Journal of Neuroimmune Pharmacology

, Volume 9, Issue 4, pp 522–532 | Cite as

Epigenetic Modification of the FoxP3 TSDR in HAM/TSP Decreases the Functional Suppression of Tregs

  • Monique R. Anderson
  • Yoshimi Enose-Akahata
  • Raya Massoud
  • Nyater Ngouth
  • Yuetsu Tanaka
  • Unsong Oh
  • Steven JacobsonEmail author


HTLV-1 is a human retrovirus that is associated with the neuroinflammatory disorder HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). In these patients, HTLV-1 is primarily found in the CD4+CD25+ T cell subset (Regulatory T cells:Tregs), which is responsible for peripheral immune tolerance and is known to be dysfunctional in HAM/TSP. Recent evidence suggests that FoxP3 expression and function is determined epigenetically through DNA demethylation in the Treg-specific demethylated region (TSDR). We analyzed the methylation of the TSDR in PBMCs, CD4+ T cells, and CD4+CD25+ T cells from normal healthy donors (NDs) and HAM/TSP patients. We demonstrated that there is decreased demethylation in analyzed PBMCs and CD4+CD25+ T cells from HAM/TSP patients as compared to NDs. Furthermore, decreased TSDR demethylation was associated with decreased functional suppression by Tregs. Additionally, increased HTLV-1 Tax expression in HAM/TSP PBMC culture correlated with a concomitant decline in FoxP3 TSDR demethylation. Overall, we suggest that HTLV-1 infection decreases Treg functional suppressive capacity in HAM/TSP through modification of FoxP3 TSDR demethylation and that dysregulated Treg function may contribute to HAM/TSP disease pathogenesis.


Regulatory T cells HTLV-1 Treg specific demethylation region (TSDR) Epigenetic regulation Suppressive capacity Demethylation 



Special thanks to Mr. Matt McCormick for his contributions to the demethylation protocols developed for this study.

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA (2001) CD4+ CD25high regulatory cells in human peripheral blood. J Immunol 167:1245–1253PubMedCrossRefGoogle Scholar
  2. Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S (2005) Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 105:735–741PubMedCentralPubMedCrossRefGoogle Scholar
  3. Barmak K, Harhaj EW, Wigdahl B (2003) Mediators of central nervous system damage during the progression of human T-cell leukemia type I-associated myelopathy/tropical spastic paraparesis. J Neurovirol 9:522–529PubMedCrossRefGoogle Scholar
  4. Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J, Thiel A, Boeld TJ, Hoffmann P, Edinger M, Turbachova I, Hamann A, Olek S, Huehn J (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 37:2378–2389PubMedCrossRefGoogle Scholar
  5. Barzaghi F, Passerini L, Gambineri E, Ciullini Mannurita S, Cornu T, Kang ES, Choe YH, Cancrini C, Corrente S, Ciccocioppo R, Cecconi M, Zuin G, Discepolo V, Sartirana C, Schmidtko J, Ikinciogullari A, Ambrosi A, Roncarolo MG, Olek S, Bacchetta R (2012) Demethylation analysis of the FOXP3 locus shows quantitative defects of regulatory T cells in IPEX-like syndrome. J Autoimmun 38:49–58PubMedCrossRefGoogle Scholar
  6. Belrose G, Gross A, Olindo S, Lezin A, Dueymes M, Komla-Soukha I, Smadja D, Tanaka Y, Willems L, Mesnard JM, Peloponese JM Jr, Cesaire R (2011) Effects of valproate on Tax and HBZ expression in HTLV-1 and HAM/TSP T lymphocytes. Blood 118:2483–2491PubMedCrossRefGoogle Scholar
  7. Bettini ML, Pan F, Bettini M, Finkelstein D, Rehg JE, Floess S, Bell BD, Ziegler SF, Huehn J, Pardoll DM, Vignali DA (2012) Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36:717–730PubMedCentralPubMedCrossRefGoogle Scholar
  8. Blanco B, Perez-Simon JA, Sanchez-Abarca LI, Caballero-Velazquez T, Gutierrez-Cossio S, Hernandez-Campo P, Diez-Campelo M, Herrero-Sanchez C, Rodriguez-Serrano C, Santamaria C, Sanchez-Guijo FM, Del Canizo C, San Miguel JF (2009) Treatment with bortezomib of human CD4+ T cells preserves natural regulatory T cells and allows the emergence of a distinct suppressor T-cell population. Haematologica 94:975–983PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chen X, Zhou B, Li M, Deng Q, Wu X, Le X, Wu C, Larmonier N, Zhang W, Zhang H, Wang H, Katsanis E (2007) CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin Immunol 123:50–59PubMedCrossRefGoogle Scholar
  10. Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, Narayanan A, Kashanchi F (2012) HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 3:406PubMedCentralPubMedCrossRefGoogle Scholar
  11. d’Hennezel E, Yurchenko E, Sgouroudis E, Hay V, Piccirillo CA (2011) Single-cell analysis of the human T regulatory population uncovers functional heterogeneity and instability within FOXP3+ cells. J Immunol 186:6788–6797PubMedCrossRefGoogle Scholar
  12. Diamantopoulos PT, Michael M, Benopoulou O, Bazanis E, Tzeletas G, Meletis J, Vayopoulos G, Viniou NA (2012) Antiretroviral activity of 5-azacytidine during treatment of a HTLV-1 positive myelodysplastic syndrome with autoimmune manifestations. Virol J 9:1PubMedCentralPubMedCrossRefGoogle Scholar
  13. Enose-Akahata Y, Abrams A, Massoud R, Bialuk I, Johnson KR, Green PL, Maloney EM, Jacobson S (2013) Humoral immune response to HTLV-1 basic leucine zipper factor (HBZ) in HTLV-1-infected individuals. Retrovirology 10:19PubMedCentralPubMedCrossRefGoogle Scholar
  14. Evangelou IE, Oh U, Massoud R, Jacobson S (2012) HTLV-I-associated myelopathy/tropical spastic paraparesis: semiautomatic quantification of spinal cord atrophy from 3-dimensional MR images. J Neuroimaging: Off J Am Soc Neuroimaging 4(1):74–78Google Scholar
  15. Grant C, Oh U, Yao K, Yamano Y, Jacobson S (2008) Dysregulation of TGF-beta signaling and regulatory and effector T-cell function in virus-induced neuroinflammatory disease. Blood 111:5601–5609PubMedCentralPubMedCrossRefGoogle Scholar
  16. Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, Nayak L, Moss PA (2005) The number of human peripheral blood CD4+ CD25 high regulatory T cells increases with age. Clin Exp Immunol 140:540–546PubMedCentralPubMedCrossRefGoogle Scholar
  17. Izumo S (2010) Neuropathology of HTLV-1-associated myelopathy (HAM/TSP). Neuropathol: Off J Jpn Soc NeuropatholGoogle Scholar
