Advertisement

Journal of Neuroimmune Pharmacology

, Volume 11, Issue 2, pp 369–377 | Cite as

B-Cell Depletion Reduces the Maturation of Cerebral Cavernous Malformations in Murine Models

  • Changbin Shi
  • Robert Shenkar
  • Hussein A. Zeineddine
  • Romuald Girard
  • Maged D. Fam
  • Cecilia Austin
  • Thomas Moore
  • Rhonda Lightle
  • Lingjiao Zhang
  • Meijing Wu
  • Ying Cao
  • Murat Gunel
  • Angeliki Louvi
  • Autumn Rorrer
  • Carol Gallione
  • Douglas A. Marchuk
  • Issam A. AwadEmail author
ORIGINAL ARTICLE

Abstract

Cerebral cavernous malformations (CCMs) are relatively common vascular malformations, characterized by increased Rho kinase (ROCK) activity, vascular hyper-permeability and the presence of blood degradation products including non-heme iron. Previous studies revealed robust inflammatory cell infiltration, selective synthesis of IgG, in situ antigen driven B-cell clonal expansion, and deposition of immune complexes and complement proteins within CCM lesions. We aimed to evaluate the impact of suppressing the immune response on the formation and maturation of CCM lesions, as well as lesional iron deposition and ROCK activity. Two murine models of heterozygous Ccm3 (Pdcd10), which spontaneously develop CCM lesions with severe and milder phenotypes, were either untreated or received anti-mouse BR3 to deplete B cells. Brains from anti-mouse BR3-treated mice exhibited significantly fewer mature CCM lesions and smaller lesions compared to untreated mice. B cell depletion halted the progression of lesions into mature stage 2 lesions but did not prevent their genesis. Non-heme iron deposition and ROCK activity was decreased in lesions of B cell depleted mice. This represents the first report of the therapeutic benefit of B-cell depletion in the development and progression of CCMs, and provides a proof of principle that B cells play a critical role in CCM lesion genesis and maturation. These findings add biologics to the list of potential therapeutic agents for CCM disease. Future studies would characterize the putative antigenic trigger and further define the mechanism of immune response in the lesions.

Keywords

Cerebral cavernous malformation B cells B-cell depletion Inflammation Immune response Stroke 

Notes

Acknowledgments

This work was supported by the Scientist Development Grant of the American Heart Association AHA-11DG48900009 (C.S.), a pilot grant from the Angioma Alliance, and the Bill and Judy Davis Fund in Neurovascular Surgery Research at the University of Chicago. We thank Genentech Inc. for providing the anti-BR3 antibody through Material Transfer Agreement to IAA, and Flavius Martin for advice on the dosing regimen.

Compliance with Ethical Standards

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11481_2016_9670_MOESM1_ESM.pdf (939 kb)
ESM 1 (PDF 938 kb)

References

  1. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA (2009) Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 18:919–930. doi: 10.1093/hmg/ddn430 PubMedPubMedCentralGoogle Scholar
  2. Al-Holou WN, O’Lynnger TM, Pandey AS, Gemmete JJ, Thompson BG, Muraszko KM, Garton HJ, Maher CO (2012) Natural history and imaging prevalence of cavernous malformations in children and young adults. J Neurosurg Pediatr 9:198–205. doi: 10.3171/2011.11.PEDS11390 CrossRefPubMedGoogle Scholar
  3. Al-Shahi Salman R, Berg MJ, Morrison L, Awad IA, Angioma Alliance Scientific Advisory B (2008) Hemorrhage from cavernous malformations of the brain: definition and reporting standards. Angioma Alliance Sci Advis Board Stroke 39:3222–3230. doi: 10.1161/STROKEAHA.108.515544 Google Scholar
  4. Al-Shahi Salman R, Hall JM, Horne MA, Moultrie F, Josephson CB, Bhattacharya JJ, Counsell CE, Murray GD, Papanastassiou V, Ritchie V, Roberts RC, Sellar RJ, Warlow CP, Scottish Audit of Intracranial Vascular Malformations c (2012) Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study. Lancet Neurol 11:217–224. doi: 10.1016/S1474-4422(12)70004-2 CrossRefPubMedGoogle Scholar
  5. Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S, Johnson GL (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285:11760–11764. doi: 10.1074/jbc.C109.097220 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Choquet H, Pawlikowska L, Nelson J, McCulloch CE, Akers A, Baca B, Khan Y, Hart B, Morrison L, Kim H, Brain Vascular Malformation Consortium S (2014) Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity. Cerebrovasc Dis 38:433–440. doi: 10.1159/000369200 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Coles AJ, Fox E, Vladic A, Gazda SK, Brinar V, Selmaj KW, Skoromets A, Stolyarov I, Bass A, Sullivan H, Margolin DH, Lake SL, Moran S, Palmer J, Smith MS, Compston DA (2012) Alemtuzumab more effective than interferon beta-1a at 5-year follow-up of CAMMS223 clinical trial. Neurology 78:1069–1078. doi: 10.1212/WNL.0b013e31824e8ee7 CrossRefPubMedGoogle Scholar
  8. Jain MK, Ridker PM (2005) Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov 4:977–987. doi: 10.1038/nrd1901 CrossRefPubMedGoogle Scholar
  9. Jakimovski D, Schneider H, Frei K, Kennes LN, Bertalanffy H (2014) Bleeding propensity of cavernous malformations: impact of tight junction alterations on the occurrence of overt hematoma. J Neurosurg 121:613–620. doi: 10.3171/2014.6.JNS132775 CrossRefPubMedGoogle Scholar
  10. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95:7556–7561CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kondziolka D, Lunsford LD, Kestle JR (1995) The natural history of cerebral cavernous malformations. J Neurosurg 83:820–824. doi: 10.3171/jns.1995.83.5.0820 CrossRefPubMedGoogle Scholar
  12. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, Finkelstein R, Fisher M, Gendelman HE, Golub RM, Goudreau JL, Gross RA, Gubitz AK, Hesterlee SE, Howells DW, Huguenard J, Kelner K, Koroshetz W, Krainc D, Lazic SE, Levine MS, Macleod MR, McCall JM, Moxley RT 3rd, Narasimhan K, Noble LJ, Perrin S, Porter JD, Steward O, Unger E, Utz U, Silberberg SD (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187–191. doi: 10.1038/nature11556 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lin WY, Gong Q, Seshasayee D, Lin Z, Ou Q, Ye S, Suto E, Shu J, Lee WP, Lee CW, Fuh G, Leabman M, Iyer S, Howell K, Gelzleichter T, Beyer J, Danilenko D, Yeh S, DeForge LE, Ebens A, Thompson JS, Ambrose C, Balazs M, Starovasnik MA, Martin F (2007) Anti-BR3 antibodies: a new class of B-cell immunotherapy combining cellular depletion and survival blockade. Blood 110:3959–3967. doi: 10.1182/blood-2007-04-088088 CrossRefPubMedGoogle Scholar
  14. Loser K, Scherer A, Krummen MB, Varga G, Higuchi T, Schwarz T, Sharpe AH, Grabbe S, Bluestone JA, Beissert S (2005) An important role of CD80/CD86-CTLA-4 signaling during photocarcinogenesis in mice. J Immunol 174:5298–5305CrossRefPubMedGoogle Scholar
  15. Louvi A, Chen L, Two AM, Zhang H, Min W, Gunel M (2011) Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci U S A 108:3737–3742. doi: 10.1073/pnas.1012617108 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lu D, Nakagawa R, Lazzaro S, Staudacher P, Abreu-Goodger C, Henley T, Boiani S, Leyland R, Galloway A, Andrews S, Butcher G, Nutt SL, Turner M, Vigorito E (2014) The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. J Exp Med 211:2183–2198. doi: 10.1084/jem.20140338 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mackay F, Schneider P, Rennert P, Browning J (2003) BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 21:231–264. doi: 10.1146/annurev.immunol.21.120601.141152 CrossRefPubMedGoogle Scholar
  18. Maraire JN, Awad IA (1995) Intracranial cavernous malformations: lesion behavior and management strategies. Neurosurgery 37:591–605CrossRefPubMedGoogle Scholar
  19. Maxwell LJ, Singh JA (2010) Abatacept for rheumatoid arthritis: a Cochrane systematic review. J Rheumatol 37:234–245. doi: 10.3899/jrheum.091066 CrossRefPubMedGoogle Scholar
  20. McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH, Kucherlapati R, Brainer J, Ginsberg MH, Awad IA, Marchuk DA (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20:211–222. doi: 10.1093/hmg/ddq433 CrossRefPubMedPubMedCentralGoogle Scholar
  21. McDonald DA, Shi C, Shenkar R, Stockton RA, Liu F, Ginsberg MH, Marchuk DA, Awad IA (2012) Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43:571–574. doi: 10.1161/STROKEAHA.111.625467 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mikati AG, Khanna O, Zhang L, Girard R, Shenkar R, Guo X, Shah A, Larsson HB, Tan H, Li L, Wishnoff MS, Shi C, Christoforidis GA, Awad IA (2015) Vascular permeability in cerebral cavernous malformations. J Cereb Blood Flow Metab 35:1632–1639. doi: 10.1038/jcbfm.2015.98 PubMedGoogle Scholar
  23. Moriarity JL, Clatterbuck RE, Rigamonti D (1999) The natural history of cavernous malformations. Neurosurg Clin N Am 10:411–417PubMedGoogle Scholar
  24. Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4:387–398. doi: 10.1038/nrd1719 CrossRefPubMedGoogle Scholar
  25. O’Neill ID, Scully C (2013) Biologics in oral medicine: ulcerative disorders. Oral Dis 19:37–45. doi: 10.1111/j.1601-0825.2012.01931.x CrossRefPubMedGoogle Scholar
  26. Plummer NW, Gallione CJ, Srinivasan S, Zawistowski JS, Louis DN, Marchuk DA (2004) Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. Am J Pathol 165:1509–1518. doi: 10.1016/S0002-9440(10)63409-8 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277:1070–1075. doi: 10.1111/j.1742-4658.2009.07535.x CrossRefPubMedGoogle Scholar
  28. Richardson BT, Dibble CF, Borikova AL, Johnson GL (2013) Cerebral cavernous malformation is a vascular disease associated with activated RhoA signaling. Biol Chem 394:35–42. doi: 10.1515/hsz-2012-0243 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rigamonti D, Drayer BP, Johnson PC, Hadley MN, Zabramski J, Spetzler RF (1987) The MRI appearance of cavernous malformations (angiomas). J Neurosurg 67:518–524. doi: 10.3171/jns.1987.67.4.0518 CrossRefPubMedGoogle Scholar
  30. Robinson JR Jr, Awad IA, Masaryk TJ, Estes ML (1993) Pathological heterogeneity of angiographically occult vascular malformations of the brain. Neurosurgery 33:547–554, discussion 554-545CrossRefPubMedGoogle Scholar
  31. Ruderman EM, Pope RM (2006) Drug Insight: abatacept for the treatment of rheumatoid arthritis. Nat Clin Pract Rheumatol 2:654–660. doi: 10.1038/ncprheum0345 CrossRefPubMedGoogle Scholar
  32. Sehn LH, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R, MacPherson N, O’Reilly S, Spinelli JJ, Sutherland J, Wilson KS, Gascoyne RD, Connors JM (2005) Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol 23:5027–5033. doi: 10.1200/JCO.2005.09.137 CrossRefPubMedGoogle Scholar
  33. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111. doi: 10.1038/35074122 CrossRefPubMedGoogle Scholar
  34. Shenkar R, Shi C, Rebeiz T, Stockton RA, McDonald DA, Mikati AG, Zhang L, Austin C, Akers AL, Gallione CJ, Rorrer A, Gunel M, Min W, Marcondes de Souza J, Lee C, Marchuk DA, Awad IA (2015) Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17:188–196. doi: 10.1038/gim.2014.97 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shi C, Shenkar R, Batjer HH, Check IJ, Awad IA (2007) Oligoclonal immune response in cerebral cavernous malformations. Laboratory investigation. J Neurosurg 107:1023–1026. doi: 10.3171/JNS-07/11/1023 CrossRefPubMedGoogle Scholar
  36. Shi C, Shenkar R, Du H, Duckworth E, Raja H, Batjer HH, Awad IA (2009) Immune response in human cerebral cavernous malformations. Stroke 40:1659–1665. doi: 10.1161/STROKEAHA.108.538769 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shi C, Shenkar R, Kinloch A, Henderson SG, Shaaya M, Chong AS, Clark MR, Awad IA (2014) Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous malformations. J Neuroimmunol 272:67–75. doi: 10.1016/j.jneuroim.2014.04.016 CrossRefPubMedGoogle Scholar
  38. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760CrossRefPubMedPubMedCentralGoogle Scholar
  39. Steiger HJ, Markwalder TM, Reulen HJ (1987) Clinicopathological relations of cerebral cavernous angiomas: observations in eleven cases. Neurosurgery 21:879–884CrossRefPubMedGoogle Scholar
  40. Stockton RA, Shenkar R, Awad IA, Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207:881–896. doi: 10.1084/jem.20091258 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Swann JB, Uldrich AP, van Dommelen S, Sharkey J, Murray WK, Godfrey DI, Smyth MJ (2009) Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113:6382–6385. doi: 10.1182/blood-2009-01-198564 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AG, Shi C, Dykstra C, Wang Y, Prasad PV, Edelman RR, Awad IA (2014) Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Invest Radiol 49:498–504. doi: 10.1097/RLI.0000000000000043 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tulamo R, Frosen J, Junnikkala S, Paetau A, Pitkaniemi J, Kangasniemi M, Niemela M, Jaaskelainen J, Jokitalo E, Karatas A, Hernesniemi J, Meri S (2006) Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery 59:1069–1076. doi: 10.1227/01.NEU.0000245598.84698.26, discussion 1076-1067PubMedGoogle Scholar
  44. Vugmeyster Y, Seshasayee D, Chang W, Storn A, Howell K, Sa S, Nelson T, Martin F, Grewal I, Gilkerson E, Wu B, Thompson J, Ehrenfels BN, Ren S, Song A, Gelzleichter TR, Danilenko DM (2006) A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. Am J Pathol 168:476–489. doi: 10.2353/ajpath.2006.050600 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Jones CA, Zhu W, Marchuk DA, Davis GE, Li DY (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15:177–184. doi: 10.1038/nm.1911 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wong JH, Awad IA, Kim JH (2000) Ultrastructural pathological features of cerebrovascular malformations: a preliminary report. Neurosurgery 46:1454–1459CrossRefPubMedGoogle Scholar
  47. Xing GQ, Chen M, Liu G, Heeringa P, Zhang JJ, Zheng X, E J (2009) Complement activation is involved in renal damage in human antineutrophil cytoplasmic autoantibody associated pauci-immune vasculitis. J Clin Immunol 29:282–291. doi: 10.1007/s10875-008-9268-2 CrossRefPubMedGoogle Scholar
  48. Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80:422–432. doi: 10.3171/jns.1994.80.3.0422 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Changbin Shi
    • 1
    • 2
  • Robert Shenkar
    • 1
  • Hussein A. Zeineddine
    • 1
  • Romuald Girard
    • 1
  • Maged D. Fam
    • 1
  • Cecilia Austin
    • 1
  • Thomas Moore
    • 1
  • Rhonda Lightle
    • 1
  • Lingjiao Zhang
    • 1
  • Meijing Wu
    • 1
  • Ying Cao
    • 1
  • Murat Gunel
    • 3
  • Angeliki Louvi
    • 3
  • Autumn Rorrer
    • 4
  • Carol Gallione
    • 4
  • Douglas A. Marchuk
    • 4
  • Issam A. Awad
    • 1
    Email author
  1. 1.Neurovascular Surgery Program, Section of Neurosurgery, Biological Sciences DivisionThe University of Chicago MedicineChicagoUSA
  2. 2.Department of NeurosurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
  3. 3.Department of NeurosurgeryYale University School of MedicineNew HavenUSA
  4. 4.Molecular Genetics and Microbiology DepartmentDuke University Medical CenterDurhamUSA

Personalised recommendations