Advertisement

Journal of Neuroimmune Pharmacology

, Volume 10, Issue 4, pp 635–644 | Cite as

TIPE2 Play a Negative Role in TLR4-Mediated Autoimmune T Helper 17 Cell Responses in Patients with Myasthenia Gravis

  • Yong ZhangEmail author
  • Zhen Shao
  • Xiuying Zhang
  • Xiao Jia
  • Yan Xia
  • Yanyan Zhang
  • Ning Xin
  • Mingfeng Guo
  • Jing Chen
  • ShuangShuang Zheng
  • YuZhong Wang
  • Linlin Fu
  • Ruiguo Dong
  • Chenghua Xiao
  • Deqin Geng
  • Yonghai LiuEmail author
ORIGINAL ARTICLE

Abstract

Th17-related cytokines have been suggested to play a crucial role in myasthenia gravis (MG) pathogenesis.The tumor necrosis factor (TNF)-α-induced protein 8-like-2 (TNFAIP8L2 or TIPE2), is a newly identified member of the tumor necrosis TNFAIP8 family which is an essential negative regulator of both innate and adaptive immunity. In the present study, the expression of TIPE2 mRNA and protein in peripheral blood mononuclear cells (PBMC) from healthy and MG subjects were detected by Real-time PCR and Western blotting.The serum IL-6, IL-17 and IL-21 levels were tested by ELISA. Furthermore, PBMC from MG patients were purified and stimulated with LPS (TLR4 agonist) with or without transfection of TIPE2 expressing adenovirus, then the expression of TIPE2 and Th17-specific transcriptional factor RORγt and the IL-6, IL-17 and IL-21 levels of supernatant were analized. Our data demonstrated that the expression of TIPE2 mRNA and protein was reduced in MG compared with normal controls, with lower expression in generalized patients than in ocular ones. Furthermore, TIPE2 mRNA presents a significantly negative correlation with the serum levels of IL-6, IL-17 and IL-21 in either generalized patients or ocular patients. In cultured MG PBMC, TLR4 activation led to the down-regulation of TIPE2, while the expression of RORγt and production of IL-6, IL-17 and IL-21 were significantly increased. However, when TIPE2 was overexpressed, these TLR4 activation-induced effects were significantly abrogated. Overall, our results indicated for the first time that TIPE2 may participate in the development of MG through negatively regulation of TLR4-mediated autoimmune T helper 17 cell responses.

Keywords

TIPE2 Myasthenia gravis Th17-related cytokines TLR4 

Notes

Compliance with Ethical Standards

Funding

This study was funded by National Nature Science Foundation of China (81571579, 81072465), Natural Science Fund of the Educational Committee of Jiangsu Province (10KJD320003), Special foundation of president of the Xuzhou Medical College (2010KJZ01), Key medical talents fund of Jiangsu Province (H201130), Jiangsu Province ordinary university postgraduate research innovation fund (CXLX11_0734).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11481_2015_9638_MOESM1_ESM.doc (6.3 mb)
ESM 1 (DOC 6.29 mb)

