Journal of Neuroimmune Pharmacology

, Volume 10, Issue 3, pp 435–444 | Cite as

NMR-Based Metabolomics Separates the Distinct Stages of Disease in a Chronic Relapsing Model of Multiple Sclerosis

  • Alex M. Dickens
  • James R. Larkin
  • Benjamin G. Davis
  • Julian L. Griffin
  • Timothy D. W. Claridge
  • Nicola R. Sibson
  • Daniel C. Anthony
ORIGINAL ARTICLE

Abstract

Relapsing experimental allergic encephalomyelitis (Cr-EAE) is commonly used to explore the pathogenesis and efficacy of new therapies for MS, but it is unclear whether the metabolome of Cr-EAE is comparable to human multiple sclerosis (MS). For MS, the diagnosis and staging can be achieved by metabolomics on blood using a combination of magnetic resonance spectroscopy and partial least squares discriminant analysis (PLS-DA). Here, we sought to discover whether this approach could be used to differentiate between sequential disease states in Cr-EAE and whether the same metabolites would be discriminatory. Urine and plasma samples were obtained at different time-points from a clinically relevant model of MS. Using PLS-DA modelling for the urine samples furnished some predictive models, but could not discriminate between all disease states. However, PLS-DA modelling of the plasma samples was able to distinguish between animals with clinically silent disease (day 10, 28) and animals with active disease (day 14, 38). We were also able to distinguish Cr-EAE mice from naive mice at all-time points and control mice, treated with complete Freund’s adjuvant alone, at day 14 and 38. Key metabolites that underpin these models included fatty acids, glucose and taurine. Two of these metabolites, fatty acids and glucose, were also key metabolites in separating relapsing-remitting MS from secondary-progressive MS in the human study. These results demonstrate the sensitivity of this metabolomics approach for distinguishing between different disease states. Furthermore, some, but not all, of the changes in metabolites were conserved in humans and the mouse model, which could be useful for future drug development.

Keywords

Metabolomics Experimental allergic encephalomyelitis Multiple sclerosis Diagnostics Mouse 

Supplementary material

11481_2015_9622_MOESM1_ESM.pptx (302 kb)
ESM 1(PPTX 302 kb)
11481_2015_9622_MOESM2_ESM.pptx (95 kb)
ESM 2(PPTX 94 kb)

References

  1. ‘t Hart BA, Gran B, Weissert R (2011) EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 17:119–125CrossRefPubMedGoogle Scholar
  2. Ahmed Z, Gveric D, Pryce G, Baker D, Leonard JP, Cuzner ML (2001) Myelin/Axonal pathology in interleukin-12 induced serial relapses of experimental allergic encephalomyelitis in the lewis rat. Am J Pathol 158:2127–2138PubMedCentralCrossRefPubMedGoogle Scholar
  3. Alvord EC Jr (1984) The challenge: how good a model of MS is EAE today? Prog Clin Biol Res 146:3–5PubMedGoogle Scholar
  4. Amor S, Smith PA, Bert’t H, Baker D (2005) Biozzi mice: of mice and human neurological diseases. J Neuroimmunol 165:1–10CrossRefPubMedGoogle Scholar
  5. Baker D, O’Neill JK, Gschmeissner SE, Wilcox CE, Butter C, Turk JL (1990) Induction of chronic relapsing experimental allergic encephalomyelitis in Biozzi mice. J Neuroimmunol 28:261–270CrossRefPubMedGoogle Scholar
  6. Bao Q, Feng J, Chen L, Chen F, Liu Z, Jiang B, Liu C (2013) A robust automatic phase correction method for signal dense spectra. J Magn Reson 234:82–89CrossRefPubMedGoogle Scholar
  7. Barallobre-Barreiro J, Chung Y-L, Mayr M (2013) Proteomics and Metabolomics for Mechanistic Insights and Biomarker Discovery in Cardiovascular Disease. Revista Española de Cardiología (English Edition)Google Scholar
  8. Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15:239–245CrossRefPubMedGoogle Scholar
  9. Bielekova B, Martin R (2004) Development of biomarkers in multiple sclerosis. Brain 127:1463–1478CrossRefPubMedGoogle Scholar
  10. Billiau A, Matthys P (2001) Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J Leukoc Biol 70:849–860PubMedGoogle Scholar
  11. Brown A, McFarlin D (1981) Relapsing experimental allergic encephalomyelitis in the SJL/J mouse. Laboratory investigation; a journal of technical methods and pathology 45:278–284.Google Scholar
  12. Dickens AM, Larkin JR, Griffin JL, Cavey A, Matthews L, Turner MR, Wilcock GK, Davis BG, Claridge TDW, Palace J, Anthony DC, Sibson NR (2014) A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology 83:1492–1499PubMedCentralCrossRefPubMedGoogle Scholar
  13. Fan WMT (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219CrossRefGoogle Scholar
  14. Fan AY, Lao L, Zhang RX, Zhou AN, Wang LB, Moudgil KD, Lee DYW, Ma ZZ, Zhang WY, Berman BM (2005) Effects of an acetone extract of Boswellia carterii Birdw. (Burseraceae) gum resin on adjuvant-induced arthritis in lewis rats. J Ethnopharmacol 101:104–109CrossRefPubMedGoogle Scholar
  15. Giovannoni G, Lai M, Kidd D, Thorpe JW, Miller DH, Thompson AJ, Keir G, Feldmann M, Thompson EJ (1997) Daily urinary neopterin excretion as an immunological marker of disease activity in multiple sclerosis. Brain 120(Pt 1):1–13CrossRefPubMedGoogle Scholar
  16. Griffin JL, Anthony DC, Campbell SJ, Gauldie J, Pitossi F, Styles P, Sibson NR (2004) Study of cytokine induced neuropathology by high resolution proton NMR spectroscopy of rat urine. FEBS Lett 568:49–54CrossRefPubMedGoogle Scholar
  17. Hassan-Smith G, Wallace GR, Douglas MR, Sinclair AJ (2012) The role of metabolomics in neurological disease. J Neuroimmunol 248:48–52CrossRefPubMedGoogle Scholar
  18. Heather LC, Wang X, West JA, Griffin JL (2012) A practical guide to metabolomic profiling as a discovery tool for human heart disease. J Mol Cell CardiolGoogle Scholar
  19. Jackson SJ, Lee J, Nikodemova M, Fabry Z, Duncan ID (2009) Quantification of myelin and axon pathology during relapsing progressive experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. J Neuropathol Exp Neurol 68:616–625CrossRefPubMedGoogle Scholar
  20. Kuhle J, Leppert D, Petzold A, Regeniter A, Schindler C, Mehling M, Anthony DC, Kappos L, Lindberg RLP (2011) Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology 76:1206–1213CrossRefPubMedGoogle Scholar
  21. Lassmann H (1983) Chronic relapsing experimental allergic encephalomyelitis: its value as an experimental model for multiple sclerosis. J Neurol 229:207–220CrossRefPubMedGoogle Scholar
  22. Lindon JC, Holmes E, Nicholson JK (2001) Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nucl Magn Reson Spectrosc 39:1–40CrossRefGoogle Scholar
  23. Mardiguian S, Serres S, Ladds E, Campbell SJ, Wilainam P, McFadyen C, McAteer M, Choudhury RP, Smith P, Saunders F (2013) Anti–IL-17A treatment reduces clinical score and VCAM-1 expression detected by < i > in Vivo</i > magnetic resonance imaging in chronic relapsing EAE ABH mice. Am J Pathol 182:2071–2081PubMedCentralCrossRefPubMedGoogle Scholar
  24. Matsumo Y, Sakuma H, Miyakoshi A, Tsukada Y, Kohyama K, Park IK, Tanuma N (2005) Characterization of relapsing autoimmune encephalomyelitis and its treatment with decoy chemokine receptor genes. J Neuroimmunol 170:49–61CrossRefPubMedGoogle Scholar
  25. Meyer UA, Zanger UM, Schwab M (2013) Omics and drug response. Annu Rev Pharmacol Toxicol 53:475–502CrossRefPubMedGoogle Scholar
  26. Mokhtarian F, McFarlin D, Raine C (1984) Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in miceGoogle Scholar
  27. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952CrossRefPubMedGoogle Scholar
  28. Ott M, Demisch L, Engelhardt W, Fischer PA (1993) Interleukin-2, soluble interleukin-2-receptor, neopterin, L-tryptophan and beta 2-microglobulin levels in CSF and serum of patients with relapsing remitting or chronic progressive multiple sclerosis. J Neurol 241:108–114CrossRefPubMedGoogle Scholar
  29. Ransohoff RM (2012) Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 15:1074–1077CrossRefPubMedGoogle Scholar
  30. Salek RM, Xia J, Innes A, Sweatman BC, Adalbert R, Randle S, McGowan E, Emson PC, Griffin JL (2010) A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochem Int 56:937–947CrossRefPubMedGoogle Scholar
  31. Serres S, Mardiguian S, Campbell SJ, McAteer MA, Akhtar A, Krapitchev A, Choudhury RP, Anthony DC, Sibson NR (2011) VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB JGoogle Scholar
  32. Skov T, van den Berg F, Tomasi G, Bro R (2006) Automated alignment of chromatographic data. J Chemom 20:484–497CrossRefGoogle Scholar
  33. Steinman L, Zamvil SS (2005) Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 26:565–571CrossRefPubMedGoogle Scholar
  34. Walsh M, Brennan L, Malthouse J, Roche H, Gibney M (2006) Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 84:531PubMedGoogle Scholar
  35. Waterman C, Currie R, Cottrell L, Dow J, Wright J, Waterfield C, Griffin J (2010) An integrated functional genomic study of acute phenobarbital exposure in the rat. BMC Genomics 11:9PubMedCentralCrossRefPubMedGoogle Scholar
  36. Whitaker JN, McKeehan A, Freeman DW (1994) Monoclonal and polyclonal antibody responses to the myelin basic protein epitope present in human urine. J Neuroimmunol 52:53–60CrossRefPubMedGoogle Scholar
  37. Whitaker JN, Kachelhofer RD, Bradley EL, Burgard S, Layton BA, Reder AT, Morrison W, Zhao GJ, Paty DW (1995) Urinary myelin basic protein-like material as a correlate of the progression of multiple sclerosis. Ann Neurol 38:625–632CrossRefPubMedGoogle Scholar
  38. Wishart DS et al (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526PubMedCentralCrossRefPubMedGoogle Scholar
  39. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603PubMedCentralCrossRefPubMedGoogle Scholar
  40. Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R, Fritz R, Steinman L (1985) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelinationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alex M. Dickens
    • 1
    • 2
    • 3
  • James R. Larkin
    • 1
  • Benjamin G. Davis
    • 3
  • Julian L. Griffin
    • 4
  • Timothy D. W. Claridge
    • 3
  • Nicola R. Sibson
    • 1
  • Daniel C. Anthony
    • 2
  1. 1.Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, Radiobiology Research Institute, Churchill HospitalUniversity of OxfordOxfordUK
  2. 2.Department of PharmacologyUniversity of OxfordOxfordUK
  3. 3.Department of ChemistryUniversity of OxfordOxfordUK
  4. 4.Department of BiochemistryUniversity of CambridgeOxfordUK

Personalised recommendations