogle Scholar
  127. WHO Bot (2016) Promising new tools to fight Aedes mosquitoes. Bull World Health Organ 94:562–563CrossRefGoogle Scholar
  128. Wu KY, Zuo GL, Li XF, Ye Q, Deng YQ, Huang XY, Cao WC, Qin CF, Luo ZG (2016) Vertical transmission of zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res 26:645–654PubMedPubMedCentralCrossRefGoogle Scholar
  129. Xie X, Gayen S, Kang C, Yuan Z, Shi PY (2013) Membrane topology and function of dengue virus NS2A protein. J Virol 87:4609–4622PubMedPubMedCentralCrossRefGoogle Scholar
  130. Yu L, Takeda K, Markoff L (2013) Protein-protein interactions among West Nile non-structural proteins and transmembrane complex formation in mammalian cells. Virology 446:365–377PubMedCrossRefGoogle Scholar
  131. Yusof R, Clum S, Wetzel M, Murthy HM, Padmanabhan R (2000) Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275:9963–9969PubMedCrossRefGoogle Scholar
  132. Zhang B, Dong H, Zhou Y, Shi PY (2008) Genetic interactions among the West Nile virus methyltransferase, the RNA-dependent RNA polymerase, and the 5′ stem-loop of genomic RNA. J Virol 82:7047–7058PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH (2012) Cryo-EM structure of the mature dengue virus at 3.5-a resolution. Nat Struct Mol Biol 20:105–110PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhu Z, Chan JF, Tee KM, Choi GK, Lau SK, Woo PC, Tse H, Yuen KY (2016) Comparative genomic analysis of pre-epidemic and epidemic zika virus strains for virological factors potentially associated with the rapidly expanding epidemic. Emerg Microbes Infect 5:e22PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nanda Kishore Routhu
    • 1
  • Siddappa N. Byrareddy
    • 1
    • 2
  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations