Advertisement

Journal of Neuroimmune Pharmacology

, Volume 9, Issue 5, pp 690–702 | Cite as

3,4-Methylenedioxymethamphetamine (MDMA – Ecstasy) Decreases Neutrophil Activity Through the Glucocorticoid Pathway and Impairs Host Resistance to Listeria Monocytogenes Infection in Mice

  • V. Ferraz-de-Paula
  • A. Ribeiro
  • J. Souza-Queiroz
  • M. L. Pinheiro
  • J. F. Vecina
  • D. P. M. Souza
  • W. M. Quinteiro-Filho
  • R. L. M. Moreau
  • M. L. S. Queiroz
  • J. Palermo-NetoEmail author
ORIGINAL ARTICLE

Abstract

Ecstasy is the popular name of the abuse drug 3,4-methylenedioxymethamphetamine (MDMA) that decreases immunity in animals. The mechanisms that generate such alterations are still controversial. Seven independent pharmacological approaches were performed in mice to identify the possible mechanisms underlying the decrease of neutrophil activity induced by MDMA and the possible effects of MDMA on host resistance to Listeria monocytogenes. Our data showed that MDMA (10 mg kg−1) administration decreases NFκB expression in circulating neutrophils. Metyrapone or RU-486 administration prior to MDMA treatment abrogated MDMA effects on neutrophil activity and NFκB expression, while 6-OHDA or ICI-118,551 administration did not. As MDMA treatment increased the plasmatic levels of adrenaline and noradrenaline, propranolol pre-treatment effects were also evaluated. Propranolol suppressed both MDMA-induced increase in corticosterone serum levels and its effects on neutrophil activity. In a L. monocytogenes experimental infection context, we showed that MDMA: induced myelosuppression by decreasing granulocyte-macrophage hematopoietic progenitors (CFU-GM) in the bone marrow but increased CFU-GM in the spleen; decreased circulating leukocytes and bone marrow cellularity and increased spleen cellularity; decreased pro-inflammatory cytokine (IL-12p70, TNF, IFN-γ, IL-6) and chemokine (MCP-1) production 24 h after the infection; increased the production of pro-inflammatory cytokines and chemokines 72 h after infection and decreased IL-10 levels at all time points analyzed. It was proposed that MDMA immunosuppressive effects on neutrophil activity and host resistance to L monocytogenes rely on NFκB signaling, being mediated by HPA axis activity and corticosterone.

Keywords

MDMA Ecstasy Neutrophils Neuroimmunomodulation Corticosterone Catecholamines Listeria monocytogenes 

Notes

Acknowledgments

The authors thank FAPESP and CNPq for financial support (FAPESP grant n° 2011/15115-2, 2009/51886-3 and CNPq grant n° 300764/2010-3). Viviane Ferraz-de-Paula is a FAPESP post-graduate fellow (grant n° 07/57614-0).

Conflict of Interest

All authors declare that there are no conflicts of interest.

References

  1. Abraham E (2005) Alterations in cell signaling in sepsis. Clin Infect Dis 41(Suppl 7):S459–464PubMedCrossRefGoogle Scholar
  2. Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102(2):113–124PubMedCrossRefGoogle Scholar
  3. Boyle NT, Connor TJ (2007) MDMA (“Ecstasy”) suppresses the innate IFN-gamma response in vivo: a critical role for the anti-inflammatory cytokine IL-10. Eur J Pharmacol 572(2–3):228–238PubMedCrossRefGoogle Scholar
  4. Boyle NT, Connor TJ (2010) Methylenedioxymethamphetamine (‘Ecstasy’)-induced immunosuppression: a cause for concern? Br J Pharmacol 161(1):17–32PubMedCrossRefPubMedCentralGoogle Scholar
  5. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535PubMedCrossRefGoogle Scholar
  6. Bugajski J, Turon M, Gadek-Michalska A, Borycz JA (1991) Catecholaminergic regulation of the hypothalamic-pituitary-adrenocortical activity. J Physiol Pharmacol 42(1):93–103PubMedGoogle Scholar
  7. Bugajski J, Gadek-Michalska A, Olowska A, Borycz J, Glod R, Bugajski AJ (1995) Adrenergic regulation of the hypothalamic-pituitary-adrenal axis under basal and social stress conditions. J Physiol Pharmacol 46(3):297–312PubMedGoogle Scholar
  8. Camarasa J, Ros C, Pubill D, Escubedo E (2010) Tumour necrosis factor alpha suppression by MDMA is mediated by peripheral heteromeric nicotinic receptors. Immunopharmacol Immunotoxicol 32(2):265–271PubMedCrossRefGoogle Scholar
  9. Cao L, Filipov NM, Lawrence DA (2002) Sympathetic nervous system plays a major role in acute cold/restraint stress inhibition of host resistance to Listeria monocytogenes. J Neuroimmunol 125(1–2):94–102PubMedCrossRefGoogle Scholar
  10. Cao L, Hudson CA, Lawrence DA (2003) Acute cold/restraint stress inhibits host resistance to Listeria monocytogenes via beta1-adrenergic receptors. Brain Behav Immun 17(2):121–133PubMedCrossRefGoogle Scholar
  11. Connor TJ, McNamara MG, Finn D, Currid A, O’Malley M, Redmond AM et al (1998) Acute 3,4-methylenedioxymethamphetamine (MDMA) administration produces a rapid and sustained suppression of immune function in the rat. Immunopharmacology 38(3):253–260PubMedCrossRefGoogle Scholar
  12. Connor TJ, Kelly JP, McGee M, Leonard BE (2000) Methylenedioxymethamphetamine (MDMA; Ecstasy) suppresses IL-1beta and TNF-alpha secretion following an in vivo lipopolysaccharide challenge. Life Sci 67(13):1601–1612PubMedCrossRefGoogle Scholar
  13. Connor TJ, Connelly DB, Kelly JP (2001) Methylenedioxymethamphetamine (MDMA; ‘Ecstasy’) suppresses antigen specific IgG2a and IFN-gamma production. Immunol Lett 78(2):67–73PubMedCrossRefGoogle Scholar
  14. Connor TJ, Harkin A, Kelly JP (2005) Methylenedioxymethamphetamine suppresses production of the proinflammatory cytokine tumor necrosis factor-alpha independent of a beta-adrenoceptor-mediated increase in interleukin-10. J Pharmacol Exp Ther 312(1):134–143PubMedCrossRefGoogle Scholar
  15. Cousens LP, Wing EJ (2000) Innate defenses in the liver during Listeria infection. Immunol Rev 174:150–159PubMedCrossRefGoogle Scholar
  16. Dalrymple SA, Lucian LA, Slattery R, McNeil T, Aud DM, Fuchino S et al (1995) Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia. Infect Immun 63(6):2262–2268PubMedPubMedCentralGoogle Scholar
  17. de la Torre R, Farre M (2004) Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol Sci 25(10):505–508PubMedCrossRefGoogle Scholar
  18. de Paula VF, Ribeiro A, Pinheiro ML, Sakai M, Lacava MC, Lapachinske SF et al (2009) Methylenedioxymethamphetamine (Ecstasy) decreases neutrophil activity and alters leukocyte distribution in bone marrow, spleen and blood. Neuroimmunomodulation 16(3):191–200PubMedCrossRefGoogle Scholar
  19. Emoto M, Miyamoto M, Emoto Y, Yoshizawa I, Brinkmann V, van Rooijen N et al (2003) Highly biased type 1 immune responses in mice deficient in LFA-1 in Listeria monocytogenes infection are caused by elevated IL-12 production by granulocytes. J Immunol 171(8):3970–3976PubMedCrossRefGoogle Scholar
  20. Ferraz-de-Paula V, Stankevicius D, Ribeiro A, Pinheiro ML, Rodrigues-Costa EC, Florio JC et al (2011) Differential behavioral outcomes of 3,4-methylenedioxymethamphetamine (MDMA-ecstasy) in anxiety-like responses in mice. Braz J Med Biol Res 44(5):428–437PubMedCrossRefGoogle Scholar
  21. Hasui M, Hirabayashi Y, Kobayashi Y (1989) Simultaneous measurement by flow cytometry of phagocytosis and hydrogen peroxide production of neutrophils in whole blood. J Immunol Methods 117(1):53–58PubMedCrossRefGoogle Scholar
