Journal of Neuroimmune Pharmacology

, Volume 10, Issue 2, pp 333–343 | Cite as

Exposure to Δ9-Tetrahydrocannabinol Impairs the Differentiation of Human Monocyte-derived Dendritic Cells and their Capacity for T cell Activation

  • Michael D. RothEmail author
  • Julie T. Castaneda
  • Sylvia M. Kiertscher


The capacity for human monocytes to differentiate into antigen-presenting dendritic cells (DC) can be influenced by a number of immune modulating signals. Monocytes express intracellular cannabinoid type 1 (CB1) and 2 (CB2) receptors and we demonstrate that exposure to Δ9-tetrahydrocannabinol (THC) inhibits the forskolin-induced generation of cyclic adenosine monophosphate in a CB2-specific manner. In order to examine the potential impact of cannabinoids on the generation of monocyte-derived DC, monocytes were cultured in vitro with differentiation medium alone [containing granulocyte/macrophage-colony stimulating factor (GM-CSF) and Interleukin-4 (IL-4)] or in combination with THC. The presence of THC (0.25–1.0 μg/ml) altered key features of DC differentiation, producing a concentration-dependent decrease in surface expression of CD11c, HLA-DR and costimulatory molecules (CD40 and CD86), less effective antigen uptake, and signs of functional skewing with decreased production of IL-12 but normal levels of IL-10. When examined in a mixed leukocyte reaction, DC that had been generated in the presence of THC were poor T cell activators as evidenced by their inability to generate effector/memory T cells or to stimulate robust IFN-γ responses. Some of these effects were partially restored by exposure to exogenous IL-7 and bacterial superantigen (S. aureus Cowans strain). These studies demonstrate that human monocytes express functional cannabinoid receptors and suggest that exposure to THC can alter their differentiation into functional antigen presenting cells; an effect that may be counter-balanced by the presence of other immunoregulatory factors. The impact of cannabinoids on adaptive immune responses in individuals with frequent drug exposure remains to be determined.


Δ9-tetrahydrocannabinol Cannabinoid receptor Monocyte Dendritic cell T cell activation Cytokines 



