Journal of Neuroimmune Pharmacology

, Volume 12, Issue 3, pp 389–401 | Cite as

Chronic Tobacco-Smoking on Psychopathological Symptoms, Impulsivity and Cognitive Deficits in HIV-Infected Individuals



HIV-infected individuals (HIV+) has 2–3 times the rate of tobacco smoking than the general population, and whether smoking may lead to greater psychiatric symptoms or cognitive deficits remains unclear. We evaluated the independent and combined effects of being HIV+ and chronic tobacco-smoking on impulsivity, psychopathological symptoms and cognition. 104 participants [27 seronegative (SN)-non-Smokers, 26 SN-Smokers, 29 HIV+ non-Smokers, 22 HIV+ Smokers] were assessed for psychopathology symptoms (Symptom Checklist-90, SCL-90), depressive symptoms (Center for Epidemiologic Studies-Depression Scale, CES-D), impulsivity (Barratt Impulsiveness Scale, BIS), decision-making (The Iowa Gambling Task, IGT, and Wisconsin Card Sorting Test, WCST), and cognition (seven neurocognitive domains). Both HIV+ and Smoker groups had higher SCL-90 and CES-D scores, with highest scores in HIV+ Smokers. On BIS, both HIV+ and Smokers had higher Total Impulsiveness scores, with higher behavioral impulsivity in Smokers, highest in HIV+ Smokers. Furthermore, across the four groups, HIV+ Smokers lost most money and made fewest advantageous choices on the IGT, and had highest percent errors on WCST. Lastly, HIV+ had lower z-scores on all cognitive domains, with the lowest scores in HIV+ Smokers. These findings suggest that HIV-infection and chronic tobacco smoking may lead to additive deleterious effects on impulsivity, psychopathological (especially depressive) symptoms and cognitive dysfunction. Although greater impulsivity may be premorbid in HIV+ and Smokers, the lack of benefits of nicotine in chronic Smokers on attention and psychopathology, especially those with HIV-infection, may be due to the negative effects of chronic smoking on dopaminergic and cardio-neurovascular systems. Tobacco smoking may contribute to psychopathology and neurocognitive disorders in HIV+ individuals.


HIV Tobacco use Decision making Risk Psychopathology 



This work was supported by the National Institutes of Health grants (2 K24-DA16170; U54-NS56883; G12 MD007601). We are grateful to our research participants and the referral physicians from our community providers, including Dr. Drew Kovach, Dr. Dominic Chow, Dr. Jennifer Frank, Dr. Cyril Goshima, and the personnel at the Life Foundation, the Gregory House and at Save the Food Basket. We also appreciate the meticulous and hard work from the multiple clinical and technical research staff members (especially Mark Lum, B.S.) who assisted in the data collection of this study.

Compliance with Ethical Standards

Conflict of Interest Statement

The authors have declared that no conflict of interest exists.


  1. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799Google Scholar
  2. Bandaru VV, Mielke MM, Sacktor N, McArthur JC, Grant I, Letendre S, Chang L, Wojna V, Pardo C, Calabresi P, Munsaka S, Haughey NJ (2013) A lipid storage-like disorder contributes to cognitive decline in HIV-infected subjects. Neurology 81:1492–1499CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bechara A, Martin E (2004) Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology 18:152–162CrossRefPubMedGoogle Scholar
  4. Becker JT, Kingsley L, Mullen J, Cohen B, Martin E, Miller EN, Ragin A, Sacktor N, Selnes OA, Visscher BR (2009) Vascular risk factors, HIV serostatus, and cognitive dysfunction in gay and bisexual men. Neurology 73:1292–1299CrossRefPubMedPubMedCentralGoogle Scholar
  5. Braver TS, Cohen JD (2000) On the control of control: the role of dopamine in regulating prefrontal function and working memory. Control of cognitive processes: Attention and performance XVIII:713–737Google Scholar
  6. Breslau N (1995) Psychiatric comorbidity of smoking and nicotine dependence. Behav Genet 25:95–101CrossRefPubMedGoogle Scholar
  7. Brown A (2015) Understanding the MIND phenotype: macrophage/microglia inflammation in neurocognitive disorders related to human immunodeficiency virus infection. Clinical and translational medicine 4:7CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bryant VE, Kahler CW, Devlin KN, Monti PM, Cohen RA (2013) The effects of cigarette smoking on learning and memory performance among people living with HIV/AIDS. AIDS Care 25:1308–1316CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carmody TP (1989) Affect regulation, tobacco addiction, and smoking cessation. J Psychoactive Drugs 21:331–342CrossRefPubMedGoogle Scholar
  10. Centers for Disease Control and Prevention (2015) HIV and Substance Use in the United States. In.
  11. Chang L, Speck O, Miller EN, Braun J, Jovicich J, Koch C, Itti L, Ernst T (2001) Neural correlates of attention and working memory deficits in HIV patients. Neurology 57:1001–1007CrossRefPubMedGoogle Scholar
  12. Chang L, Ernst T, Witt MD, Ames N, Walot I, Jovicich J, DeSilva M, Trivedi N, Speck O, Miller EN (2003) Persistent brain abnormalities in antiretroviral-naive HIV patients 3 months after HAART. Antivir Ther 8:17–26PubMedGoogle Scholar
  13. Chang L, Tomasi D, Yakupov R, Lozar C, Arnold S, Caparelli E, Ernst T (2004) Adaptation of the attention network in human immunodeficiency virus brain injury. Ann Neurol 56:259–272CrossRefPubMedGoogle Scholar
  14. Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS (2008a) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. NeuroImage 42:869–878CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chang L, Wong V, Nakama H, Watters M, Ramones D, Miller EN, Cloak C, Ernst T (2008b) Greater than agerelated changes in brain diffusion of HIV patients after 1 year. J NeuroImmune Pharmacol 3:265–274Google Scholar
  16. Chang L, Wong V, Nakama H, Watters M, Ramones D, Miller EN, Cloak C, Ernst T (2008c) Greater than age-related changes in brain diffusion of HIV patients after 1 year. J NeuroImmune Pharmacol 3:265–274CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chang L, Andres M, Sadino J, Jiang CS, Nakama H, Miller E, Ernst T, (2011) Impact of apolipoprotein E Îμ4 and HIV on cognition and brain atrophy: Antagonistic pleiotropy and premature brain aging. NeuroImage 58 (4):1017–1027Google Scholar
  18. Chang L, Jiang C, Cunningham E, Buchthal S, Douet V, Andres M, Ernst T (2014) Effects of APOE ε4, age, and HIV on glial metabolites and cognitive deficits. Neurology 82:2213–2222CrossRefPubMedPubMedCentralGoogle Scholar
  19. Correa DG, Zimmermann N, Netto TM, Tukamoto G, Ventura N, de Castro Bellini Leite S, Cabral RF, Fonseca RP, Bahia PR, Gasparetto EL (2016) Regional cerebral gray matter volume in HIV-positive patients with executive function deficits. Journal of neuroimaging: official journal of the American Society of Neuroimaging 26:450–457Google Scholar
  20. Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW (2014) Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS 28:2251–2258CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dani JA, De Biasi M (2001) Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav 70:439–446CrossRefPubMedGoogle Scholar
  22. Derogatis LR (1994) The Symptom Checklist-90 (SCL-90). In, 13 May 2016 Edition (Group PAI, ed): Pearson: Clinical Psychology. Pearson Education, IncGoogle Scholar
  23. Dickens AM, Anthony DC, Deutsch R, Mielke MM, Claridge TD, Grant I, Franklin D, Rosario D, Marcotte T, Letendre S, McArthur JC, Haughey NJ (2015) Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV-infected patients. AIDS 29:559–569PubMedPubMedCentralGoogle Scholar
  24. Dierker LC, Avenevoli S, Stolar M, Merikangas K (2002) Smoking and depression: an examination of mechanisms of comorbidity. The American Journal of Psychiatry 159:947–953Google Scholar
  25. Elliott A (1998) Anxiety and HIV infection. STEP perspective 98:11PubMedGoogle Scholar
  26. Ernst M, Heishman SJ, Spurgeon L, London ED (2001) Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 25:313–319CrossRefGoogle Scholar
  27. Ernst T, Yakupov R, Nakama H, Crocket G, Cole M, Watters M, Ricardo-Dukelow ML, Chang L (2009) Declined neural efficiency in cognitively stable human immunodeficiency virus patients. Ann Neurol 65:316–325CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ernst T, Jiang CS, Nakama H, Buchthal S, Chang L (2010) Lower brain glutamate is associated with cognitive deficits in HIV patients: a new mechanism for HIV-associated neurocognitive disorder. Journal of magnetic resonance imaging: JMRI 32:1045–1053CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fabbiani M, Ciccarelli N, Tana M, Farina S, Baldonero E, Di Cristo V, Colafigli M, Tamburrini E, Cauda R, Silveri MC, Grima P, Di Giambenedetto S (2013) Cardiovascular risk factors and carotid intima-media thickness are associated with lower cognitive performance in HIV-infected patients. HIV medicine 14:136–144CrossRefPubMedGoogle Scholar
  30. Farinpour R, Martin EM, Seidenberg M, Pitrak DL, Pursell KJ, Mullane KM, Novak RM, Harrow M (2000) Verbal working memory in HIV-seropositive drug users. J Int Neuropsychol Soc 6:548–555CrossRefPubMedGoogle Scholar
  31. Fialho R, Pereira M, Bucur M, Fisher M, Whale R, Rusted J (2016) Cognitive impairment in HIV and HCV coinfected patients: a systematic review and meta-analysis. AIDS care 28:1481–1494Google Scholar
  32. Gilbert DG, Gilbert BO (1995) Personality, psychopathology, and nicotine response as mediators of the genetics of smoking. Behav Genet 25:133–147CrossRefPubMedGoogle Scholar
  33. Hardy DJ, Hinkin CH, Levine AJ, Castellon SA, Lam MN (2006) Risky decision making assessed with the gambling task in adults with HIV. Neuropsychology 20:355CrossRefPubMedPubMedCentralGoogle Scholar
  34. Heaton RK, Marcotte TD, Mindt MR, Sadek J, Moore DJ, Bentley H, McCutchan JA, Reicks C, Grant I (2004) The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc 10:317–331CrossRefPubMedGoogle Scholar
  35. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte T, Atkinson J (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER study. Neurology 75:2087–2096CrossRefPubMedPubMedCentralGoogle Scholar
  36. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, LeBlanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. Journal of neurovirology 17:3–16Google Scholar
  37. Heishman SJ, Kleykamp BA, Singleton EG (2010) Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology 210:453–469CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ibrahim I, Salah H, El Sayed H, Mansour H, Eissa A, Wood J, Fathi W, Tobar S, Gur RC, Gur RE, Dickerson F, Yolken RH, El Bahaey W, Nimgaonkar V (2016) Hepatitis C virus antibody titers associated with cognitive dysfunction in an asymptomatic community-based sample. J Clin Exp Neuropsychol 38:861–868CrossRefPubMedGoogle Scholar
  39. Janes AC, Nickerson LD, Kaufman MJ (2012) Prefrontal and limbic resting state brain network functional connectivity differs between nicotine-dependent smokers and non-smoking controls. Drug Alcohol Depend 125:252–259CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jin C, Zhao G, Zhang F, Feng L, Wu N (2010) The psychological status of HIV-positive people and their psychosocial experiences in eastern China. HIV medicine 11:253–259CrossRefPubMedGoogle Scholar
  41. Kassel JD, Stroud LR, Paronis CA (2003) Smoking, stress, and negative affect: correlation, causation, and context across stages of smoking. Psychol Bull 129:270CrossRefPubMedGoogle Scholar
  42. Levy J (2007) HIV and the pathogenesis of AIDS. ASM Press, Washington DCGoogle Scholar
  43. Lewinsohn PM, Seeley JR, Roberts RE, Allen NB (1997) Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychol Aging 12:277–287CrossRefPubMedGoogle Scholar
  44. Martin EM, Sullivan TS, Reed RA, Fletcher TA, Pitrak DL, Weddington W, Harrow M (2001) Auditory working memory in HIV-1 infection. J Int Neuropsychol Soc 7:20–26CrossRefPubMedGoogle Scholar
  45. Martin EM, Pitrak DL, Rains N, Grbesic S, Pursell K, Nunnally G, Bechara A (2003) Delayed nonmatch-tosample performance in HIV-seropositive and HIV-seronegative polydrug abusers. Neuropsychology 17:283–288Google Scholar
  46. Martin EM, Pitrak DL, Weddington W, Rains NA, Nunnally G, Nixon H, Grbesic S, Vassileva J, Bechara A (2004) Cognitive impulsivity and HIV serostatus in substance dependent males. J Int Neuropsychol Soc 10:931–938PubMedGoogle Scholar
  47. Mascolini M (2013) Smoking Rate Twice Higher With Than Without HIV in First National US Study. In: 20th Conference on Retroviruses and Opportunistic Infections. Atlanta, GAGoogle Scholar
  48. Meyer VJ, Rubin LH, Martin E, Weber KM, Cohen MH, Golub ET, Valcour V, Young MA, Crystal H, Anastos K (2013) HIV and recent illicit drug use interact to affect verbal memory in women. J Acquir Immune Defic Syndr 63:67CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mitchell SH (1999) Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology 146:455–464CrossRefPubMedGoogle Scholar
  50. Morrison MF, Petitto JM, Ten Have T, Gettes DR, Chiappini MS, Weber AL, Brinker-Spence P, Bauer RM, Douglas SD, Evans DL (2014) Depressive and anxiety disorders in women with HIV infection. American Journal of Psychiatry 159:789–796Google Scholar
  51. Musante V, Summa M, Neri E, Puliti A, Godowicz TT, Severi P, Battaglia G, Raiteri M, Pittaluga A (2010) The HIV-1 viral protein tat increases glutamate and decreases GABA exocytosis from human and mouse neocortical nerve endings. Cereb Cortex 20:1974–1984CrossRefPubMedGoogle Scholar
  52. National Center for Health Statistics (2015) Health, United States, 2014: with special feature on adults aged 55–64. Hyattsville, MarylandGoogle Scholar
  53. Owe-Larsson M, Säll L, Salamon E, Allgulander C (2009) HIV infection and psychiatric illness. African journal of psychiatry 12:115–128Google Scholar
  54. Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51:768–774CrossRefPubMedGoogle Scholar
  55. Perkins KA, Lerman C, Coddington SB, Jetton C, Karelitz JL, Scott JA, Wilson AS (2008) Initial nicotine sensitivity in humans as a function of impulsivity. Psychopharmacology 200:529–544CrossRefPubMedGoogle Scholar
  56. Petoumenos K, Worm S, Reiss P, de Wit S, d'Arminio Monforte A, Sabin C, Friis-Moller N, Weber R, Mercie P, Pradier C, El-Sadr W, Kirk O, Lundgren J, Law M (2011) Rates of cardiovascular disease following smoking cessation in patients with HIV infection: results from the D:a:D study(*). HIV medicine 12:412–421CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pomerleau OF, Pomerleau CS (1985) Neuroregulators and the reinforcement of smoking: towards a biobehavioral explanation. Neurosci Biobehav Rev 8:503–513CrossRefGoogle Scholar
  58. Rademacher L, Prinz S, Winz O, Henkel K, Dietrich CA, Schmaljohann J, Mohammadkhani Shali S, Schabram I, Stoppe C, Cumming P, Hilgers RD, Kumakura Y, Coburn M, Mottaghy FM, Grunder G, Vernaleken I (2015) Effects of smoking cessation on presynaptic dopamine function of addicted male smokers. Biological psychiatry 80:198–206Google Scholar
  59. Radloff L (1977) The CES-D scale: a self-report depression scale for research in the general population. Applied Psychological Measurement 1:385–401Google Scholar
  60. Reise SP, Moore TM, Sabb FW, Brown AK, London ED (2013) The Barratt impulsiveness scale–11: reassessment of its structure in a community sample. Psychol Assess 25:631CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rezaei S, Taramian S, Kafie SM (2013) Psychopathological dimensions in substance abusers with and without HIV/AIDS and healthy matched group. Addiction & health 5:115Google Scholar
  62. Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267CrossRefPubMedGoogle Scholar
  63. Rippeth JD, Heaton RK, Carey CL, Marcotte TD, Moore DJ, Gonzalez R, Wolfson T, Grant I (2004) Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc 10:1–14CrossRefPubMedGoogle Scholar
  64. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21:1915–1921CrossRefPubMedGoogle Scholar
  65. Scott JC, Woods SP, Vigil O, Heaton RK, Schweinsburg BC, Ellis RJ, Grant I, Marcotte TD (2011) A neuropsychological investigation of multitasking in HIV infection: implications for everyday functioning. Neuropsychology 25:511CrossRefPubMedPubMedCentralGoogle Scholar
  66. Semple SJ, Zians J, Grant I, Patterson TL (2006) Methamphetamine use, impulsivity, and sexual risk behavior among HIV-positive men who have sex with men. J Addict Dis 25:105–114CrossRefPubMedGoogle Scholar
  67. Simioni S, Cavassini M, Annoni J-M, Abraham AR, Bourquin I, Schiffer V, Calmy A, Chave J-P, Giacobini E, Hirschel B (2010) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24:1243–1250PubMedGoogle Scholar
  68. Tesoriero JM, Gieryic SM, Carrascal A, Lavigne HE (2010) Smoking among HIV positive new Yorkers: prevalence, frequency, and opportunities for cessation. AIDS Behav 14:824–835CrossRefPubMedGoogle Scholar
  69. Thames AD, Kim MS, Becker BW, Foley JM, Hines LJ, Singer EJ, Heaton RK, Castellon SA, Hinkin CH (2011) Medication and finance management among HIV-infected adults: the impact of age and cognition. J Clin Exp Neuropsychol 33:200–209CrossRefPubMedGoogle Scholar
  70. Vesce S, Bezzi P, Rossi D, Meldolesi J, Volterra A (1997) HIV-1 gp120 glycoprotein affects the astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid. FEBS Lett 411:107–109CrossRefPubMedGoogle Scholar
  71. Vieira-Brock PL, McFadden LM, Nielsen SM, Ellis JD, Walters ET, Stout KA, McIntosh JM, Wilkins DG, Hanson GR, Fleckenstein AE (2015) Chronic nicotine exposure attenuates methamphetamine-induced dopaminergic deficits. J Pharmacol Exp Ther 355:463–472CrossRefPubMedPubMedCentralGoogle Scholar
  72. Villa G, Monteleone D, Marra C, Bartoli A, Antinori A, Pallavicini F, Tamburrini E, Izzi I (1993) Neuropsychological abnormalities in AIDS and asymptomatic HIV seropositive patients. J Neurol Neurosurg Psychiatry 56:878–884CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wagner M, Schulze-Rauschenbach S, Petrovsky N, Brinkmeyer J, von der Goltz C, Gründer G, Spreckelmeyer KN, Wienker T, Diaz-Lacava A, Mobascher A (2013) Neurocognitive impairments in non-deprived smokers—results from a population-based multi-center study on smoking-related behavior. Addict Biol 18:752–761CrossRefPubMedGoogle Scholar
  74. Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–2458Google Scholar
  75. Wojna V, Robles L, Skolasky RL, Mayo R, Selnes O, de la Torre T, Maldonado E, Nath A, Meléndez LM, Lasalde-Dominicci J (2007) Associations of cigarette smoking with viral immune and cognitive function in human immunodeficiency virus-seropositive women. Journal of neurovirology 13:561–568CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yen CH, Yeh YW, Liang CS, Ho PS, Kuo SC, Huang CC, Chen CY, Shih MC, Ma KH, Peng GS, Lu RB, Huang SY (2015) Reduced dopamine transporter availability and neurocognitive deficits in male patients with alcohol dependence. PLoS One 10:e0131017CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1229CrossRefPubMedGoogle Scholar
  78. Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034:11–24CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Neuroscience & MR Research Program, Department of Medicine, John A. Burns School of MedicineUniversity of Hawaii and Queen’s Medical CenterHonoluluUSA

Personalised recommendations