References

  1. Aricha R, Mizrachi K, Fuchs S, Souroujon MC (2011) Blocking of IL-6 suppresses experimental autoimmune myasthenia gravis. J Autoimmun 36(2):135–141CrossRefPubMedGoogle Scholar
  2. Armant MA, Fenton MJ (2002) Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol 3(8):REVIEWS3011PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bai Y, Liu R, Huang D, La Cava A, Tang YY, Iwakura Y, Campagnolo DI, Vollmer TL, Ransohoff RM, Shi FD (2008) CCL2 recruitment of IL-6-producing CD11b+ monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. Eur J Immunol 38(7):1877–1888CrossRefPubMedGoogle Scholar
  4. Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, Novellino L, Cornelio F, Mantegazza R (2005) Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol 167(1):129–139PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238CrossRefPubMedGoogle Scholar
  6. Burkett PR, Meyer Zu Horste G, Kuchroo VK (2015) Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest 125(6):2211–2219CrossRefPubMedGoogle Scholar
  7. Cordiglieri C, Marolda R, Franzi S, Cappelletti C, Giardina C, Motta T, Baggi F, Bernasconi P, Mantegazza R, Cavalcante P (2014) Innate immunity in myasthenia gravis thymus: pathogenic effects of toll-like receptor 4 signaling on autoimmunity. J Autoimmun 52:74–89CrossRefPubMedGoogle Scholar
  8. da Silveira C-MS, Carvalho-Sousa CE, Tamura EK, Pinato L, Cecon E, Fernandes PA, de Avellar MC, Ferreira ZS, Markus RP (2010) TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway. J Pineal Res 49(2):183–192Google Scholar
  9. Desjardins M, Mazer BD (2013) B-cell memory and primary immune deficiencies: interleukin-21 related defects. Curr Opin Allergy Clin Immunol 13(6):639–645CrossRefPubMedGoogle Scholar
  10. Drachman DB (1994) Medical progress: myasthenia gravis. N Engl J Med 330:1797–1810CrossRefPubMedGoogle Scholar
  11. Freundt EC, Bidere N, Lenardo MJ (2008) A different TIPE of immune homeostasis. Cell 133(3):401–402PubMedCentralCrossRefPubMedGoogle Scholar
  12. Heldal AT, Owe JF, Gilhus NE, Romi F (2009) Seropositive myasthenia gravis: a nationwide epidemiologic study. Neurology 73(2):150–151CrossRefPubMedGoogle Scholar
  13. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133CrossRefPubMedGoogle Scholar
  14. Jin B, Sun T, Yu XH, Yang YX, Yeo AE (2012) The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol. 2012:836485PubMedCentralCrossRefPubMedGoogle Scholar
  15. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448(7152):484–487PubMedCentralCrossRefPubMedGoogle Scholar
  16. Kumar D, Whiteside TL, Kasid U (2000) Identification of a novel tumor necrosis factor-alpha-inducible gene, SCC-S2, containing the consensus sequence of a death effector domain of fas-associated death domain-like interleukin-1 beta-converting enzyme-inhibitory protein. J Biol Chem. 275:2973–2978CrossRefPubMedGoogle Scholar
  17. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1(5):398–401CrossRefPubMedGoogle Scholar
  18. Li D, Song L, Fan Y, Li X, Li Y, Chen J, Zhu F, Guo C, Shi Y, Zhang L (2009) Down-regulation of TIPE2 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Immunol 133(3):422–427CrossRefPubMedGoogle Scholar
  19. Lim H, Kim YU, Sun H, Lee JH, Reynolds JM, Hanabuchi S, Wu H, Teng BB, Chung Y (2014) Proatherogenic conditions promote autoimmune T helper 17 cell responses in vivo. Immunity 40(1):153–165PubMedCentralCrossRefPubMedGoogle Scholar
  20. Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD (1976) Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 26(11):1054–1059CrossRefPubMedGoogle Scholar
  21. Ma Y, Liu X, Wei Z, Wang X, Wang Z, Zhong W, Li Y, Zhu F, Guo C, Zhang L, Wang X (2013) The expression and significance of TIPE2 in peripheral blood mononuclear cells from asthmatic children. Scand J Immunol 78(6):523–528CrossRefPubMedGoogle Scholar
  22. Matusevicius D, Navikas V, Palasik W, Pirskanen R, Fredrikson S, Link H (1996) Tumor necrosis factor-alpha, lymphotoxin, interleukin (IL)-6, IL-10, IL-12 and perforin mRNA expression in mononuclear cells in response to acetylcholine receptor is augmented in myasthenia gravis. J Neuroimmunol 71(1–2):191–198CrossRefPubMedGoogle Scholar
  23. McAleer JP, Liu B, Li Z, Ngoi SM, Dai J, Oft M, Vella AT (2010) Potent intestinal Th17 prim-ing through peripheral lipopolysaccharide-based immunization. J Leukoc Biol 88:21–31PubMedCentralCrossRefPubMedGoogle Scholar
  24. Mellanby RJ, Cambrook H, Turner DG, O’Connor RA, Leech MD, Kurschus FC, MacDonald AS, Arnold B, Anderton SM (2012) TLR-4 ligation of dendritic cells is sufficient to drive pathogenic T cellfunction in experimental autoimmune encephalomyelitis. J Neuroinflammation 9:248PubMedCentralCrossRefPubMedGoogle Scholar
  25. Mori S, Shigemoto K (2013) Mechanisms associated with the pathogenicity of antibodies against muscle-specific kinase in myasthenia gravis. Autoimmun Rev 12(9):912–917CrossRefPubMedGoogle Scholar
  26. Mu HH, Nourian MM, Jiang HH, Tran JW, Cole BC (2014) Mycoplasma superantigen initiates a TLR4-dependent Th17 cascade that enhances arthritis after blocking B7-1 in mycoplasma arthritidis-infected mice. Cell Microbiol 16(6):896–911CrossRefPubMedGoogle Scholar
  27. Osserman KE, Genkins G (1971) Studies in myasthenia gravis: review of a twenty-year experience in over 1200 patients. Mt Sinai J Med 38:497–537PubMedGoogle Scholar
  28. Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28(4):454–467PubMedCentralCrossRefPubMedGoogle Scholar
  29. Park JH, Jeong SY, Choi AJ, Kim SJ (2015) Lipopolysaccharide directly stimulates Th17 differentiation in vitro modulating phosphorylation of RelB and NF-κB1. Immunol Lett 165(1):10–19CrossRefPubMedGoogle Scholar
  30. Patel DD, Lee DM, Kolbinger F, Antoni C (2013) Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann Rheum Dis 72(Suppl 2):ii116–ii123PubMedGoogle Scholar
  31. Pevzner A, Schoser B, Peters K, Cosma NC, Karakatsani A, Schalke B, Melms A, Kröger S (2012) Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol 259(3):427–435CrossRefPubMedGoogle Scholar
  32. Reynolds JM, Martinez GJ, Chung Y, Dong C (2012) Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A 109(32):13064–13069PubMedCentralCrossRefPubMedGoogle Scholar
  33. Roche JC, Capablo JL, Larrad L, Gervas-Arruga J, Ara JR, Sánchez A, Alarcia R (2011) Increased serum interleukin-17 levels in patients with myasthenia gravis. Muscle Nerve 44(2):278–280CrossRefPubMedGoogle Scholar
  34. Sabroe I, Jones EC, Usher LR, Whyte MK, Dower SK (2002) Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J Immunol 168:4701–4710CrossRefPubMedGoogle Scholar
  35. Schaffert H, Pelz A, Saxena A, Losen M, Meisel A, Thiel A, Kohler S (2015) IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol 45(5):1339–1347CrossRefPubMedGoogle Scholar
  36. Singh RP, Hasan S, Sharma S, Nagra S, Yamaguchi DT, Wong DT, Hahn BH, Hossain A (2014) Th17 cells in inflammation and autoimmunity. Autoimmun Rev 13(12):1174–1181CrossRefPubMedGoogle Scholar
  37. Sun H, Gong S, Carmody RJ, Hilliard A, Li L, et al. (2008) TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 133:415–426PubMedCentralCrossRefPubMedGoogle Scholar
  38. Tüzün E, Meriggioli MN, Rowin J, Yang H, Christadoss P (2005) Myasthenia gravis patients with low plasma IL-6 and IFN-gamma benefit from etanercept treatment. J Autoimmun 24(3):261–268CrossRefPubMedGoogle Scholar
  39. Vincent A, Newsom-Davis J (1985) Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays. J Neurol Neurosurg Psychiatry 48(12):1246–1252PubMedCentralCrossRefPubMedGoogle Scholar
  40. Wang W, Milani M, Ostlie N, Okita D, Agarwal RK, Caspi RR, Conti-Fine BM (2007) C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells. J Immunol 178(11):7072–7080PubMedCentralCrossRefPubMedGoogle Scholar
  41. Wang YZ, Yan M, Tian FF, Zhang JM, Liu Q, Yang H, Zhou WB, Li J (2013) Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation 36(1):121–130CrossRefPubMedGoogle Scholar
  42. Xi W, Hu Y, Liu Y, et al. (2011) Roles of TIPE2 in hepatitis B virus-induced hepatic inflammation in humans and mice. Mol Immunol 48(9–10):1203–1208CrossRefPubMedGoogle Scholar
  43. Zhang X, Wang J, Fan C, et al. (2009) Crystal structure of TIPE2 provides insights into immune homeostasis. Nat Struct Mol Biol 16(1):89–90CrossRefPubMedGoogle Scholar
  44. Zhang J, Dou W, Zhang E, Sun A, Ding L, Wei X, Chou G, Mani S, Wang Z (2014) Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. Am J Physiol Gastrointest Liver Physiol 306(1):G27–G36PubMedCentralCrossRefPubMedGoogle Scholar
  45. Zheng S, Dou C, Xin N, Wang J, Wang J, Li P, Fu L, Shen X, Cui G, Dong R, Lu J, Zhang Y (2013) Expression of interleukin-22 in myasthenia gravis. Scand J Immunol 78(1):98–107CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yong Zhang
    • 1
    Email author
  • Zhen Shao
    • 1
  • Xiuying Zhang
    • 1
  • Xiao Jia
    • 1
  • Yan Xia
    • 1
  • Yanyan Zhang
    • 1
  • Ning Xin
    • 2
  • Mingfeng Guo
    • 3
  • Jing Chen
    • 1
  • ShuangShuang Zheng
    • 1
  • YuZhong Wang
    • 4
  • Linlin Fu
    • 5
  • Ruiguo Dong
    • 1
  • Chenghua Xiao
    • 1
  • Deqin Geng
    • 1
  • Yonghai Liu
    • 1
    Email author
  1. 1.Department of NeurologyAffiliated Hospital of Xuzhou Medical CollegeXuzhouChina
  2. 2.Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
  3. 3.Department of Emergency Medicine, Huai’an First People’s HospitalNanjing Medical UniversityHuai’anChina
  4. 4.Department of NeurologyAffiliated Hospital of Jining Medical UniversityJiningChina
  5. 5.Department of Pathogenic Biology and Lab of Infection and ImmunologyXuzhou Medical CollegeXuzhouChina

Personalised recommendations