Journal of Neuroimmune Pharmacology

, Volume 11, Issue 4, pp 721–732 | Cite as

Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis

  • Beatrice Wasser
  • Gautam Pramanik
  • Moritz Hess
  • Matthias Klein
  • Felix Luessi
  • Klaus Dornmair
  • Tobias Bopp
  • Frauke Zipp
  • Esther Witsch


The importance of CD11c+ antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c+ APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c+ APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c+ cells is technically difficult. To ask whether the CD11c+ APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c+ APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.


Multiple sclerosis Next generation sequencing Dendritic cell Microglia Autoimmunity CNS infiltration 



We thank Birgit Hohmann, Christin Liefländer, Andreas Zymny, Kristian Schütze, and Heike Ehrengard for technical assistance and Darragh O’Neill for proofreading the manuscript.

Author Contributions

B.W. performed all experiments, analyzed data, drafted the manuscript, and prepared Figs. G.P. performed experiments. M.H. analyzed RNA-Seq data. M.K. performed RNA-Seq experiments. F.L. and K.D. interpreted results. T.B. performed cell sort experiments. F.Z. designed the study, interpreted results and edited manuscript. E.W. designed the study, conceptually designed figures, interpreted results and wrote the manuscript.

Compliance with Ethical Standards

Sources of Support

This study has been supported by the German Research Foundation (DFG, SFB-TR 128/B4 to F.Z. and T.B. and DFG, SFB-TR 128/A5 to K.D.).

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11481_2016_9696_MOESM1_ESM.docx (20 kb)
Supplementary Material 1 (DOCX 20 kb)
11481_2016_9696_MOESM2_ESM.pdf (3.2 mb)
High resolution image (PDF 3.19 mb)
11481_2016_9696_MOESM3_ESM.docx (28 kb)
Supplementary Material 3 (DOCX 27 kb)
11481_2016_9696_MOESM4_ESM.pdf (1.2 mb)
High resolution image (PDF 1.22 mb)


  1. Ahn M, Lee C, Jung K, Kim H, Moon C, Sim KB, Shin T (2012) Immunohistochemical study of arginase-1 in the spinal cords of rats with clip compression injury. Brain Res 1445:11–19CrossRefPubMedGoogle Scholar
  2. Aktas O, Waiczies S, Smorodchenko A, Dorr J, Seeger B, Prozorovski T, Sallach S, Endres M, Brocke S, Nitsch R, Zipp F (2003) Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med 197:725–733CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefPubMedPubMedCentralGoogle Scholar
  4. Archambault AS, Sim J, Gimenez MA, Russell JH (2005) Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Eur J Immunol 35:1076–1085CrossRefPubMedGoogle Scholar
  5. Arora M, Chen L, Paglia M, Gallagher I, Allen JE, Vyas YM, Ray A, Ray P (2006) Simvastatin promotes Th2-type responses through the induction of the chitinase family member Ym1 in dendritic cells. Proc Natl Acad Sci U S A 103:7777–7782CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bailey SL, Schreiner B, McMahon EJ, Miller SD (2007) CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol 8:172–180CrossRefPubMedGoogle Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57:289–300Google Scholar
  8. Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86CrossRefPubMedGoogle Scholar
  9. Ghoreschi K, Bruck J, Kellerer C, Deng C, Peng H, Rothfuss O, Hussain RZ, Gocke AR, Respa A, Glocova I, Valtcheva N, Alexander E, Feil S, Feil R, Schulze-Osthoff K, Rupec RA, Lovett-Racke AE, Dringen R, Racke MK, Rocken M (2011) Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med 208:2291–2303CrossRefPubMedPubMedCentralGoogle Scholar
  10. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407CrossRefPubMedPubMedCentralGoogle Scholar
  11. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334CrossRefPubMedGoogle Scholar
  12. Hemmi H, Idoyaga J, Suda K, Suda N, Kennedy K, Noda M, Aderem A, Steinman RM (2009) A new triggering receptor expressed on myeloid cells (Trem) family member, Trem-like 4, binds to dead cells and is a DNAX activation protein 12-linked marker for subsets of mouse macrophages and dendritic cells. J Immunol 182:1278–1286CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke;J Cerebral Circulation 43:3063–3070CrossRefGoogle Scholar
  14. Huber W et al. (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jiang Z, Jiang JX, Zhang GX (2014) Macrophages: a double-edged sword in experimental autoimmune encephalomyelitis. Immunol Lett 160:17–22CrossRefPubMedGoogle Scholar
  16. Jolivel V, Luessi F, Masri J, Kraus SH, Hubo M, Poisa-Beiro L, Klebow S, Paterka M, Yogev N, Tumani H, Furlan R, Siffrin V, Jonuleit H, Zipp F, Waisman A (2013) Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain J Neurol 136:1048–1066CrossRefGoogle Scholar
  17. Jung S, Siglienti I, Grauer O, Magnus T, Scarlato G, Toyka K (2004) Induction of IL-10 in rat peritoneal macrophages and dendritic cells by glatiramer acetate. J Neuroimmunol 148:63–73CrossRefPubMedGoogle Scholar
  18. Karman J, Chu HH, Co DO, Seroogy CM, Sandor M, Fabry Z (2006) Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J Immunol 177:7750–7760CrossRefPubMedGoogle Scholar
  19. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci : The official Journal of the Society for Neuroscience 29:13435–13444CrossRefGoogle Scholar
  20. Krishnamoorthy G, Wekerle H (2009) EAE: an immunologist’s magic eye. Eur J Immunol 39:2031–2035CrossRefPubMedGoogle Scholar
  21. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A (2013) CD301b(+) dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39:733–743CrossRefPubMedGoogle Scholar
  22. Legge KL, Gregg RK, Maldonado-Lopez R, Li L, Caprio JC, Moser M, Zaghouani H (2002) On the role of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity. J Exp Med 196:217–227CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li H, Zhang GX, Chen Y, Xu H, Fitzgerald DC, Zhao Z, Rostami A (2008) CD11c + CD11b + dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis. J Immunol 181:2483–2493CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu C, Li Y, Yu J, Feng L, Hou S, Liu Y, Guo M, Xie Y, Meng J, Zhang H, Xiao B, Ma C (2013) Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 8:e54841CrossRefPubMedPubMedCentralGoogle Scholar
  25. Luessi F, Kuhlmann T, Zipp F (2014) Remyelinating strategies in multiple sclerosis. Expert Rev Neurother 14:1315–1334CrossRefPubMedGoogle Scholar
  26. Luessi F, Kraus S, Trinschek B, Lerch S, Ploen R, Paterka M, Roberg T, Poisa-Beiro L, Klotz L, Wiendl H, Bopp T, Jonuleit H, Jolivel V, Zipp F, Witsch E (2015) FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis. Multiple sclerosis.Google Scholar
  27. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297CrossRefPubMedPubMedCentralGoogle Scholar
  28. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339CrossRefPubMedGoogle Scholar
  29. McRae BL, Kennedy MK, Tan LJ, Dal Canto MC, Picha KS, Miller SD (1992) Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J Neuroimmunol 38:229–240CrossRefPubMedGoogle Scholar
  30. Mendel I, Derosbo NK, Bennun A (1995) A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2(B) mice - fine specificity and T-cell receptor V-Beta expression of encephalitogenic T-cells. Eur J Immunol 25:1951–1959CrossRefPubMedGoogle Scholar
  31. Menges M, Rossner S, Voigtlander C, Schindler H, Kukutsch NA, Bogdan C, Erb K, Schuler G, Lutz MB (2002) Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med 195:15–21CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, Brochet B, Canron MH, Franconi JM, Boiziau C, Petry KG (2011) Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17:2–15CrossRefPubMedGoogle Scholar
  33. Munder M, Eichmann K, Modolell M (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160:5347–5354PubMedGoogle Scholar