  22. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362PubMedCrossRefGoogle Scholar
  23. Hysek CM, Brugger R, Simmler LD, Bruggisser M, Donzelli M, Grouzmann E et al (2012) Effects of the alpha(2)-adrenergic agonist clonidine on the pharmacodynamics and pharmacokinetics of 3,4-methylenedioxymethamphetamine in healthy volunteers. J Pharmacol Exp Ther 340(2):286–294PubMedCrossRefGoogle Scholar
  24. Jankovic D, Kugler DG, Sher A (2010) IL-10 production by CD4+ effector T cells: a mechanism for self-regulation. Mucosal Immunol 3(3):239–246PubMedCrossRefPubMedCentralGoogle Scholar
  25. Keller SE, Schleifer SJ, Liotta AS, Bond RN, Farhoody N, Stein M (1988) Stress-induced alterations of immunity in hypophysectomized rats. Proc Natl Acad Sci U S A 85(23):9297–9301PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kollet O, Canaani J, Kalinkovich A, Lapidot T (2012) Regulatory cross talks of bone cells, hematopoietic stem cells and the nervous system maintain hematopoiesis. Inflamm Allergy Drug Targets 11(3):170–180PubMedCrossRefGoogle Scholar
  27. Kostrzewa RM, Jacobowitz DM (1974) Pharmacological actions of 6-hydroxydopamine. Pharmacol Rev 26(3):199–288PubMedGoogle Scholar
  28. Kruszewska B, Felten SY, Moynihan JA (1995) Alterations in cytokine and antibody production following chemical sympathectomy in two strains of mice. J Immunol 155(10):4613–4620PubMedGoogle Scholar
  29. Lacava M, Ferraz-de-Paula V, Lapachinske SF, Palermo-Neto J, Moreau RLM (2007) Simultaneous determination of methylenodioxymethamphetamine (MDMA) and methylenodioxyamphetamine (MDA) in plasma by gas chromatography with nitrogen-phosphorus detection (GC-NPD) and in vitro effects on the neutrophil activity of mice. III Encuentro Regional de Toxicologia Forense, Bogotá, pp 97–104, TIAFTGoogle Scholar
  30. Lafarge S, Hamzeh-Cognasse H, Chavarin P, Genin C, Garraud O, Cognasse F (2007) A flow cytometry technique to study intracellular signals NF-kappaB and STAT3 in peripheral blood mononuclear cells. BMC Mol Biol 8:64PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ligeiro de Oliveira AP, Lazzarini R, Cavriani G, Quinteiro-Filho WM, Tavares de Lima W, Palermo-Neto J (2008) Effects of single or repeated amphetamine treatment and withdrawal on lung allergic inflammation in rats. Int Immunopharmacol 8(9):1164–1171PubMedCrossRefGoogle Scholar
  32. Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406PubMedCrossRefPubMedCentralGoogle Scholar
  33. Massoco C, Palermo-Neto J (2003) Effects of midazolam on equine innate immune response: a flow cytometric study. Vet Immunol Immunopathol 95(1–2):11–19PubMedCrossRefGoogle Scholar
  34. Metcalf D (1986) The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 67(2):257–267PubMedGoogle Scholar
  35. Mizruchin A, Gold I, Krasnov I, Livshitz G, Shahin R, Kook AI (1999) Comparison of the effects of dopaminergic and serotonergic activity in the CNS on the activity of the immune system. J Neuroimmunol 101(2):201–204PubMedCrossRefGoogle Scholar
  36. Necela BM, Cidlowski JA (2004) Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells. Proc Am Thorac Soc 1(3):239–246PubMedCrossRefGoogle Scholar
  37. Nelson DA, Nirmaier JL, Singh SJ, Tolbert MD, Bost KL (2008) Ecstasy (3,4-methylenedioxymethamphetamine) limits murine gammaherpesvirus-68 induced monokine expression. Brain Behav Immun 22(6):912–922PubMedCrossRefGoogle Scholar
  38. Newton CA, Lu T, Nazian SJ, Perkins I, Friedman H, Klein TW (2004) The THC-induced suppression of Th1 polarization in response to Legionella pneumophila infection is not mediated by increases in corticosterone and PGE2. J Leukoc Biol 76(4):854–861PubMedCrossRefGoogle Scholar
  39. Pacifici R, Farre M, Pichini S, Ortuno J, Roset PN, Zuccaro P et al (2001a) Sweat testing of MDMA with the Drugwipe analytical device: a controlled study with two volunteers. J Anal Toxicol 25(2):144–146PubMedCrossRefGoogle Scholar
  40. Pacifici R, Zuccaro P, Farre M, Pichini S, Di Carlo S, Roset PN et al (2001b) Effects of repeated doses of MDMA (“ecstasy”) on cell-mediated immune response in humans. Life Sci 69(24):2931–2941PubMedCrossRefGoogle Scholar
  41. Pacifici R, Zuccaro P, Farre M, Pichini S, Di Carlo S, Roset PN et al (2002) Cell-mediated immune response in MDMA users after repeated dose administration: studies in controlled versus noncontrolled settings. Ann N Y Acad Sci 965:421–433PubMedCrossRefGoogle Scholar
  42. Pacifici R, Pichini S, Zuccaro P, Farre M, Segura M, Ortuno J et al (2004) Paroxetine inhibits acute effects of 3,4-methylenedioxymethamphetamine on the immune system in humans. J Pharmacol Exp Ther 309(1):285–292PubMedCrossRefGoogle Scholar
  43. Pacifici R, Zuccaro P, Farre M, Poudevida S, Abanades S, Pichini S et al (2007) Combined immunomodulating properties of 3,4-methylenedioxymethamphetamine (MDMA) and cannabis in humans. Addiction 102(6):931–936PubMedCrossRefGoogle Scholar
  44. Parrott AC (2013) Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25 years of empirical research. Hum Psychopharmacol 28(4):289–307PubMedCrossRefGoogle Scholar
  45. Pennock JW, Stegall R, Bubar MJ, Milligan G, Cunningham KA, Bourne N (2009) 3,4-Methylenedioxymethamphetamine increases susceptibility to genital herpes simplex virus infection in mice. J Infect Dis 200(8):1247–1250PubMedCrossRefGoogle Scholar
  46. Quax RA, Manenschijn L, Koper JW, Hazes JM, Lamberts SW, van Rossum EF et al (2013) Glucocorticoid sensitivity in health and disease. Nat Rev 9(11):670–686Google Scholar
  47. Queiroz Jde S, Torello CO, Palermo-Neto J, Valadares MC, Queiroz ML (2008) Hematopoietic response of rats exposed to the impact of an acute psychophysiological stressor on responsiveness to an in vivo challenge with Listeria monocytogenes: modulation by Chlorella vulgaris prophylactic treatment. Brain Behav Immun 22(7):1056–1065PubMedCrossRefGoogle Scholar
  48. Rice PA, Boehm GW, Moynihan JA, Bellinger DL, Stevens SY (2001) Chemical sympathectomy increases the innate immune response and decreases the specific immune response in the spleen to infection with Listeria monocytogenes. J Neuroimmunol 114(1–2):19–27PubMedCrossRefGoogle Scholar
  49. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223PubMedCrossRefPubMedCentralGoogle Scholar
  50. Serbina NV, Kuziel W, Flavell R, Akira S, Rollins B, Pamer EG (2003) Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19(6):891–901PubMedCrossRefGoogle Scholar
  51. Sparwasser T, Hultner L, Koch ES, Luz A, Lipford GB, Wagner H (1999) Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J Immunol 162(4):2368–2374PubMedGoogle Scholar
  52. Stankevicius D, Ferraz-de-Paula V, Ribeiro A, Pinheiro ML, Ligeiro de Oliveira AP, Damazo AS et al (2012) 3,4-methylenedioxymethamphetamine (ecstasy) decreases inflammation and airway reactivity in a murine model of asthma. Neuroimmunomodulation 19(4):209–219PubMedCrossRefGoogle Scholar
  53. Torello CO, de Souza QJ, Oliveira SC, Queiroz ML (2010) Immunohematopoietic modulation by oral beta-1,3-glucan in mice infected with Listeria monocytogenes. Int Immunopharmacol 10(12):1573–1579PubMedCrossRefGoogle Scholar
  54. Tufail S, Badrealam KF, Owais M, Zubair S (2013) Illuminating the petite picture of T cell memory responses to. Biomed Res Int 2013:121684PubMedCrossRefPubMedCentralGoogle Scholar
  55. van den Engh G, Bol S (1975) The presence of a CSF enhancing activity in the serum of endotoxin-treated mice. Cell Tissue Kinet 8(6):579–587PubMedGoogle Scholar
  56. Verheyden SL, Henry JA, Curran HV (2003) Acute, sub-acute and long-term subjective consequences of ‘ecstasy’ (MDMA) consumption in 430 regular users. Hum Psychopharmacol 18(7):507–517PubMedCrossRefGoogle Scholar
  57. Williams MA, Schmidt RL, Lenz LL (2012) Early events regulating immunity and pathogenesis during Listeria monocytogenes infection. Trends Immunol 33(10):488–495PubMedCrossRefPubMedCentralGoogle Scholar
  58. Zemishlany Z, Aizenberg D, Weizman A (2001) Subjective effects of MDMA (‘Ecstasy’) on human sexual function. Eur Psychiatr 16(2):127–130CrossRefGoogle Scholar
  59. Zenewicz LA, Shen H (2007) Innate and adaptive immune responses to Listeria monocytogenes: a short overview. Microbes Infect 9(10):1208–1215PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. Ferraz-de-Paula
    • 1
  • A. Ribeiro
    • 1
  • J. Souza-Queiroz
    • 2
  • M. L. Pinheiro
    • 1
  • J. F. Vecina
    • 2
  • D. P. M. Souza
    • 3
  • W. M. Quinteiro-Filho
    • 1
  • R. L. M. Moreau
    • 4
  • M. L. S. Queiroz
    • 2
  • J. Palermo-Neto
    • 1
    Email author
  1. 1.Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary MedicineUniversity of São PauloSão PauloBrazil
  2. 2.Department of Pharmacology/Center of Hematology and Hemotherapy, Faculty of Medical SciencesState University of Campinas (UNICAMP)CampinasBrazil
  3. 3.Tropical and Animal Science Program, School of Veterinary Medicine and Animal ScienceFederal University of Tocantins (UFT)TocantinsBrazil
  4. 4.Department of Clinical and Toxicological Analyses, School of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations