Journal of Neuroimmune Pharmacology

, Volume 9, Issue 3, pp 285–292 | Cite as

Sorting Through the Roles of Beclin 1 in Microglia and Neurodegeneration

PERSPECTIVE

Abstract

Beclin 1 has a well-established role in regulating autophagy, a cellular degradation pathway. Although the yeast ortholog of beclin 1 (Atg6/Vps30) was discovered to also regulate vacuolar protein sorting nearly 30 years ago, the varied functions of beclin 1 in mammalian cells are only beginning to be sorted out. We recently described a role for beclin 1 in regulating recycling of phagocytic receptors in microglia, a function analogous to that of its yeast ortholog. Microglia lacking beclin 1 have a reduced phagocytic capacity, which impairs clearance of amyloid β (Aβ) in a mouse model of Alzheimer’s Disease (AD). Here we summarize these findings and discuss the implications for beclin 1-regulated receptor recycling in neurodegenerative disease.

Keywords

Beclin 1 Phosphatidylinositol 3-phosphate PI3P Phosphatidylinositol 3-kinase PI3K VPS35 retromer Receptor recycling Phagocytosis Alzheimer’s Disease Neurodegeneration 

References

  1. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CAF, Breiderhoff T, Jansen P, Wu X, Bales KR, Cappai R, Masters CL, Gliemann J, Mufson EJ, Hyman BT, Paul SM, Nykjaer A, Willnow TE (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102:13461–6. doi:10.1073/pnas.0503689102 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Berger S, Romero X, Ma C, Guoxing W, Faubian W, Liao G, Compeer E, Keszei M, Rameh L, Wang N (2012) SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol 11:920–927. doi:10.1038/ni.1931.SLAM CrossRefGoogle Scholar
  3. Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28:4283–92. doi:10.1523/JNEUROSCI.4814-07.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Burda P (2002) Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci 115:3889–3900. doi:10.1242/jcs.00090 PubMedCrossRefGoogle Scholar
  5. Chen D, Xiao H, Zhang K, Wang B, Gao Z, Jian Y, Qi X, Sun J, Miao L, Yang C (2010) Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327:1261–4. doi:10.1126/science.1184840 PubMedCrossRefGoogle Scholar
  6. Czirr E, Wyss-coray T (2012) Review series. The immunology of neurodegeneration. doi:10.1172/JCI58656.1156 Google Scholar
  7. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527–49. doi:10.1016/j.chom.2009.05.016 PubMedCentralPubMedCrossRefGoogle Scholar
  8. El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, Freeman MW, Luster AD (2003) CD36 mediates the innate host response to beta-amyloid. J Exp Med 197:1657–66. doi:10.1084/jem.20021546 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Feinstein TN, Wehbi VL, Ardura JA, Wheeler DS, Ferrandon S, Gardella TJ, Vilardaga J-P (2011) Retromer terminates the generation of cAMP by internalized PTH receptors. Nat Chem Biol 7:278–84. doi:10.1038/nchembio.545 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fjorback AW, Seaman M, Gustafsen C, Mehmedbasic A, Gokool S, Wu C, Militz D, Schmidt V, Madsen P, Nyengaard JR, Willnow TE, Christensen EI, Mobley WB, Nykjær A, Andersen OM (2012) Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci 32:1467–80. doi:10.1523/JNEUROSCI.2272-11.2012 PubMedCrossRefGoogle Scholar
  11. Fujiki Y, Yoshimoto K, Ohsumi Y (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol 143:1132–9. doi:10.1104/pp. 106.093864 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Furuya N, Yu J, Byfield M, Pattingre S, Levine B (2005) The Evolutionarily Conserved Domain of Beclin 1 is Required for Vps34 binding, Autophagy and Tumor Supressor function. Autophagy 1:46–52PubMedCrossRefGoogle Scholar
  13. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–43. doi:10.1016/j.neuron.2013.04.014 PubMedCrossRefGoogle Scholar
  14. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert J-C, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–27. doi:10.1056/NEJMoa1211851 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–9. doi:10.1038/nature04724 PubMedCrossRefGoogle Scholar
  16. He C, Levine B (2010) The Beclin 1 interactome. Curr Opin Cell Biol 22:140–9. doi:10.1016/j.ceb.2010.01.001 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 Forms Two Distinct Phosphatidylinositol 3-Kinase Complexes with Mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372. doi:10.1091/mbc.E08 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Jaeger PA, Pickford F, Sun C-H, Lucin KM, Masliah E, Wyss-Coray T (2010) Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One 5:e11102. doi:10.1371/journal.pone.0011102 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–16. doi:10.1056/NEJMoa1211103 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kametaka S (1998) Apg14p and Apg6/Vps30p Form a Protein Complex Essential for Autophagy in the Yeast, Saccharomyces cerevisiae. J Biol Chem 273:22284–22291. doi:10.1074/jbc.273.35.22284 PubMedCrossRefGoogle Scholar
  21. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–30PubMedCentralPubMedCrossRefGoogle Scholar
  22. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–4. doi:10.1038/nature04723 PubMedCrossRefGoogle Scholar
  23. Konishi A, Arakawa S, Yue Z, Shimizu S (2012) Involvement of Beclin 1 in engulfment of apoptotic cells. J Biol Chem 287:13919–29. doi:10.1074/jbc.M112.348375 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525. doi:10.1146/annurev.cb.05.110189.002411 PubMedCrossRefGoogle Scholar
  25. Lane RF, Raines SM, Steele JW, Ehrlich ME, Lah JA, Small SA, Tanzi RE, Attie AD, Gandy S (2010) Diabetes-associated SorCS1 regulates Alzheimer’s amyloid-beta metabolism: evidence for involvement of SorL1 and the retromer complex. J Neurosci 30:13110–5. doi:10.1523/JNEUROSCI.3872-10.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Li X, Prescott M, Adler B, Boyce JD, Devenish RJ (2013) Beclin 1 is required for starvation-enhanced, but not rapamycin-enhanced, LC3-associated phagocytosis of Burkholderia pseudomallei in RAW 264.7 cells. Infect Immun 81:271–7. doi:10.1128/IAI.00834-12 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Liang XH, Kleeman LK, Jiang HH, Goldman JE, Berry G, Herman B, Levine B, Jiang HUIHUI, Gordon G (1998) Protection against Fatal Sindbis Virus Encephalitis by Beclin, a Novel Bcl-2-Interacting Protein Protection against Fatal Sindbis Virus Encephalitis by Beclin, a Novel Bcl-2-Interacting Protein. J Virol 72:8586–8596PubMedCentralPubMedGoogle Scholar
  28. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999a) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–6. doi:10.1038/45257 PubMedCrossRefGoogle Scholar
  29. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999b) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–6. doi:10.1038/45257 PubMedCrossRefGoogle Scholar
  30. Liang X, Slifer M, Martin ER, Schnetz-boutaud N, Anderson B, Züchner S, Gwirtsman H, Gilbert JR, Pericak-vance MA, Haines JL (2009) Genomic convergence to identify candidate genes for Alzheimer disease on chromosome 10. Hum Mutat 30:463–471. doi:10.1002/humu.20953.Genomic PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lucin KM, O’Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ, Mastroeni DF, Rogers J, Spencer B, Masliah E, Wyss-Coray T (2013) Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 79:873–86. doi:10.1016/j.neuron.2013.06.046 PubMedCrossRefGoogle Scholar
  32. Martinez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitzgerald P, Hengartner MO, Green DR (2011) (LC3) -associated phagocytosis is required for the ef fi cient clearance of dead cells. doi: 10.1073/pnas.1113421108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1113421108
  33. Meléndez A, Tallóczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–91. doi:10.1126/science.1087782 PubMedCrossRefGoogle Scholar
  34. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–4. doi:10.1038/nature06616 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz C, Dall’Armi C, Simoes S, Point Du Jour KS, McCabe BD, Small SA, Di Paolo G (2013) Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nat Commun 4:2250. doi:10.1038/ncomms3250 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mrak RE (2012) Microglia in Alzheimer brain: a neuropathological perspective. Int J Alzheimers Dis 2012:165021. doi:10.1155/2012/165021 PubMedCentralPubMedGoogle Scholar
  37. Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O, Small SA (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci USA 105:7327–32. doi:10.1073/pnas.0802545105 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–37. doi:10.1146/annurev-pathol-020712-163918 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Nisar S, Kelly E, Cullen PJ, Mundell SJ (2010) Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent. Traffic 11:508–19. doi:10.1111/j.1600-0854.2010.01035.x PubMedCrossRefGoogle Scholar
  40. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–22PubMedGoogle Scholar
  41. Obara K, Sekito T, Ohsumi Y (2006) Assortment of Phosphatidylinositol 3-Kinase Complexes — Atg14p Directs Association of Complex I to the Pre-autophagosomal Structure in Saccharomyces cerevisiae. Mol Biol Cell 17:1527–1539. doi:10.1091/mbc.E05 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Paravicini G, Horazdovsky BF, Emr SD (1992) Alternative pathways for the sorting of soluble vacuolar proteins in yeast: a vps35 null mutant missorts and secretes only a subset of vacuolar hydrolases. Mol Biol Cell 3:415–27PubMedCentralPubMedCrossRefGoogle Scholar
  43. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 118:2190–2199. doi:10.1172/JCI33585.2190 PubMedCentralPubMedGoogle Scholar
  44. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–46. doi:10.1016/j.cell.2006.12.044 PubMedCrossRefGoogle Scholar
  45. Reddy JV, Seaman MN (2001) Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol Biol Cell 12:3242–56PubMedCentralPubMedCrossRefGoogle Scholar
  46. Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein Sorting in Saccharomyces cerevisiae : Isolation of Mutants Defective in the Delivery and Processing of Multiple Vacuolar Hydrolases. Mol Cell Biol 8:4936–4948. doi:10.1128/MCB.8.11.4936.Updated PubMedCentralPubMedGoogle Scholar
  47. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H, Chen F, Shibata N, Lunetta KL, Pardossi-Piquard R, Bohm C, Wakutani Y, Cupples LA, Cuenco KT, Green RC, Pinessi L, Rainero I, Sorbi S, Bruni A, Duara R, Friedland RP, Inzelberg R, Hampe W, Bujo H, Song Y-Q, Andersen OM, Willnow TE, Graff-Radford N, Petersen RC, Dickson D, Der SD, Fraser PE, Schmitt-Ulms G, Younkin S, Mayeux R, Farrer LA, St George-Hyslop P (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–77. doi:10.1038/ng1943 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Rothman JH, Stevens TH (1986) Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47:1041–51PubMedCrossRefGoogle Scholar
  49. Ruck A, Attonito J, Garces KT, Núnez L, Palmisano NJ, Rubel Z, Bai Z, Nguyen KCQ, Sun L, Grant BD, Hall DH, Meléndez A (2011) The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 7:386–400. doi:10.4161/auto.7.4.14391 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M (2013) Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog Neurobiol 106–107:33–54. doi:10.1016/j.pneurobio.2013.06.002 PubMedCrossRefGoogle Scholar
  51. Sanjuan MA, Dillon CP, Tait SWG, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–7. doi:10.1038/nature06421 PubMedCrossRefGoogle Scholar
  52. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91PubMedCrossRefGoogle Scholar
  53. Seaman MNJ (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165:111–22. doi:10.1083/jcb.200312034 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Seaman MN, Marcusson EG, Cereghino JL, Emr SD (1997) Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol 137:79–92PubMedCentralPubMedCrossRefGoogle Scholar
  55. Shacka JJ, Lu J, Xie Z-L, Uchiyama Y, Roth KA, Zhang J (2007) Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett 414:57–60. doi:10.1016/j.neulet.2006.12.025 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel J-P, Kim T-W (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58:909–19. doi:10.1002/ana.20667 PubMedCrossRefGoogle Scholar
  57. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–88. doi:10.1523/JNEUROSCI.4390-09.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Spoelgen R, von Arnim CAF, Thomas AV, Peltan ID, Koker M, Deng A, Irizarry MC, Andersen OM, Willnow TE, Hyman BT (2006) Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme. J Neurosci 26:418–28. doi:10.1523/JNEUROSCI.3882-05.2006 PubMedCrossRefGoogle Scholar
  59. Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavaré JM, Cullen PJ (2013) A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol 15:461–71. doi:10.1038/ncb2721 PubMedCrossRefGoogle Scholar
  60. Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 105:19211–6. doi:10.1073/pnas.0810452105 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–81. doi:10.1093/emboj/20.21.5971 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–18. doi:10.1111/j.1365-2443.2007.01050.x PubMedCrossRefGoogle Scholar
  63. Temkin P, Lauffer B, Jager S, Cimermancic P, Krogan NJ, von Zastrow M (2011a) SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 13:715–721PubMedCentralPubMedCrossRefGoogle Scholar
  64. Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan NJ, von Zastrow M (2011b) SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 13:715–21. doi:10.1038/ncb2252 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Tian Y, Bustos V, Flajolet M, Greengard P (2011) A small-molecule enhancer of autophagy decreases levels of Abeta and APP-CTF via Atg5-dependent autophagy pathway. FASEB J 25:1934–42. doi:10.1096/fj.10-175158 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Tsukada M (1993) Isolation and charact zation of autophagy-defective mutants of. FEBS Lett 333:169–174PubMedCrossRefGoogle Scholar
  67. Vergés M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, Burlingame AL, Haft CR, Mostov KE (2004) The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 6:763–9. doi:10.1038/ncb1153 PubMedCrossRefGoogle Scholar
  68. Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155:19–25. doi:10.1083/jcb.200107069 PubMedCentralPubMedCrossRefGoogle Scholar
  69. Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu R-M, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89:162–7. doi:10.1016/j.ajhg.2011.06.001 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Wilkinson K, El Khoury J (2012) Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer’s disease. Int J Alzheimers Dis 2012:489456. doi:10.1155/2012/489456 PubMedCentralPubMedGoogle Scholar
  71. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–31. doi:10.1016/j.ceb.2009.11.014 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–82. doi:10.1073/pnas.2436255100 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119:259–70. doi:10.1242/jcs.02735 PubMedCrossRefGoogle Scholar
  74. Zhou X, Wang L, Hasegawa H, Amin P, Han B, Kaneko S, He Y (2010) Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. PNAS 107:9424–9429. doi:10.1073/pnas.0914725107/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.0914725107 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brücke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89:168–75. doi:10.1016/j.ajhg.2011.06.008 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  1. 1.Cell and Molecular Biology ProgramStanford UniversityStanfordUSA
  2. 2.Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordUSA
  3. 3.Center for Tissue Regeneration, Repair, and RestorationVeterans Administration Palo Alto, Health Care SystemPalo AltoUSA

Personalised recommendations