  34. Paterka M, Siffrin V, Voss JO, Werr J, Hoppmann N, Gollan R, Belikan P, Bruttger J, Birkenstock J, Jung S, Esplugues E, Yogev N, Flavell RA, Bopp T, Zipp F (2016) Gatekeeper role of brain antigen-presenting CD11c + cells in neuroinflammation. EMBO J 35:89–101CrossRefPubMedGoogle Scholar
  35. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9:171–181CrossRefPubMedGoogle Scholar
  36. Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:10714–10721CrossRefGoogle Scholar
  37. Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J, Lang R, Martin R, Gold R, Becher B, Bruck W, Kalinke U (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28:675–686CrossRefPubMedGoogle Scholar
  38. Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh Gh G (2002) Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol 71:597–602PubMedGoogle Scholar
  39. Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V, Huxham L, Minchinton AI, Mui A, Krystal G (2005) SHIP represses the generation of alternatively activated macrophages. Immunity 23:361–374CrossRefPubMedGoogle Scholar
  40. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140CrossRefPubMedGoogle Scholar
  41. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183:25–33CrossRefPubMedGoogle Scholar
  42. Schmieder A, Schledzewski K, Michel J, Tuckermann JP, Tome L, Sticht C, Gkaniatsou C, Nicolay JP, Demory A, Faulhaber J, Kzhyshkowska J, Geraud C, Goerdt S (2011) Synergistic activation by p38MAPK and glucocorticoid signaling mediates induction of M2-like tumor-associated macrophages expressing the novel CD20 homolog MS4A8A. International journal of cancer Journal international du cancer 129:122–132CrossRefPubMedGoogle Scholar
  43. Schmieder A, Schledzewski K, Michel J, Schonhaar K, Morias Y, Bosschaerts T, Van den Bossche J, Dorny P, Sauer A, Sticht C, Geraud C, Waibler Z, Beschin A, Goerdt S (2012) The CD20 homolog Ms4a8a integrates pro- and anti-inflammatory signals in novel M2-like macrophages and is expressed in parasite infection. Eur J Immunol 42:2971–2982CrossRefPubMedGoogle Scholar
  44. Schwartz M (2010) "Tissue-repairing" blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain Behav Immun 24:1054–1057CrossRefPubMedGoogle Scholar
  45. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shin T, Kim S, Moon C, Wie M, Kim H (2000) Aminoguanidine-induced amelioration of autoimmune encephalomyelitis is mediated by reduced expression of inducible nitric oxide synthase in the spinal cord. Immunol Investig 29:233–241CrossRefGoogle Scholar
  47. Team RC (2015) A language and environment for statistical computing. In: "R Core Team" Vienna: R Foundation for Statistical Computing.Google Scholar
  48. Thakker P, Leach MW, Kuang W, Benoit SE, Leonard JP, Marusic S (2007) IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol 178:2589–2598CrossRefPubMedGoogle Scholar
  49. Tierney JB, Kharkrang M, La Flamme AC (2009) Type II-activated macrophages suppress the development of experimental autoimmune encephalomyelitis. Immunol Cell Biol 87:235–240CrossRefPubMedGoogle Scholar
  50. Tompkins SM, Padilla J, Dal Canto MC, Ting JP, Van Kaer L, Miller SD (2002) De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J Immunol 168:4173–4183CrossRefPubMedGoogle Scholar
  51. Vogelaar CF, Gervasi NM, Gumy LF, Story DJ, Raha-Chowdhury R, Leung KM, Holt CE, Fawcett JW (2009) Axonal mRNAs: characterisation and role in the growth and regeneration of dorsal root ganglion axons and growth cones. Mol Cell Neurosci 42:102–115CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  53. Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stuve O, Sobel RA, Steinman L, Zamvil SS (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13:935–943CrossRefPubMedGoogle Scholar
  54. Weitnauer M, Schmidt L, Ng Kuet Leong N, Muenchau S, Lasitschka F, Eckstein V, Hubner S, Tuckermann J, Dalpke AH (2014) Bronchial epithelial cells induce alternatively activated dendritic cells dependent on glucocorticoid receptor signaling. J Immunol 193:1475–1484CrossRefPubMedGoogle Scholar
  55. Wuest SC, Edwan JH, Martin JF, Han S, Perry JS, Cartagena CM, Matsuura E, Maric D, Waldmann TA, Bielekova B (2011) A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med 17:604–609CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhang JG et al. (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36:646–657CrossRefPubMedGoogle Scholar
  57. Zozulya AL, Clarkson BD, Ortler S, Fabry Z, Wiendl H (2010) The role of dendritic cells in CNS autoimmunity. J Mol Med 88:535–544CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Beatrice Wasser
    • 1
  • Gautam Pramanik
    • 1
    • 2
  • Moritz Hess
    • 3
  • Matthias Klein
    • 4
  • Felix Luessi
    • 1
  • Klaus Dornmair
    • 5
  • Tobias Bopp
    • 4
  • Frauke Zipp
    • 1
    • 2
  • Esther Witsch
    • 1
    • 2
  1. 1.Department of Neurology, Focus Program Translational Neuroscience (FTN), Research Center for Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2)University Medical Center of the Johannes Gutenberg-University of MainzMainzGermany
  2. 2.Focus Program Translational Neuroscience (FTN) & Institute for Microscopic Anatomy and NeurobiologyUniversity Medical Center of the Johannes Gutenberg-University of MainzMainzGermany
  3. 3.Institute of Medical Biostatistics, Epidemiology and InformaticsJohannes Gutenberg University MainzMainzGermany
  4. 4.Institute for Immunology, Research Center Immunology (FZI)University Medical Center of the Johannes Gutenberg-University of MainzMainzGermany
  5. 5.Institute of Clinical NeuroimmunologyUniversity Hospital Grosshadern, LMU MunichMunichGermany

Personalised recommendations