Advertisement

Journal of Neuroimmune Pharmacology

, Volume 12, Issue 1, pp 99–106 | Cite as

Cell Mediated Photothermal Therapy of Brain Tumors

  • Henry Hirschberg
  • Steen J. Madsen
INVITED REVIEW

Abstract

Gold based nanoparticles with strong near infra-red (NIR) absorption are ideally suited for photothermal therapy (PTT) of brain tumors. The goal of PTT is to induce rapid heating in tumor tissues while minimizing thermal diffusion to normal brain. PTT efficacy is sensitively dependent on both nanoparticle concentration and distribution in tumor tissues. Nanoparticle delivery via passive approaches such as the enhanced permeability and retention (EPR) effect is unlikely to achieve sufficient nanoparticle concentrations throughout tumor volumes required for effective PTT. A simple approach for improving tumor biodsitribution of nanoparticles is the use of cellular delivery vehicles. Specifically, this review focuses on the use of monocytes/macrophages (Mo/Ma) as gold nanoparticle delivery vectors for PTT of brain tumors. Although the efficacy of this delivery approach has been demonstrated in both in vitro and animal PTT studies, its clinical potential for the treatment of brain tumors remains uncertain.

Keywords

Photothermal therapy Gold nanoparticles Macrophages Brain tumor 

Notes

Acknowledgments

The authors are grateful for support from the Norwegian Radium Hospital Research Foundation. Portions of this work were made possible through access to the LAMMP Program NIBIB P41EB015890 at UCI. Steen Madsen was supported, in part, by the Tony and Renee Marlon Charitable Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9(21):3593–3601CrossRefPubMedGoogle Scholar
  2. Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025CrossRefPubMedGoogle Scholar
  3. Aslan K, Lacowicz J, Geddes CR (2005) Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 9(5):1367–5931CrossRefGoogle Scholar
  4. Badie B, Schartner JM (2000) Flow cytometric characterization of tumor associated macrophages in experimental gliomas. Neurosurgery 46:957–961PubMedGoogle Scholar
  5. Baek SK, Makkouk AR, Krasieva T, Sun CH, Madsen SJ, Hirschberg H (2011) Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 104(2):439–448CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243CrossRefPubMedPubMedCentralGoogle Scholar
  7. Basel MT, Shrestha TB, Bossmann SH, Troyer DL (2014) Cells as delivery vehicles for cancer therapeutics. Ther Deliv 5(5):555–567CrossRefPubMedGoogle Scholar
  8. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carolina A, da Fonseca C, Badie B (2013) Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol 2013:265608Google Scholar
  10. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chhetri S, Hirschberg H, Madsen SJ (2014) Photothermal therapy of human glioma spheroids with gold-silica nanoshells and gold nanorods: a comparative study. Proceedings SPIE 8928:U1–U8Google Scholar
  12. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, Badve S, Sturgis J, Robinson JP, Bashir R, Halas NJ, Clare SE (2007) A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765CrossRefPubMedGoogle Scholar
  13. Christie C, Madsen SJ, Peng Q, Hirschberg H (2015) Macrophages as nanoparticle delivery vectors for photothermal therapy of brain tumors. Ther Deliv 6(3):371–384CrossRefPubMedGoogle Scholar
  14. Cole JR, Mirin NA, Knight MW, Goodrich GP, Halas NJ (2009) Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J Phys Chem C 113(28):12090–12094CrossRefGoogle Scholar
  15. Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107(3):459–466CrossRefPubMedGoogle Scholar
  16. Day ES, Thompson PA, Zhang L, Lewinski NA, Ahmed N, Drezek RA, Blaney SM, West JL (2011) Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J Neurooncol 104:55–63CrossRefPubMedGoogle Scholar
  17. Day ES, Zhang L, Thompson PA, Zawaski JA, Kaffes CC, Gaber MW, Blaney SM, West JL (2012) Vascular-targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine (London) 7(8):1133–1148CrossRefGoogle Scholar
  18. Fischbach MA, Bluestone JA, Lim WA (2013) Sci tCell-based therapeutics: the next pillar of medicine. Sci Transl Med 5(179):1–6CrossRefGoogle Scholar
  19. Hirsch LR, Gobin AM, Lowery AR, Tam F, Halas NJ (2006) Metal nanoshells. Ann Biomed Eng 334(1):15–22CrossRefGoogle Scholar
  20. Hirschberg H, Uzal FA, Chighvinadze D, Zhang MJ, Peng Q, Madsen SJ (2008) Disruption of the blood-brain barrier following ALA-mediated photodynamic therapy. Lasers Surg Med 40:535–542CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hirschberg H, Baek SK, Kwon YJ, Sun CH, Madsen SJ (2010) Bypassing the blood brain barrier: delivery of therapeutic agents by macrophages. Proceedings SPIE 7548:3Z1–3Z5Google Scholar
  22. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRefPubMedGoogle Scholar
  23. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRefPubMedGoogle Scholar
  24. Huynh E, Zheng G (2015) Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect. Nanomed (Lond) 10(13):1993–1995CrossRefGoogle Scholar
  25. Jain PK, El Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7:2854–2858CrossRefPubMedGoogle Scholar
  26. Kah JC, Wong KY, Neoh KG, Song JH, Fu JW, Mhaisalkar S, Olivo M, Sheppard CJ (2009) Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J Drug Target 17:181–193CrossRefPubMedGoogle Scholar
  27. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183CrossRefPubMedGoogle Scholar
  28. Lin AW, Lewinski NA, West JL, Halas NJ, Drezek RA (2005) Optically tunable nanonoparticle contrast agents for early cancer deterction: Midel-based analysis of gold nanoshells. J Biomed Opt 10(6):064035CrossRefPubMedGoogle Scholar
  29. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  30. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366CrossRefPubMedGoogle Scholar
  31. Liu C, Mi CC, Li BQ (2008) Energy absorption of gold nanoshells in hyperthermia therapy. IEEE Trans Nanobioscience 7(3):206–214CrossRefPubMedGoogle Scholar
  32. Loo C, Lin A, Hirsch L, Lee MH, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–44CrossRefPubMedGoogle Scholar
  33. Madsen SJ, Sun CH, Tromberg BJ, Cristine V, DeMagalhaes N, Hirschberg H (2006) Multicell tumor spheroids in photodynamic therapy. Lasers Surg Med 38:555–564CrossRefPubMedGoogle Scholar
  34. Madsen SJ, Gach HM, Hong SJ, Uzal FA, Peng Q, Hirschberg H (2013) Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption. Lasers Surg Med 45(8):524–532PubMedPubMedCentralGoogle Scholar
  35. Madsen SJ, Christie C, Hong SJ, Trinidad A, Chhetri S, Peng Q, Uzal FA, Hirschberg H (2015) Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment. Lasers Med Sci 30(4):1357–1365CrossRefPubMedPubMedCentralGoogle Scholar
  36. Madsen SJ, Shih EC, Peng Q, Christie C, Krasieva T, Hirschberg H (2016) Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages: in vitro squamous cell carcinoma study. J Biomed Opt 21(1):018004CrossRefPubMedCentralGoogle Scholar
  37. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41(1):189–207CrossRefPubMedGoogle Scholar
  38. Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:1–152CrossRefGoogle Scholar
  39. Mathews MS, Chighvinadze D, Gach HM, Uzal FA, Madsen SJ, Hirschberg H (2011) Cerebral edema following photodynamic therapy using endogenous and exogenous photosensitizers in normal brain. Lasers Surg Med 43:892–900CrossRefPubMedPubMedCentralGoogle Scholar
  40. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247CrossRefGoogle Scholar
  41. Petrecca K, Guiot MC, Panet-Raymond V (2013) Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with Glioblastoma. J Neurooncol 111:19–23CrossRefPubMedGoogle Scholar
  42. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8):2412–2417CrossRefPubMedPubMedCentralGoogle Scholar
  43. Prodan E, Radioff C, Halas NJ, Nordlander PA (2003) A hybridization model for the plasmon response of complex nanostructures. Science 301:419–422CrossRefGoogle Scholar
  44. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, Dai H (2011) Ultrasmall reduced grapheme oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831CrossRefPubMedGoogle Scholar
  45. Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92:288–293CrossRefPubMedGoogle Scholar
  46. Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, Pham K, McNichols RJ, Coleman CL, Payne JD (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69(4):1659–1667CrossRefPubMedGoogle Scholar
  47. Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov NG, Khlebtsov BN, Akchurin GG (2009) Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt 14(2):021016CrossRefPubMedGoogle Scholar
  48. Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99(19):1441–1454CrossRefPubMedGoogle Scholar
  49. Trinidad A, Hong SJ, Peng Q, Madsen SJ, Hirschberg H (2014) Combined concurrent photodynamic and gold nanoshell loaded macrophage-mediated photothermal therapies: an in vitro study on squamous cell head and neck carcinoma. Lasers Surg Med 46(4):310–318CrossRefPubMedPubMedCentralGoogle Scholar
  50. Valable S, Barbier EL, Bernaudin M, Roussel S, Segebarth C, Petit E, Remy C (2008) In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. Neuroimage 40(2):973–983CrossRefPubMedGoogle Scholar
  51. Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, Huang R (2013) Multifunctional mesoporous silica-coated grapheme nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135:4799–4804CrossRefPubMedGoogle Scholar
  52. Wu J, Yang S, Luo H, Zeng L, Ye L, Lu Y (2006) Quantitative evaluation of monocyte transmigration into the brain following chemical opening of the blood-brain barrier in mice. Brain Res 1098:79–85CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yang TD, Choi W, Yoon TH, Lee KJ, Lee JS, Jang HJ, Lee MG, Yim HS, Choi KM, Kim B, Lee JJ, Kim H, Lee DY, Jung KY, Baek SK (2015) In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells. Biomed Opt Express 7(1):185–193CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yi L, Xiao H, Xu M, Ye X, Hu J, Li F, Li M, Luo C, Yu S, Bian X, Feng H (2011) Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J Neuroim 232(1–2):75–82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Beckman Laser InstituteUniversity of CaliforniaIrvineUSA
  2. 2.Department of Health Physics and Diagnostic SciencesUniversity of NevadaLas VegasUSA

Personalised recommendations