Research reported in this publication was supported by the National Institute on Drug Abuse, National Institutes of Health, under award numbers 5-R01-DA003018 and 1-R01-DA037102. JT Castaneda was supported by a Ruth L. Kirschstein National Research Service Award (NRSA) Individual Predoctoral Fellowship to Promote Diversity in Health-Related Research from the National Institute on Drug Abuse, National Institutes of Health, under award numbers 1 F31 DA036293. Flow cytometry was performed in the UCLA Jonsson Comprehensive Cancer Center (JCCC) and Center for AIDS Research (CFAR) Flow Cytometry Core Facility that is supported by National Institutes of Health awards CA-16042 and AI-28697, and by the JCCC, the UCLA AIDS Institute, and the David Geffen School of Medicine at UCLA.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Statement of Human Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. Alonso MN, Wong MT, Zhang AL, Winer D, Suhoski MM, Tolentino LL, Gaitan J, Davidson MG, Kung TH, Galel DM, Nadeau KC, Kim J, Utz PJ, Söderström K, Engleman EG (2011) TH1, TH2, and TH17 cells instruct monocytes to differentiate into specialized dendritic cell subsets. Blood 118(12):3311–3320. doi: 10.1182/blood-2011-03-341065 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811. doi: 10.1146/annurev.immunol.18.1.767 PubMedCrossRefGoogle Scholar
  3. Basu S, Dittel BN (2011) Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease. Immunol Res 51(1):26–38. doi: 10.1007/s12026-011-8210-5 PubMedCrossRefGoogle Scholar
  4. Bosier B, Muccioli GG, Hermans E, Lambert DM (2010) Functionally selective cannabinoid receptor signalling: therapeutic implications and opportunities. Biochem Pharmacol 80(1):1–12. doi: 10.1016/j.bcp.2010.02.013 PubMedCrossRefGoogle Scholar
  5. Bouaboula M, Rinaldi M, Carayon P, Carillon C, Delpech B, Shire D, LeFur G, Casellas P (1993) Cannabinoid-receptor expression in human leukocytes. Eur J Biochem 214(1):173–180. doi: 10.1111/j.1432-1033.1993.tb17910.x PubMedCrossRefGoogle Scholar
  6. Brailoiu GC, Oprea TI, Zhao P, Abood ME, Brailoiu E (2011) Intracellular cannabinoid type 1 (CB1) receptors are activated by anandamide. J Biol Chem 286(33):29166–29174. doi: 10.1074/jbc.M110.217463 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bredt BM, Higuera-Alhino D, Shade SB, Hebert SJ, McCune JM, Abrams DI (2002) Short-term effects of cannabinoids on immune phenotype and function in HIV-l-infected patients. J Clin Pharmacol 42(11 Suppl):82S–89S. doi: 10.1177/0091270002238798 PubMedCrossRefGoogle Scholar
  8. Castaneda JT, Harui A, Kiertscher SM, Roth JD, Roth MD (2013) Differential expression of intracellular and extracellular CB(2) cannabinoid receptor protein by human peripheral blood leukocytes. J Neuroimmune Pharmacol 8(1):323–332. doi: 10.1007/s11481-012-9430-8 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chomarat P, Banchereau J, Davoust J, Palucka AK (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1(6):510–514. doi: 10.1038/82763 PubMedCrossRefGoogle Scholar
  10. Davidson NJ, Leach MW, Fort MM, Thompson-Snipes L, Kühn R, Müller W, Berg DJ, Rennick DM (1996) T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J Exp Med 184(1):241–251PubMedCrossRefGoogle Scholar
  11. Desrosiers NA, Himes SK, Scheidweiler KB, Concheiro-Guisan M, Gorelick DA, Huestis MA (2014) Phase I and II cannabinoid disposition in blood and plasma of occasional and frequent smokers following controlled smoked cannabis. Clin Chem 60(4):631–643. doi: 10.1373/clinchem.2013.216507 PubMedCrossRefGoogle Scholar
  12. Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS (2004) Activation through cannabinoid receptors 1 and 2 on dendritic cells triggers NF-kappaB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. J Immunol 173(4):2373–2382. doi: 10.4049/jimmunol.173.4.2373 PubMedCrossRefGoogle Scholar
  13. Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232(1):54–61. doi: 10.1111/j.1432-1033.1995.tb20780.x PubMedCrossRefGoogle Scholar
  14. Karmaus PW, Chen W, Crawford RB, Harkema JR, Kaplan BL, Kaminski NE (2011) Deletion of cannabinoid receptors 1 and 2 exacerbates APC function to increase inflammation and cellular immunity during influenza infection. J Leukoc Biol 90(5):983–995. doi: 10.1189/jlb.0511219 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Karmaus PWF, Chen W, Crawford R, Kaplan BLF, Kaminski NE (2013) Δ9-Tetrahydrocannabinol impairs the inflammatory response to influenza infection: role of antigen-presenting cells and the cannabinoid receptors 1 and 2. Toxicol Sci 131(2):419–433. doi: 10.1093/toxsci/kfs315 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kiertscher SM, Roth MD (1996) Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4. J Leukoc Biol 59(2):208–218PubMedGoogle Scholar
  17. Klein TW (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5(5):400–411. doi: 10.1038/nri1602 PubMedCrossRefGoogle Scholar
  18. Klein TW, Cabral GA (2006) Cannabinoid-induced immune suppression and modulation of antigen-presenting cells. J Neuroimmune Pharmacol 1(1):50–64. doi: 10.1007/s11481-005-9007-x PubMedCrossRefGoogle Scholar
  19. Klein TW, Newton CA, Nakachi N, Friedman H (2000) Delta9-tetrahydrocannabinol treatment suppresses immunity and early IFN-gamma, IL-12, and IL-12 receptor beta2 responses to Legionella pneumophila infection. J Immunol 164(12):6461–6466. doi: 10.4049/jimmunol.164.12.6461 PubMedCrossRefGoogle Scholar
  20. Kong W, Li H, Tuma RF, Ganea D (2014) Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS. Cellular Immunol 287(1):1–17. doi: 10.1016/j.cellimm.2013.11.002 CrossRefGoogle Scholar
  21. Kosel BW, Aweeka FT, Benowitz NL, Shade SB, Hilton JF, Lizak PS, Abrams DI (2002) The effects of cannabinoids on the pharmacokinetics of indinavir and nelfinavir. AIDS 16(4):543–550PubMedCrossRefGoogle Scholar
  22. Lanzavecchia A, Sallusto F (2000) Dynamics of T lymphocyte responses:iIntermediates, effectors, and memory cells. Science 290(5489):92–97. doi: 10.1126/science.290.5489.9 PubMedCrossRefGoogle Scholar
  23. Lu T, Newton C, Perkins I, Friedman H, Klein TW (2006a) Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection. J Pharmacol Exp Ther 319(1):269–76. doi: 10.1124/jpet.106.108381 PubMedCrossRefGoogle Scholar
  24. Lu T, Newton C, Perkins I, Friedman H, Klein TW (2006b) Role of cannabinoid receptors in Delta-9-tetrahydrocannabinol suppression of IL-12p40 in mouse bone marrow-derived dendritic cells infected with Legionella pneumophila. Eur J Pharmacol 532(1–2):170–177. doi: 10.1016/j.ejphar.2005.12.040 PubMedCrossRefGoogle Scholar
  25. McCoy KL, Matveyeva M, Carlisle SJ, Cabral GA (1999) Cannabinoid inhibition of the processing of intact lysozyme by macrophages: evidence for CB2 receptor participation. J Pharmacol Exp Ther 289(3):1620–1625PubMedGoogle Scholar
  26. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–5. doi: 10.1038/365061a0 PubMedCrossRefGoogle Scholar
  27. Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M (2009) Cannabinoids as novel anti-inflammatory drugs. Future Med Chem 1(7):1333–1349. doi: 10.4155/fmc.09.93 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Nong L, Newton C, Cheng Q, Friedman H, Roth MD, Klein TW (2002) Altered cannabiniod receptor mRNA expression in peripheral blood mononuclear cells from marijuana smokers. J Neuroimmunol 127(1–2):169–176. doi: 10.1016/S0165-5728(02)00113-3 PubMedCrossRefGoogle Scholar
  29. Rajkovic I, Dragicevic A, Vasilijic S, Bozic B, Dzopalic T, Tomic S, Majstorovic I, Vucevic D, Djokic J, Balint B, Colic M (2011) Differences in T-helper polarizing capability between human monocyte-derived dendritic cells and monocyte-derived Langerhans’-like cells. Immunology 132(2):217–25. doi: 10.1111/j.1365-2567.2010.03356.x PubMedCentralPubMedCrossRefGoogle Scholar
  30. Rieder SA, Chauhan A, Singh U, Nagarkatti M, Nagarkatti P (2010) Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 215(8):598–605. doi: 10.1016/j.imbio.2009.04.001 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Robinson RH, Meissler JJ, Breslow-Deckman JM, Gaughan J, Adler MW, Eisenstein TK (2013) Cannabinoids inhibit T-cells via cannabinoid receptor 2 in an in vitro assay for graft rejection, the mixed lymphocyte reaction. J Neuroimmune Pharmacol 8(5):1239–1250. doi: 10.1007/s11481-013-9485-1 PubMedCrossRefGoogle Scholar
  32. Roth MD, Gitlitz BJ, Kiertscher SM, Park AN, Mendenhall M, Moldawer N, Figlin RA (2000) Granulocyte/macrophage-colony stimulating factor and interleukin-4 enhance the number and antigen-presenting activity of circulating CD14+ and CD83+ cells in cancer patients. Cancer Res 60(7):1934–1941PubMedGoogle Scholar
  33. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. doi: 10.1172/JCI59643 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Sipe JC, Arbour N, Gerber A, Beutler E (2005) Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J Leukoc Biol 78(1):231–238. doi: 10.1189/jlb.0205111 PubMedCrossRefGoogle Scholar
  35. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159(10):4772–4780PubMedGoogle Scholar
  36. Yuan M, Kiertscher SM, Cheng Q, Zoumalan R, Tashkin DP, Roth MD (2002) Δ9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T-cells. J Neuroimmunol 133(1–2):124–131. doi: 10.1016/S0165-5728(02)00370-3 PubMedCrossRefGoogle Scholar
  37. Zhu LX, Sharma A, Stolina S, Gardner B, Roth MD, Tashkin DP, Dubinett SM (2000) Δ-9 tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. J Immunol 165(1):373–80. doi: 10.4049/jimmunol.165.1.373 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michael D. Roth
    • 1
    Email author
  • Julie T. Castaneda
    • 2
  • Sylvia M. Kiertscher
    • 1
  1. 1.Department of Medicine, Division of Pulmonary and Critical CareDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Department of Medicine, Interdepartmental Program in Molecular Toxicology and the Division of Pulmonary and Critical CareDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations