Journal of Neuroimmune Pharmacology

, Volume 9, Issue 4, pp 483–491 | Cite as

Role of HIV in Amyloid Metabolism

  • Mario Ortega
  • Beau M. AncesEmail author


HIV infection has changed from an acute devastating disease to a more chronic illness due to combination anti-retroviral treatment (cART). In the cART era, the life expectancy of HIV-infected (HIV+) individuals has increased. More HIV + individuals are aging with current projections suggesting that 50 % of HIV + individuals will be over 50 years old by 2015. With advancing age, HIV + individuals may be at increased risk of developing other potential neurodegenerative disorders [especially Alzheimer’s disease (AD)]. Pathology studies have shown that HIV increases intra and possibly extracellular amyloid beta (Aβ42), a hallmark of AD. We review the synthesis and clearance of Aβ42; the effects of HIV on the amyloid pathway; and contrast the impact of AD and HIV on Aβ42 metabolism. Biomarker studies (cerebrospinal fluid AB and amyloid imaging) in HIV + participants have shown mixed results. CSF Aβ42 has been shown to be either normal or diminished in with HIV associated neurocognitive disorders (HAND). Amyloid imaging using [11C] PiB has also not demonstrated increased extracellular amyloid fibrillar deposits in HAND. We further demonstrate that Aβ42 deposition is not increased in older HIV + participants using [11C] PiB amyloid imaging. Together, these results suggest that HIV and aging each independently affect Aβ42 deposition with no significant interaction present. Older HIV + individuals are probably not at increased risk for developing AD. However, future longitudinal studies of older HIV + individuals using multiple modalities (including the combination of CSF markers and amyloid imaging) are necessary for investigating the effects of HIV on Aβ42 metabolism.


HIV CNS Amyloid Cerebrospinal fluid (CSF) Amyloid imaging Combination anti-retroviral therapy (cART) HIV associated neurocognitive disorders (HAND) 



This work was supported by National Institutes of Health (NIH) grants R01NR014449, R01NR012657, R01NR012907, R21MH099979, and the Alzheimer’s Association (BMA).

Conflict of interest

The authors have no conflicts of interest related to this work to report.


  1. Achim CL, Adame A, Dumaop W et al (2009) Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J Neuroimmune Pharmacol 4:190–9. doi: 10.1007/s11481-009-9152-8 PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aisen PS (2009) Alzheimer’s disease therapeutic research: the path forward. Alzheimer’s Res Ther 1:2. doi: 10.1186/alzrt2 CrossRefGoogle Scholar
  3. Akay C, Cooper M, Odeleye A et al (2014) Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J Neurovirol. doi: 10.1007/s13365-013-0227-1 PubMedPubMedCentralGoogle Scholar
  4. Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2010) HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neurosci Lett 475:174–8. doi: 10.1016/j.neulet.2010.03.073 PubMedCrossRefPubMedCentralGoogle Scholar
  5. An SF, Giometto B, Groves M et al (1997) Axonal damage revealed by accumulation of beta-APP in HIV-positive individuals without AIDS. J Neuropathol Exp Neurol 56:1262–8PubMedCrossRefGoogle Scholar
  6. Ances BM, Benzinger TL, Christensen JJ et al (2012) 11C-PiB imaging of human immunodeficiency virus-associated neurocognitive disorder. Arch Neurol 69:72–7. doi: 10.1001/archneurol.2011.761 PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ances BM, Christensen JJ, Teshome M et al (2010) Cognitively unimpaired HIV-positive subjects do not have increased 11C-PiB: a case–control study. Neurology 75:111–5. doi: 10.1212/WNL.0b013e3181e7b66e PubMedCrossRefPubMedCentralGoogle Scholar
  8. András IE, Toborek M (2013) Amyloid beta accumulation in HIV-1-infected brain: The role of the blood brain barrier. IUBMB Life 65:43–9. doi: 10.1002/iub.1106 PubMedCrossRefPubMedCentralGoogle Scholar
  9. Angel TE, Jacobs JM, Spudich SS et al (2012) The cerebrospinal fluid proteome in HIV infection: change associated with disease severity. Clin Proteomics 9:3. doi: 10.1186/1559-0275-9-3 PubMedCrossRefPubMedCentralGoogle Scholar
  10. Anthony IC, Bell JE (2008) The Neuropathology of HIV/AIDS. Int Rev Psychiatry 20:15–24. doi: 10.1080/09540260701862037 PubMedCrossRefGoogle Scholar
  11. Anthony IC, Norrby KE, Dingwall T et al (2010) Predisposition to accelerated Alzheimer-related changes in the brains of human immunodeficiency virus negative opiate abusers. Brain 133:3685–98. doi: 10.1093/brain/awq263 PubMedCrossRefGoogle Scholar
  12. Anthony IC, Ramage SN, Carnie FW et al (2006) Accelerated Tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol 111:529–38. doi: 10.1007/s00401-006-0037-0 PubMedCrossRefGoogle Scholar
  13. Bateman RJ, Wen G, Morris JC, Holtzman DM (2007) Fluctuations of CSF amyloid-beta levels: implications for a diagnostic and therapeutic biomarker. Neurology 68:666–9. doi: 10.1212/01.wnl.0000256043.50901.e3 PubMedCrossRefGoogle Scholar
  14. Bateman RJ, Xiong C, Benzinger TLS, et al. (2012) Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease. N Engl J Med 120711140017009. doi: 10.1056/NEJMoa1202753Google Scholar
  15. Benzinger TLS, Blazey T, Jack CR et al (2013) Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc Natl Acad Sci U S A 110:E4502–9. doi: 10.1073/pnas.1317918110 PubMedCrossRefPubMedCentralGoogle Scholar
  16. Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–44. doi: 10.1038/nrneurol.2010.4 PubMedCrossRefGoogle Scholar
  17. Braidy N, Muñoz P, Palacios AG et al (2012) Recent rodent models for Alzheimer’s disease: clinical implications and basic research. J Neural Transm 119:173–95. doi: 10.1007/s00702-011-0731-5 PubMedCrossRefGoogle Scholar
  18. Brew BJ, Pemberton L, Blennow K et al (2005) CSF amyloid beta42 and tau levels correlate with AIDS dementia complex. Neurology 65:1490–2. doi: 10.1212/01.wnl.0000183293.95787.b7 PubMedCrossRefGoogle Scholar
  19. Cairns NJ, Ikonomovic MD, Benzinger T et al (2009) Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol 66:1557–62. doi: 10.1001/archneurol.2009.279 PubMedPubMedCentralGoogle Scholar
  20. Chasseigneaux S, Allinquant B (2012) Functions of Aβ, sAPPα and sAPPβ : similarities and differences. J Neurochem 120:99–108. doi: 10.1111/j.1471-4159.2011.07584.x PubMedCrossRefGoogle Scholar
  21. Chen X, Hui L, Geiger NH et al (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34:2370–8. doi: 10.1016/j.neurobiolaging.2013.04.015 PubMedCrossRefGoogle Scholar
  22. Cho H, Seo SW, Kim J-H et al (2013) Amyloid deposition in early onset versus late onset Alzheimer’s disease. J Alzheimers Dis 35:813–21. doi: 10.3233/JAD-121927 PubMedGoogle Scholar
  23. Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13:976–86. doi: 10.1016/S1473-3099(13)70269-X PubMedCrossRefGoogle Scholar
  24. Clifford DB, Fagan AM, Holtzman DM (2009) CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology 73:1982–7. doi: 10.1212/WNL.0b013e3181c5b445 PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cohen AD, Rabinovici GD, Mathis CA et al (2012) Using Pittsburgh Compound B for in vivo PET imaging of fibrillar amyloid-beta. Adv Pharmacol 64:27–81. doi: 10.1016/B978-0-12-394816-8.00002-7 PubMedCrossRefPubMedCentralGoogle Scholar
  26. Crews L, Patrick C, Achim CL et al (2009) Molecular pathology of neuro-AIDS (CNS-HIV). Int J Mol Sci 10:1045–63. doi: 10.3390/ijms10031045 PubMedCrossRefPubMedCentralGoogle Scholar
  27. Daily A, Nath A, Hersh LB (2006) Tat peptides inhibit neprilysin. J Neurovirol 12:153–60. doi: 10.1080/13550280600760677 PubMedCrossRefGoogle Scholar
  28. Dickerson BC, Wolk DA (2013) Biomarker-based prediction of progression in MCI: Comparison of AD signature and hippocampal volume with spinal fluid amyloid-β and tau. Front Aging Neurosci 5:55. doi: 10.3389/fnagi.2013.00055 PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ellis RJ, Moore DJ, Childers ME et al (2002) Progression to neuropsychological impairment in human immunodeficiency virus infection predicted by elevated cerebrospinal fluid levels of human immunodeficiency virus RNA. Arch Neurol 59:923–8PubMedCrossRefGoogle Scholar
  30. Engler H, Forsberg A, Almkvist O et al (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129:2856–66. doi: 10.1093/brain/awl178 PubMedCrossRefGoogle Scholar
  31. Fagan AM, Mintun MA, Mach RH et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–9. doi: 10.1002/ana.20730 PubMedCrossRefGoogle Scholar
  32. Fagan AM, Shaw LM, Xiong C et al (2011) Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1–42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch Neurol 68:1137–44. doi: 10.1001/archneurol.2011.105 PubMedCrossRefPubMedCentralGoogle Scholar
  33. Garvey LJ, Pavese N, Politis M et al (2014) Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS 28:67–72. doi: 10.1097/01.aids.0000432467.54003.f7 PubMedCrossRefGoogle Scholar
  34. Gelman BB, Schuenke K (2004) Brain aging in acquired immunodeficiency syndrome: increased ubiquitin-protein conjugate is correlated with decreased synaptic protein but not amyloid plaque accumulation. J Neurovirol 10:98–108. doi: 10.1080/13550280490279816 PubMedCrossRefGoogle Scholar
  35. Gisslén M, Krut J, Andreasson U et al (2009) Amyloid and tau cerebrospinal fluid biomarkers in HIV infection. BMC Neurol 9:63. doi: 10.1186/1471-2377-9-63 PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gougeon M-L, Piacentini M (2009) New insights on the role of apoptosis and autophagy in HIV pathogenesis. Apoptosis 14:501–8. doi: 10.1007/s10495-009-0314-1 PubMedCrossRefGoogle Scholar
  37. Gray F, Scaravilli F, Everall I, Chretien F (1996) Neuropathology of Early HIV‐1 Infection. Brain Pathol 6:1–12PubMedCrossRefGoogle Scholar
  38. Green DA, Masliah E, Vinters HV et al (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19:407–11PubMedCrossRefGoogle Scholar
  39. Hagberg L, Cinque P, Gisslen M et al (2010) Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther 7:15. doi: 10.1186/1742-6405-7-15 PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–5PubMedCrossRefGoogle Scholar
  41. Haughey NJ, Bandaru VVR, Bae M, Mattson MP (2010) Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim Biophys Acta 1801:878–86. doi: 10.1016/j.bbalip.2010.05.003 PubMedCrossRefPubMedCentralGoogle Scholar
  42. Haughey NJ, Zhu X, Bandaru VVR (2013) A biological perspective of CSF lipids as surrogate markers for cognitive status in HIV. J Neuroimmune Pharmacol 8:1136–46. doi: 10.1007/s11481-013-9506-0 PubMedCrossRefGoogle Scholar
  43. Heaton RK, Clifford DB, Franklin DR et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–96. doi: 10.1212/WNL.0b013e318200d727 PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–60. doi: 10.1523/JNEUROSCI.0616-08.2008 PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hölttä M, Hansson O, Andreasson U et al (2013) Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PLoS One 8:e66381. doi: 10.1371/journal.pone.0066381 PubMedCrossRefPubMedCentralGoogle Scholar
  46. Holtzman DM (2011) CSF biomarkers for Alzheimer’s disease: current utility and potential future use. Neurobiol Aging 32(Suppl 1):S4–9. doi: 10.1016/j.neurobiolaging.2011.09.003 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Jack CR, Wiste HJ, Vemuri P et al (2010) Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 133:3336–48. doi: 10.1093/brain/awq277 PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994PubMedCrossRefGoogle Scholar
  49. Kim J, Yoon J-H, Kim Y-S (2013a) HIV-1 Tat Interacts with and Regulates the Localization and Processing of Amyloid Precursor Protein. PLoS One 8:e77972. doi: 10.1371/journal.pone.0077972 PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kim S-J, Ahn J-W, Kim H et al (2013b) Two β-strands of RAGE participate in the recognition and transport of amyloid-β peptide across the blood brain barrier. Biochem Biophys Res Commun 439:252–7. doi: 10.1016/j.bbrc.2013.08.047 PubMedCrossRefGoogle Scholar
  51. Klunk WE, Engler H, Nordberg A, et al. (2004) Imaging Brain Amyloid in Alzheimer’ s Disease with Pittsburgh Compound-B. 306–319.Google Scholar
  52. Knopman DS, Jack CR, Wiste HJ et al (2013) Selective Worsening of Brain Injury Biomarker Abnormalities in Cognitively Normal Elderly Persons With β-Amyloidosis. JAMA Neurol 70:1030–8. doi: 10.1001/jamaneurol.2013.182 PubMedCrossRefGoogle Scholar
  53. Krut JJ, Zetterberg H, Blennow K et al (2013) Cerebrospinal fluid Alzheimer’s biomarker profiles in CNS infections. J Neurol 260:620–6. doi: 10.1007/s00415-012-6688-y PubMedCrossRefGoogle Scholar
  54. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509. doi: 10.1038/nrn2168 PubMedCrossRefGoogle Scholar
  55. Lan X, Xu J, Kiyota T et al (2011) HIV-1 reduces Abeta-degrading enzymatic activities in primary human mononuclear phagocytes. J Immunol 186:6925–32. doi: 10.4049/jimmunol.1100211 PubMedCrossRefPubMedCentralGoogle Scholar
  56. Le Bastard N, Coart E, Vanderstichele H et al (2013) Comparison of two analytical platforms for the clinical qualification of Alzheimer’s disease biomarkers in pathologically-confirmed dementia. J Alzheimer’s Dis 33:117–31. doi: 10.3233/JAD-2012-121246
  57. Lewczuk P, Kamrowski-Kruck H, Peters O et al (2010) Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer’s disease: a multicenter study. Mol Psychiatry 15:138–45. doi: 10.1038/mp.2008.84 PubMedCrossRefGoogle Scholar
  58. Liu Y, Jones M, Hingtgen CM et al (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–7. doi: 10.1038/82199
  59. Lopresti BJ, Klunk WE, Mathis CA (2005) Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 46:1959–72PubMedGoogle Scholar
  60. Lynch MA (2014) The impact of neuroimmune changes on development of amyloid pathology; relevance to Alzheimer’s disease. Immunology 141:292–301. doi: 10.1111/imm.12156 PubMedCrossRefGoogle Scholar
  61. Madani R, Poirier R, Wolfer DP et al (2006) Lack of Neprilysin Suffices To Generate Murine Amyloid-Like Deposits in the Brain and Behavioral Deficit In Vivo 1878:1871–1878. doi: 10.1002/jnr Google Scholar
  62. Mankowski JL, Queen SE, Tarwater PM et al (2002) Accumulation of beta-amyloid precursor protein in axons correlates with CNS expression of SIV gp41. J Neuropathol Exp Neurol 61:85–90PubMedGoogle Scholar
  63. Marchant NL, Reed BR, Sanossian N et al (2013) The aging brain and cognition: contribution of vascular injury and aβ to mild cognitive dysfunction. JAMA Neurol 70:488–95. doi: 10.1001/2013.jamaneurol.405 PubMedCrossRefPubMedCentralGoogle Scholar
  64. Matsuda S, Matsuda Y, D’Adamio L (2003) Amyloid beta protein precursor (AbetaPP), but not AbetaPP-like protein 2, is bridged to the kinesin light chain by the scaffold protein JNK-interacting protein 1. J Biol Chem 278:38601–6. doi: 10.1074/jbc.M304379200 PubMedCrossRefGoogle Scholar
  65. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 1:893–904. doi: 10.1038/sj.cdd.4401577 CrossRefGoogle Scholar
  66. Mattsson N, Andreasson U, Persson S (2011) The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement Alzheimers Dement 7:386–395. doi: 10.1016/j.jalz.2011.05.2243 CrossRefGoogle Scholar
  67. Mattsson N, Zetterberg H, Hansson O et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–93. doi: 10.1001/jama.2009.1064 PubMedCrossRefGoogle Scholar
  68. Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. doi: 10.1126/science.1197623 PubMedCrossRefPubMedCentralGoogle Scholar
  69. Mintun MA, Larossa GN, Sheline YI et al (2006) [11C] PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67:446–52. doi: 10.1212/01.wnl.0000228230.26044.a4 PubMedCrossRefGoogle Scholar
  70. Morris JC, Price JL (2001) Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J Mol Neurosci 17:101–18PubMedCrossRefGoogle Scholar
  71. Morris JC, Roe CM, Xiong C et al (2010) APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 67:122–31. doi: 10.1002/ana.21843 PubMedCrossRefPubMedCentralGoogle Scholar
  72. Nebuloni M, Pellegrinelli A, Ferri A et al (2001) Beta amyloid precursor protein and patterns of HIV p24 immunohistochemistry in different brain areas of AIDS patients. AIDS 15:571–5PubMedCrossRefGoogle Scholar
  73. Olsson A, Höglund K, Sjögren M et al (2003) Measurement of α- and β-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Exp Neurol 183:74–80. doi: 10.1016/S0014-4886(03)00027-X PubMedCrossRefGoogle Scholar
  74. Peluso MJ, Meyerhoff DJ, Price RW et al (2013) Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis 207:1703–12. doi: 10.1093/infdis/jit088 PubMedCrossRefPubMedCentralGoogle Scholar
  75. Potter R, Patterson BW, Elbert DL, et al. (2013) Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers. Sci Transl Med 5:189ra77. doi:  10.1126/scitranslmed.3005615
  76. Price RW, Peterson J, Fuchs D et al (2013) Approach to Cerebrospinal Fluid (CSF) Biomarker Discovery and Evaluation in HIV Infection. J Neuroimmune Pharmacol 8:1147–58. doi: 10.1007/s11481-013-9491-3 PubMedCrossRefPubMedCentralGoogle Scholar
  77. Ramaker JM, Swanson TL, Copenhaver PF (2013) Amyloid precursor proteins interact with the heterotrimeric G protein Go in the control of neuronal migration. J Neurosci 33:10165–81. doi: 10.1523/JNEUROSCI.1146-13.2013 PubMedCrossRefPubMedCentralGoogle Scholar
  78. Reiman EM, Chen K, Liu X et al (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 106:6820–5. doi: 10.1073/pnas.0900345106 PubMedCrossRefPubMedCentralGoogle Scholar
  79. Reiman EM, Quiroz YT, Fleisher AS et al (2012) Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case–control study. Lancet Neurol 11:1048–1056. doi: 10.1016/S1474-4422(12)70228-4 PubMedCrossRefGoogle Scholar
  80. Rempel HC, Pulliam L (2005) HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS 19:127–35PubMedCrossRefGoogle Scholar
  81. Robertson K, Liner J, Meeker RB (2012) Antiretroviral neurotoxicity. J Neurovirol 18:388–99. doi: 10.1007/s13365-012-0120-3 PubMedCrossRefPubMedCentralGoogle Scholar
  82. Robertson KR, Su Z, Margolis DM et al (2010) Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology 74:1260–6. doi: 10.1212/WNL.0b013e3181d9ed09 PubMedCrossRefPubMedCentralGoogle Scholar
  83. Roe CM, Fagan AM, Grant EA et al (2013) Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology 80:1784–91. doi: 10.1212/WNL.0b013e3182918ca6 PubMedCrossRefPubMedCentralGoogle Scholar
  84. Roe CM, Mintun MA, D’Angelo G et al (2008) Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake. Arch Neurol 65:1467–71. doi: 10.1001/archneur.65.11.1467 PubMedCrossRefPubMedCentralGoogle Scholar
  85. Rosén C, Hansson O, Blennow K, Zetterberg H (2013) Fluid biomarkers in Alzheimer’s disease - current concepts. Mol Neurodegener 8:20. doi: 10.1186/1750-1326-8-20 PubMedCrossRefPubMedCentralGoogle Scholar
  86. Steinbrink F, Evers S, Buerke B et al (2013) Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur J Neurol 20:420–8. doi: 10.1111/ene.12006 PubMedCrossRefGoogle Scholar
  87. Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR (2011) Breaking down the barrier: the effects of HIV-1 on the blood–brain barrier. Brain Res 1399:96–115. doi: 10.1016/j.brainres.2011.05.015 PubMedCrossRefPubMedCentralGoogle Scholar
  88. Strelow LI, Watry DD, Fox HS, Nelson JA (1998) Efficient infection of brain microvascular endothelial cells by an in vivo-selected neuroinvasive SIVmac variant. J Neurovirol 4:269–80PubMedCrossRefGoogle Scholar
  89. Su Y, D’Angelo GM, Vlassenko AG et al (2013) Quantitative Analysis of PiB-PET with FreeSurfer ROIs. PLoS One 8:e73377. doi: 10.1371/journal.pone.0073377 PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ubhi K, Masliah E (2013) Alzheimer’s disease: recent advances and future perspectives. J Alzheimers Dis 33(Suppl 1):S185–94. doi: 10.3233/JAD-2012-129028 PubMedGoogle Scholar
  91. Valcour VG (2013) HIV, aging, and cognition: emerging issues. Top Antivir Med 21:119–23PubMedGoogle Scholar
  92. Vehmas A, Lieu J, Pardo CA (2004) Amyloid precursor protein expression in circulating monocytes and brain macrophages from patients with HIV-associated cognitive impairment. J Neuroimmunol 157:99–110. doi: 10.1016/j.jneuroim.2004.08.035 PubMedCrossRefGoogle Scholar
  93. White JA, Manelli AM, Holmberg KH et al (2005) Differential effects of oligomeric and fibrillar amyloid-beta 1–42 on astrocyte-mediated inflammation. Neurobiol Dis 18:459–65. doi: 10.1016/j.nbd.2004.12.013 PubMedCrossRefGoogle Scholar
  94. Xu J, Ikezu T (2009) The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: a foreseeable medical challenge in post-HAART era. J Neuroimmune Pharmacol 4:200–12. doi: 10.1007/s11481-008-9136-0 PubMedCrossRefPubMedCentralGoogle Scholar
  95. Zheng L, Cedazo-Minguez A, Hallbeck M et al (2012) Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system. Transl Neurodegener 1:19. doi: 10.1186/2047-9158-1-19 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of NeurologySchool of Medicine, Washington University in St. LouisSaint LouisUSA
  2. 2.Department of RadiologyWashington University in St. LouisSaint LouisUSA
  3. 3.Department of Biomedical EngineeringWashington University in St. LouisSaint LouisUSA
  4. 4.Department of MicrobiologyWashington University in St. LouisSaint LouisUSA
  5. 5.Hope Center for Neurological DisordersWashington University in St. LouisSaint LouisUSA

Personalised recommendations