Advertisement

Journal of Neuroimmune Pharmacology

, Volume 12, Issue 2, pp 305–313 | Cite as

Phenotype of Antigen Unexperienced TH Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis

  • Sophia Franck
  • Magdalena Paterka
  • Jerome Birkenstock
  • Frauke Zipp
  • Volker Siffrin
  • Esther Witsch
ORIGINAL ARTICLE

Abstract

Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear. In particular, there is only scarce information on the role of central nervous system-invading naive T helper cells in these processes. By applying two-photon laser scanning microscopy we could show in vivo that antigen unexperienced T helper cells migrated into the deep parenchyma of the inflamed central nervous system in experimental autoimmune encephalomyelitis, independent of their antigen specificity. Using flow cytometric analyses of central nervous system-derived lymphocytes we found that only antigen-specific, formerly naive T helper cells became activated during inflammation of the central nervous system encountering their corresponding antigen.

Keywords

Intravital two-photon microscopy Multiple sclerosis Experimental autoimmune encephalomyelitis Migration Naive TH cell 

Abbreviations

APCs

Antigen presenting cells

BBB

Blood-brain barrier

CCL-21

CC-chemokine ligand 21

CNS

Central nervous system

EAE

Experimental autoimmune encephalomyelitis

ICAM-1

Intercellular adhesion molecule 1

IL

Interleukin

INF

Interferon

i.v.

Intravenous

LFA-1

Leukocyte function-associated antigen 1

MACS

Magnetic cell sorting

MOG

Myelin oligodendroycte glycoprotein35-55

MS

Multiple sclerosis

OVA

Ovalbumin323-339

PLP

Proteolipid protein

Rag 1-/-

B6.129S7-Rag1tm1Mom/J mice

TH cell

T helper cell

TPLSM

Two-photon laser scanning microscopy

VCAM

Vascular cell adhesion molecule

VLA-4

Very late antigen-4

Notes

Acknowledgments

This study has been supported by the German Research Foundation (DFG, SFB-TR 128/B9 to VS and FZ).

Compliance with Ethical Standards

Funding

We thank Heike Ehrengard and Christin Liefländer for technical assistance and Cheryl Ernest for proofreading the manuscript.

SF was responsible for executing the research project and writing the manuscript, performing all experiments, preparing the figures and the statistical analysis. EW assisted in data analysis and writing and editing the manuscript. JB assisted technically with research. MP assisted with data analysis. VS contributed to the design of the experiments and assisted with data analysis. FZ assisted in editing the manuscript. VS and FZ directed all aspects of this research project including the experimental design.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001. doi: 10.1016/j.immuni.2006.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bartholomaus I et al (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98. doi: 10.1038/nature08478 CrossRefPubMedGoogle Scholar
  3. Bauer J et al (1998) T-cell apoptosis in inflammatory brain lesions. Am J Pathol 153:715–724. doi: 10.1016/s0002-9440(10)65615-5 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boyman O (2010) Bystander activation of CD4+ T cells. Eur J Immunol 40:936–939. doi: 10.1002/eji.201040466 CrossRefPubMedGoogle Scholar
  5. Brabb T, von Dassow P, Ordonez N, Schnabel B, Duke B, Goverman J (2000) In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J Exp Med 192:871–880CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brocke S, Piercy C, Steinman L, Weissman IL, Veromaa T (1999) Antibodies to CD44 and integrin alpha4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment Proceedings of the National Academy of Sciences of the United States of America 96:6896-6901Google Scholar
  7. Cose S, Brammer C, Khanna KM, Masopust D, Lefrancois L (2006) Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. Eur J Immunol 36:1423–1433. doi: 10.1002/eji.200535539 CrossRefPubMedGoogle Scholar
  8. Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26:485–495. doi: 10.1016/j.it.2005.07.004 CrossRefPubMedGoogle Scholar
  9. Flugel A et al (2001) Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14:547–560CrossRefPubMedGoogle Scholar
  10. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407. doi: 10.1038/nri2550 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Herz J et al (2011) In vivo imaging of lymphocytes in the CNS reveals different behaviour of naive T cells in health and autoimmunity. J Neuroinflammation 8:131. doi: 10.1186/1742-2094-8-131 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292CrossRefPubMedGoogle Scholar
  13. Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260. doi: 10.1002/jnr.490280213 CrossRefPubMedGoogle Scholar
  14. Hirota K et al (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12:255–263. doi: 10.1038/ni.1993 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kawakami N, Flugel A (2010) Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin Immunopathol 32:275–287. doi: 10.1007/s00281-010-0216-x CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kawakami N, Nagerl UV, Odoardi F, Bonhoeffer T, Wekerle H, Flugel A (2005) Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J Exp Med 201:1805–1814. doi: 10.1084/jem.20050011 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kivisakk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, Khoury SJ (2009) Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 65:457–469. doi: 10.1002/ana.21379 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517. doi: 10.1146/annurev.immunol.021908.132710 CrossRefPubMedGoogle Scholar
  19. Krakowski ML, Owens T (2000) Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation European journal of immunology 30:1002-1009 doi: 10.1002/(SICI)1521-4141(200004)30:4<1002::AID-IMMU1002>3.0.CO;2-2
  20. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392. doi: 10.1172/JCI28330 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53. doi: 10.1002/eji.200636745 CrossRefPubMedGoogle Scholar
  22. Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10:153–187. doi: 10.1146/annurev.iy.10.040192.001101 CrossRefPubMedGoogle Scholar
  23. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339. doi: 10.1038/nm1202 CrossRefPubMedGoogle Scholar
  24. Miller MJ WS, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. ScienceGoogle Scholar
  25. Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–1873. doi: 10.1126/science.1070051 CrossRefPubMedGoogle Scholar
  26. Miller MJ, Wei SH, Cahalan MD, Parker I (2003) Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci U S A 100:2604–2609. doi: 10.1073/pnas.2628040100 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Morrison PJ, Bending D, Fouser LA, Wright JF, Stockinger B, Cooke A, Kullberg MC (2013) Th17-cell plasticity in Helicobacter hepaticus-induced intestinal inflammation. Mucosal Immunol 6:1143–1156. doi: 10.1038/mi.2013.11 PubMedGoogle Scholar
  28. Murphy KM, Stockinger B (2010) Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol 11:674–680. doi: 10.1038/ni.1899 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Oksaranta O, Tarvonen S, Ilonen J, Poikonen K, Reunanen M, Panelius M, Salonen R (1995) Influx of nonactivated T lymphocytes into the cerebrospinal fluid during relapse of multiple sclerosis. Ann Neurol 38:465–468. doi: 10.1002/ana.410380320 CrossRefPubMedGoogle Scholar
  30. Owens T, Tran E, Hassan-Zahraee M, Krakowski M (1998) Immune cell entry to the CNS--a focus for immunoregulation of EAE. Res Immunol 149:781–789, discussion 844-786, 855-760CrossRefPubMedGoogle Scholar
  31. Pesic M, Bartholomaus I, Kyratsous NI, Heissmeyer V, Wekerle H, Kawakami N (2013) 2-photon imaging of phagocyte-mediated T cell activation in the CNS. J Clin Invest 123:1192–1201. doi: 10.1172/JCI67233 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581. doi: 10.1038/nri1130 CrossRefPubMedGoogle Scholar
  33. Rothhammer V, Heink S, Petermann F, Srivastava R, Claussen MC, Hemmer B, Korn T (2011) Th17 lymphocytes traffic to the central nervous system independently of alpha4 integrin expression during EAE. J Exp Med 208:2465–2476. doi: 10.1084/jem.20110434 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Siffrin V et al (2009) Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization. Brain : J Neurol 132:1247–1258. doi: 10.1093/brain/awn354 CrossRefGoogle Scholar
  35. Thorsten R. Mempel SEHUHvA (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. NatureGoogle Scholar
  36. Wekerle H LC, Lassmann H, Meyermann R. (1986) Cellular immune reactivity within the CNS. Trends NeurosciGoogle Scholar
  37. Wong GH, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW (1984) Inducible expression of H-2 and Ia antigens on brain cells. Nature 310:688–691CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sophia Franck
    • 1
  • Magdalena Paterka
    • 1
  • Jerome Birkenstock
    • 1
  • Frauke Zipp
    • 1
  • Volker Siffrin
    • 1
  • Esther Witsch
    • 1
  1. 1.Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2)University Medical Center of the Johannes Gutenberg UniversityMainzGermany

Personalised recommendations