  18. Janson PC, Winerdal ME, Marits P, Thorn M, Ohlsson R, Winqvist O (2008) FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS ONE 3:e1612PubMedCentralPubMedCrossRefGoogle Scholar
  19. Lal G, Bromberg JS (2009) Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114:3727–3735PubMedCentralPubMedCrossRefGoogle Scholar
  20. Liu J, Lluis A, Illi S, Layland L, Olek S, von Mutius E, Schaub B (2010) T regulatory cells in cord blood–FOXP3 demethylation as reliable quantitative marker. PLoS ONE 5:e13267PubMedCentralPubMedCrossRefGoogle Scholar
  21. Loser K, Hansen W, Apelt J, Balkow S, Buer J, Beissert S (2005) In vitro-generated regulatory T cells induced by Foxp3-retrovirus infection control murine contact allergy and systemic autoimmunity. Gene Ther 12:1294–1304PubMedCrossRefGoogle Scholar
  22. Michaelsson J, Barbosa HM, Jordan KA, Chapman JM, Brunialti MK, Neto WK, Nukui Y, Sabino EC, Chieia MA, Oliveira AS, Nixon DF, Kallas EG (2008) The frequency of CD127low expressing CD4+ CD25high T regulatory cells is inversely correlated with human T lymphotrophic virus type-1 (HTLV-1) proviral load in HTLV-1-infection and HTLV-1-associated myelopathy/tropical spastic paraparesis. BMC Immunol 9:41PubMedCentralPubMedCrossRefGoogle Scholar
  23. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911PubMedCrossRefGoogle Scholar
  24. Mukae H, Kohno S, Morikawa N, Kadota J, Matsukura S, Hara K (1994) Increase in T-cells bearing CD25 in bronchoalveolar lavage fluid from HAM/TSP patients and HTLV-I carriers. Microbiol Immunol 38:55–62PubMedCrossRefGoogle Scholar
  25. Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, Hashiguchi S, Ichinose M, Bangham CR, Izumo S, Osame M (1998) Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 4:586–593PubMedCrossRefGoogle Scholar
  26. Nishiura Y, Nakamura T, Ichinose K, Shirabe S, Tsujino A, Goto H, Furuya T, Nagataki S (1996) Increased production of inflammatory cytokines in cultured CD4+ cells from patients with HTLV-I-associated myelopathy. Tohoku J Exp Med 179:227–233PubMedCrossRefGoogle Scholar
  27. Oh U, Yamano Y, Mora CA, Ohayon J, Bagnato F, Butman JA, Dambrosia J, Leist TP, McFarland H, Jacobson S (2005) Interferon-beta1a therapy in human T-lymphotropic virus type I-associated neurologic disease. Ann Neurol 57:526–534PubMedCrossRefGoogle Scholar
  28. Oh U, Grant C, Griffith C, Fugo K, Takenouchi N, Jacobson S (2006) Reduced Foxp3 protein expression is associated with inflammatory disease during human t lymphotropic virus type 1 Infection. J Infect Dis 193:1557–1566PubMedCrossRefGoogle Scholar
  29. Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, Matsumoto M, Tara M (1986) HTLV-I associated myelopathy, a new clinical entity. Lancet 1:1031–1032PubMedCrossRefGoogle Scholar
  30. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77:7415–7419PubMedCentralPubMedCrossRefGoogle Scholar
  31. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38:1654–1663PubMedCrossRefGoogle Scholar
  32. Polansky JK, Schreiber L, Thelemann C, Ludwig L, Kruger M, Baumgrass R, Cording S, Floess S, Hamann A, Huehn J (2010) Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med (Berl) 88:1029–1040CrossRefGoogle Scholar
  33. Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL (2005) Global epidemiology of HTLV-I infection and associated diseases. Oncogene 24:6058–6068PubMedCrossRefGoogle Scholar
  34. Ramirez E, Cartier L, Rodriguez L, Alberti C, Valenzuela MA (2010) In vivo fluctuation of Tax, Foxp3, CTLA-4, and GITR mRNA expression in CD4(+)CD25(+) T cells of patients with human T-lymphotropic virus type 1-associated myelopathy. Braz J Med Biol Res = Rev Bras Pesquisas Med Biol/Soc Bras Biofisica … [et al] 43:1109–1115Google Scholar
  35. Rende F, Cavallari I, Corradin A, Silic-Benussi M, Toulza F, Toffolo GM, Tanaka Y, Jacobson S, Taylor GP, D’Agostino DM, Bangham CR, Ciminale V (2011) Kinetics and intracellular compartmentalization of HTLV-1 gene expression: nuclear retention of HBZ mRNAs. Blood 117:4855–4859PubMedCrossRefGoogle Scholar
  36. Sahin M, Sahin E, Koksoy S (2013) Regulatory T cells in cancer: an overview and perspectives on cyclooxygenase-2 and Foxp3 DNA methylation. Hum Immunol 74:1061–1068PubMedCrossRefGoogle Scholar
  37. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352PubMedCrossRefGoogle Scholar
  38. Satou Y, Yasunaga J, Yoshida M, Matsuoka M (2006) HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A 103:720–725PubMedCentralPubMedCrossRefGoogle Scholar
  39. Satou Y, Yasunaga J, Zhao T, Yoshida M, Miyazato P, Takai K, Shimizu K, Ohshima K, Green PL, Ohkura N, Yamaguchi T, Ono M, Sakaguchi S, Matsuoka M (2011) HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog 7:e1001274PubMedCentralPubMedCrossRefGoogle Scholar
  40. Stockis J, Fink W, Francois V, Connerotte T, de Smet C, Knoops L, van der Bruggen P, Boon T, Coulie PG, Lucas S (2009) Comparison of stable human Treg and Th clones by transcriptional profiling. Eur J Immunol 39:869–882PubMedCrossRefGoogle Scholar
  41. Toker A, Huehn J (2011) To be or not to be a Treg cell: lineage decisions controlled by epigenetic mechanisms. Sci Signal 4(158):pe4PubMedCrossRefGoogle Scholar
  42. Ukena SN, Hopting M, Velaga S, Ivanyi P, Grosse J, Baron U, Ganser A, Franzke A (2011) Isolation strategies of regulatory T cells for clinical trials: phenotype, function, stability, and expansion capacity. Exp Hematol 39:1152–1160PubMedCrossRefGoogle Scholar
  43. van der Vliet HJ, Nieuwenhuis EE (2007) IPEX as a result of mutations in FOXP3. Clin Dev Immunol 2007:89017PubMedCentralPubMedGoogle Scholar
  44. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37:129–138PubMedCrossRefGoogle Scholar
  45. Weiss VL, Lee TH, Jaffee EM, Armstrong TD (2012) Targeting the right regulatory T-cell population for tumor immunotherapy. Oncoimmunology 1:1191–1193PubMedCentralPubMedCrossRefGoogle Scholar
  46. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20PubMedCrossRefGoogle Scholar
  47. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S (2004) Crucial role of FOXP3 in the development and function of human CD25+ CD4+ regulatory T cells. Int Immunol 16:1643–1656PubMedCrossRefGoogle Scholar
  48. Yamano Y, Cohen CJ, Takenouchi N, Yao K, Tomaru U, Li HC, Reiter Y, Jacobson S (2004) Increased expression of human T lymphocyte virus type I (HTLV-I) Tax11-19 peptide-human histocompatibility leukocyte antigen A*201 complexes on CD4+ CD25+ T Cells detected by peptide-specific, major histocompatibility complex-restricted antibodies in patients with HTLV-I-associated neurologic disease. J Exp Med 199:1367–1377PubMedCentralPubMedCrossRefGoogle Scholar
  49. Yamano Y, Takenouchi N, Li HC, Tomaru U, Yao K, Grant CW, Maric DA, Jacobson S (2005) Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J Clin Invest 115:1361–1368PubMedCentralPubMedCrossRefGoogle Scholar
  50. Yamano Y, Araya N, Sato T, Utsunomiya A, Azakami K, Hasegawa D, Izumi T, Fujita H, Aratani S, Yagishita N, Fujii R, Nishioka K, Jacobson S, Nakajima T (2009) Abnormally high levels of virus-infected IFN-gamma+ CCR4+CD4+CD25+ T cells in a retrovirus-associated neuroinflammatory disorder. PLoS ONE 4:e6517PubMedCentralPubMedCrossRefGoogle Scholar
  51. Yano H, Ishida T, Inagaki A, Ishii T, Kusumoto S, Komatsu H, Iida S, Utsunomiya A, Ueda R (2007) Regulatory T-cell function of adult T-cell leukemia/lymphoma cells. Int J Cancer J Int Cancer 120:2052–2057CrossRefGoogle Scholar
  52. Zheng Q, Xu Y, Liu Y, Zhang B, Li X, Guo F, Zhao Y (2009) Induction of Foxp3 demethylation increases regulatory CD4+ CD25+ T cells and prevents the occurrence of diabetes in mice. J Mol Med (Berl) 87:1191–1205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  • Monique R. Anderson
    • 1
    • 2
    • 3
  • Yoshimi Enose-Akahata
    • 1
  • Raya Massoud
    • 1
  • Nyater Ngouth
    • 1
  • Yuetsu Tanaka
    • 4
  • Unsong Oh
    • 5
  • Steven Jacobson
    • 1
    Email author
  1. 1.Neuroimmunology Branch, Viral Immunological SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUSA
  2. 2.Howard Hughes Medical Institute-National Institutes of Health Research Scholars Program, Howard Hughes Medical InstituteChevy ChaseUSA
  3. 3.Department of PathologyUniversity of Virginia School of Medicine, Molecular and Cellular Basis of Disease Graduate ProgramCharlottesvilleUSA
  4. 4.Department of Immunology, Graduate School of MedicineUniversity of the RyukyusNishihara-choJapan
  5. 5.Department of NeurologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations