Journal of Neuroimmune Pharmacology

, Volume 8, Issue 4, pp 791–806 | Cite as

Innate Immune Responses in the CNS: Role of Toll-Like Receptors, Mechanisms, and Therapeutic Opportunities in Multiple Sclerosis

  • Giulio Podda
  • Mukanthu Nyirenda
  • James Crooks
  • Bruno Gran


Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), which is considered immune-mediated. Our knowledge of innate immune mechanisms in the CNS and their implications for pathogenesis and treatment of multiple sclerosis (MS) are limited, particularly if compared with the body of literature on adaptive immune mechanisms. There is, however, growing understanding of the workings of the innate immune system and accordingly, of its potential role in driving immune-mediated pathology. Such mechanisms will be discussed in this review along with potential therapeutic opportunities. These may require blocking pathogenic innate immunity and in some cases, promoting its protective effects.


Multiple sclerosis Autoimmune disease Experimental autoimmune encephalomyelitis Innate immunity Toll-like receptor T cell Antigen-presenting cell 



This work was supported in part by grants from the MS Society of Great Britain and Northern Ireland (Grant 863/07) and the Italian MS Society (Grant 2011/R/21) to BG. We are grateful to Dr Clett Erridge (University of Leicester) for helpful discussions.

Conflict of Interest

BG has received support from Biogen Idec, Bayer Schering, Teva UK, Merck Serono and Novartis for the attendance of scientific conferences and for research consumables used in MS research. He has been a Consultant to Merck Serono and Teva UK in MS-related projects.


  1. Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95PubMedCrossRefGoogle Scholar
  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  3. Aloisi F, Serafini B, Magliozzi R, Howell OW, Reynolds R (2010) Detection of Epstein-Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain 133:e157PubMedCrossRefGoogle Scholar
  4. Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, Wallstrom E, Lobell A, Brundin L, Lassmann H, Harris RA (2008) Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 84:1248–1255PubMedCrossRefGoogle Scholar
  5. Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR (2005) Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 175:4189–4193PubMedGoogle Scholar
  6. Ariza ME, Glaser R, Kaumaya PT, Jones C, Williams MV (2009) The EBV-encoded dUTPase activates NF-kappa B through the TLR2 and MyD88-dependent signaling pathway. J Immunol 182:851–859PubMedGoogle Scholar
  7. Arslan F, Houtgraaf JH, Keogh B, Kazemi K, de Jong R, McCormack WJ, O’Neill LA, McGuirk P, Timmers L, Smeets MB, Akeroyd L, Reilly M, Pasterkamp G, de Kleijn DP (2012) Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ Cardiovasc Interv 5:279–287PubMedCrossRefGoogle Scholar
  8. Ascherio A, Munch M (2000) Epstein-Barr virus and multiple sclerosis. Epidemiology 11:220–224PubMedCrossRefGoogle Scholar
  9. Ascherio A, Munger KL (2007) Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 61:288–299PubMedCrossRefGoogle Scholar
  10. Ascherio A, Munger KL (2010) Epstein-barr virus infection and multiple sclerosis: a review. J NeuroImmune Pharm 5:271–277CrossRefGoogle Scholar
  11. Ayyoub M, Deknuydt F, Raimbaud I, Dousset C, Leveque L, Bioley G, Valmori D (2009) Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the T(H)17 lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci 106:8635–8640PubMedCrossRefGoogle Scholar
  12. Bach JF (2005) Infections and autoimmune diseases. J Autoimmun 25(Suppl):74–80PubMedCrossRefGoogle Scholar
  13. Balashov KE, Aung LL, Vaknin-Dembinsky A, Dhib-Jalbut S, Weiner HL (2010) Interferon-beta inhibits toll-like receptor 9 processing in multiple sclerosis. Ann Neurol 68:899–906PubMedCrossRefGoogle Scholar
  14. Banerjee A, Gugasyan R, McMahon M, Gerondakis S (2006) Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells. Proc Natl Acad Sci 103:3274–3279PubMedCrossRefGoogle Scholar
  15. Bao M, Liu YJ (2013) Regulation of TLR7/9 signaling in plasmacytoid dendritic cells. Protein & Cell 4:40–52CrossRefGoogle Scholar
  16. Barrat FJ, Meeker T, Chan JH, Guiducci C, Coffman RL (2007) Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 37:3582–3586PubMedCrossRefGoogle Scholar
  17. Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C, Hafler DA (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113:4240–4249PubMedCrossRefGoogle Scholar
  18. Bever CT, Jr., McFarlin DE, Levy HB (1992) A comparison of interferon responses to poly ICLC in males and females. Journal of Interferon Research Spec No:85–90.Google Scholar
  19. Bever CT Jr, Panitch HS, Levy HB, McFarlin DE, Johnson KP (1991) Gamma-interferon induction in patients with chronic progressive MS. Neurology 41:1124–1127PubMedCrossRefGoogle Scholar
  20. Bsibsi M, Bajramovic JJ, Vogt MH, van Duijvenvoorden E, Baghat A, Persoon-Deen C, Tielen F, Verbeek R, Huitinga I, Ryffel B, Kros A, Gerritsen WH, Amor S, van Noort JM (2010) The microtubule regulator stathmin is an endogenous protein agonist for TLR3. J Immunol 184:6929–6937PubMedCrossRefGoogle Scholar
  21. Buenafe AC, Bourdette DN (2007) Lipopolysaccharide pretreatment modulates the disease course in experimental autoimmune encephalomyelitis. J Neuroimmunol 182:32–40PubMedCrossRefGoogle Scholar
  22. Buljevac D, Flach HZ, Hop WC, Hijdra D, Laman JD, Savelkoul HF, van Der Meche FG, van Doorn PA, Hintzen RQ (2002) Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125:952–960PubMedCrossRefGoogle Scholar
  23. Bustamante MF, Fissolo N, Rio J, Espejo C, Costa C, Mansilla MJ, Lizasoain I, Moro MA, Carmen Edo M, Montalban X, Comabella M (2011) Implication of the Toll-like receptor 4 pathway in the response to interferon-beta in multiple sclerosis. Ann Neurol 70:634–645PubMedCrossRefGoogle Scholar
  24. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J (2003) Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197:403–411PubMedCrossRefGoogle Scholar
  25. Caron G, Duluc D, Fremaux I, Jeannin P, David C, Gascan H, Delneste Y (2005) Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J Immunol 175:1551–1557PubMedGoogle Scholar
  26. Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7:1074–1081PubMedCrossRefGoogle Scholar
  27. Ciorba MA, Bettonville EE, McDonald KG, Metz R, Prendergast GC, Newberry RD, Stenson WF (2010) Induction of IDO-1 by immunostimulatory DNA limits severity of experimental colitis. J Immunol 184:3907–3916PubMedCrossRefGoogle Scholar
  28. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106PubMedCrossRefGoogle Scholar
  29. Correale J, Farez M (2009) Helminth antigens modulate immune responses in cells from multiple sclerosis patients through TLR2-dependent mechanisms. J Immunol 183:5999–6012PubMedCrossRefGoogle Scholar
  30. Correale J, Fiol M, Gilmore W (2006) The risk of relapses in multiple sclerosis during systemic infections. Neurology 67:652–659PubMedCrossRefGoogle Scholar
  31. Cottalorda A, Verschelde C, Marcais A, Tomkowiak M, Musette P, Uematsu S, Akira S, Marvel J, Bonnefoy-Berard N (2006) TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur J Immunol 36:1684–1693PubMedCrossRefGoogle Scholar
  32. Crellin NK, Garcia RV, Hadisfar O, Allan SE, Steiner TS, Levings MK (2005) Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J Immunol 175:8051–8059PubMedGoogle Scholar
  33. Demaria O, Pagni PP, Traub S, de Gassart A, Branzk N, Murphy AJ, Valenzuela DM, Yancopoulos GD, Flavell RA, Alexopoulou L (2010) TLR8 deficiency leads to autoimmunity in mice. J Clin Invest 120:3651–3662PubMedGoogle Scholar
  34. Doyle SL, Jefferies CA, Feighery C, O’Neill LA (2007) Signaling by Toll-like receptors 8 and 9 requires Bruton’s tyrosine kinase. J Biol Chem 282:36953–36960PubMedCrossRefGoogle Scholar
  35. Dunne A, Marshall NA, Mills KH (2011) TLR based therapeutics. Curr Opin Pharmacol 11:404–411PubMedCrossRefGoogle Scholar
  36. Durelli L, Bongioanni MR, Cavallo R, Ferrero B, Ferri R, Ferrio MF, Bradac GB, Riva A, Vai S, Geuna M et al (1994) Chronic systemic high-dose recombinant interferon alfa-2a reduces exacerbation rate, MRI signs of disease activity, and lymphocyte interferon gamma production in relapsing-remitting multiple sclerosis. Neurology 44:406–413PubMedCrossRefGoogle Scholar
  37. Edwards S, Zvartau M, Clarke H, Irving W, Blumhardt LD (1998) Clinical relapses and disease activity on magnetic resonance imaging associated with viral upper respiratory tract infections in multiple sclerosis. J Neurol Neurosurg Psychiatry 64:736–741PubMedCrossRefGoogle Scholar
  38. Enevold C, Oturai AB, Sorensen PS, Ryder LP, Koch-Henriksen N, Bendtzen K (2010) Polymorphisms of innate pattern recognition receptors, response to interferon-beta and development of neutralizing antibodies in multiple sclerosis patients. Mult Scler 16:942–949PubMedCrossRefGoogle Scholar
  39. Erridge C (2010) Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 87:989–999PubMedCrossRefGoogle Scholar
  40. Fabbri M (2012) TLRs as miRNA receptors. Cancer Res 72:6333–6337PubMedCrossRefGoogle Scholar
  41. Fallarino F, Luca G, Calvitti M, Mancuso F, Nastruzzi C, Fioretti MC, Grohmann U, Becchetti E, Burgevin A, Kratzer R, van Endert P, Boon L, Puccetti P, Calafiore R (2009) Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone. J Exp Med 206:2511–2526PubMedCrossRefGoogle Scholar
  42. Farez MF, Quintana FJ, Gandhi R, Izquierdo G, Lucas M, Weiner HL (2009) Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat Immunol 10:958–964PubMedCrossRefGoogle Scholar
  43. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950PubMedCrossRefGoogle Scholar
  44. Fiola S, Gosselin D, Takada K, Gosselin J (2010) TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells. J Immunol 185:3620–3631PubMedCrossRefGoogle Scholar
  45. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354:942–955PubMedCrossRefGoogle Scholar
  46. Gambuzza M, Licata N, Palella E, Celi D, Foti Cuzzola V, Italiano D, Marino S, Bramanti P (2011) Targeting Toll-like receptors: emerging therapeutics for multiple sclerosis management. J Neuroimmunol 239:1–12PubMedCrossRefGoogle Scholar
  47. Gaudreault E, Fiola S, Olivier M, Gosselin J (2007) Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J Virol 81:8016–8024PubMedCrossRefGoogle Scholar
  48. Gelman AE, Zhang J, Choi Y, Turka LA (2004) Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol 172:6065–6073PubMedGoogle Scholar
  49. Gelman AE, LaRosa DF, Zhang J, Walsh PT, Choi Y, Sunyer JO, Turka LA (2006) The adaptor molecule MyD88 activates PI-3 kinase signaling in CD4+ T cells and enables CpG oligodeoxynucleotide-mediated costimulation. Immunity 25:783–793PubMedCrossRefGoogle Scholar
  50. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885PubMedGoogle Scholar
  51. Govindaraj RG, Manavalan B, Lee G, Choi S (2010) Molecular modeling-based evaluation of hTLR10 and identification of potential ligands in Toll-like receptor signaling. PLoS One 5:e12713PubMedCrossRefGoogle Scholar
  52. Gran B, Hemmer B, Vergelli M, McFarland HF, Martin R (1999) Molecular mimicry and multiple sclerosis: degenerate T-cell recognition and the induction of autoimmunity. Ann Neurol 45:559–567PubMedCrossRefGoogle Scholar
  53. Guan Y, Ranoa DR, Jiang S, Mutha SK, Li X, Baudry J, Tapping RI (2010) Human TLRs 10 and 1 share common mechanisms of innate immune sensing but not signaling. J Immunol 184:5094–5103PubMedCrossRefGoogle Scholar
  54. Guo B, Chang EY, Cheng G (2008) The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118:1680–1690PubMedCrossRefGoogle Scholar
  55. Hanafy KA, Sloane JA (2011) Regulation of remyelination in multiple sclerosis. FEBS Lett 585:3821–3828PubMedCrossRefGoogle Scholar
  56. Hansen BS, Hussain RZ, Lovett-Racke AE, Thomas JA, Racke MK (2006) Multiple toll-like receptor agonists act as potent adjuvants in the induction of autoimmunity. J Neuroimmunol 172:94–103PubMedCrossRefGoogle Scholar
  57. Hawn TR, Scholes D, Wang H, Li SS, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM (2009) Genetic variation of the human urinary tract innate immune response and asymptomatic bacteriuria in women. PLoS One 4:e8300PubMedCrossRefGoogle Scholar
  58. Hayashi T, Gray CS, Chan M, Tawatao RI, Ronacher L, McGargill MA, Datta SK, Carson DA, Corr M (2009) Prevention of autoimmune disease by induction of tolerance to Toll-like receptor 7. Proc Natl Acad Sci 106:2764–2769PubMedCrossRefGoogle Scholar
  59. Hayashi T, Yao S, Crain B, Chan M, Tawatao RI, Gray C, Vuong L, Lao F, Cottam HB, Carson DA, Corr M (2012) Treatment of autoimmune inflammation by a TLR7 ligand regulating the innate immune system. PLoS One 7:e45860PubMedCrossRefGoogle Scholar
  60. Herrmann I, Kellert M, Schmidt H, Mildner A, Hanisch UK, Bruck W, Prinz M, Nau R (2006) Streptococcus pneumoniae Infection aggravates experimental autoimmune encephalomyelitis via Toll-like receptor 2. Infect Immun 74:4841–4848PubMedCrossRefGoogle Scholar
  61. Higgins SC, Jarnicki AG, Lavelle EC, Mills KH (2006) TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol 177:7980–7989PubMedGoogle Scholar
  62. Hillman LJ, Burns SP, Kraft GH (2000) Neurological worsening due to infection from renal stones in a multiple sclerosis patient. Mult Scler 6:403–406PubMedGoogle Scholar
  63. Hirotani M, Niino M, Fukazawa T, Kikuchi S, Yabe I, Hamada S, Tajima Y, Sasaki H (2010) Decreased IL-10 production mediated by Toll-like receptor 9 in B cells in multiple sclerosis. J Neuroimmunol 221:95–100PubMedCrossRefGoogle Scholar
  64. Hoebe K, Beutler B (2005) Unraveling innate immunity using large scale N-ethyl-N-nitrosourea mutagenesis. Tissue Antigens 65:395–401PubMedCrossRefGoogle Scholar
  65. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777PubMedCrossRefGoogle Scholar
  66. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537PubMedGoogle Scholar
  67. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330PubMedGoogle Scholar
  68. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173–1179PubMedCrossRefGoogle Scholar
  69. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3:499PubMedCrossRefGoogle Scholar
  70. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384PubMedCrossRefGoogle Scholar
  71. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650PubMedCrossRefGoogle Scholar
  72. Keating SE, Maloney GM, Moran EM, Bowie AG (2007) IRAK-2 participates in multiple toll-like receptor signaling pathways to NFkappaB via activation of TRAF6 ubiquitination. J Biol Chem 282:33435–33443PubMedCrossRefGoogle Scholar
  73. Kerfoot SM, Long EM, Hickey MJ, Andonegui G, Lapointe BM, Zanardo RC, Bonder C, James WG, Robbins SM, Kubes P (2004) TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J Immunol 173:7070–7077PubMedGoogle Scholar
  74. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106PubMedCrossRefGoogle Scholar
  75. Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY (2004) TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci 101:3029–3034PubMedCrossRefGoogle Scholar
  76. Kondo T, Kawai T, Akira S (2012) Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 33:449–458PubMedCrossRefGoogle Scholar
  77. Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388:621–625PubMedCrossRefGoogle Scholar
  78. Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderon Gomez E, Sweenie CH, Hao Y, Freitas AA, Steinhoff U, Anderton SM, Fillatreau S (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180:4763–4773PubMedGoogle Scholar
  79. Lande R, Gafa V, Serafini B, Giacomini E, Visconti A, Remoli ME, Severa M, Parmentier M, Ristori G, Salvetti M, Aloisi F, Coccia EM (2008) Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta. J Neuropathol Exp Neurol 67:388–401Google Scholar
  80. Ledeboer A, Hutchinson MR, Watkins LR, Johnson KW (2007) Ibudilast (AV-411). A new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert Opin Investig Drugs 16:935–950PubMedCrossRefGoogle Scholar
  81. Levin LI, Munger KL, Rubertone MV, Peck CA, Lennette ET, Spiegelman D, Ascherio A (2003) Multiple sclerosis and Epstein-Barr virus. J Am Med Assoc 289:1533–1536CrossRefGoogle Scholar
  82. Lewkowicz P, Lewkowicz N, Sasiak A, Tchorzewski H (2006) Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol 177:7155–7163PubMedGoogle Scholar
  83. Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX (2007) Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain 130:490–501PubMedCrossRefGoogle Scholar
  84. Liu G, Zhao Y (2007) Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Immunology 122:149–156PubMedCrossRefGoogle Scholar
  85. Liu H, Komai-Koma M, Xu D, Liew FY (2006) Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci 103:7048–7053PubMedCrossRefGoogle Scholar
  86. Liu J, Radler D, Illi S, Klucker E, Turan E, von Mutius E, Kabesch M, Schaub B (2011) TLR2 polymorphisms influence neonatal regulatory T cells depending on maternal atopy. Allergy 66:1020–1029PubMedCrossRefGoogle Scholar
  87. Lysakova-Devine T, Keogh B, Harrington B, Nagpal K, Halle A, Golenbock DT, Monie T, Bowie AG (2010) Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. J Immunol 185:4261–4271PubMedCrossRefGoogle Scholar
  88. Mansson A, Adner M, Cardell LO (2006) Toll-like receptors in cellular subsets of human tonsil T cells: altered expression during recurrent tonsillitis. Respir Res 7:36PubMedCrossRefGoogle Scholar
  89. Marta M, Andersson A, Isaksson M, Kampe O, Lobell A (2008) Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur J Immunol 38:565–575PubMedCrossRefGoogle Scholar
  90. Martyn CN, Cruddas M, Compston DA (1993) Symptomatic Epstein-Barr virus infection and multiple sclerosis. J Neurol Neurosurg Psychiatry 56:167–168PubMedCrossRefGoogle Scholar
  91. Mayo L, Quintana FJ, Weiner HL (2012) The innate immune system in demyelinating disease. Immunol Rev 248:170–187PubMedCrossRefGoogle Scholar
  92. McFarlin DE, Bever CT, Salazar AM, Levy HB (1985) A preliminary trial of poly(I, C)-LC in multiple sclerosis. J Biol Response Modif 4:544–548Google Scholar
  93. McQualter JL, Bernard CC (2007) Multiple sclerosis: a battle between destruction and repair. J Neurochem 100:295–306PubMedCrossRefGoogle Scholar
  94. Meng G, Rutz M, Schiemann M, Metzger J, Grabiec A, Schwandner R, Luppa PB, Ebel F, Busch DH, Bauer S, Wagner H, Kirschning CJ (2004) Antagonistic antibody prevents toll-like receptor 2-driven lethal shock-like syndromes. J Clin Invest 113:1473–1481PubMedGoogle Scholar
  95. Metz LM, McGuinness SD, Harris C (1998) Urinary tract infections may trigger relapse in multiple sclerosis. Axone 19:67–70PubMedGoogle Scholar
  96. Mills KH (2011) TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 11:807–822PubMedGoogle Scholar
  97. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911PubMedCrossRefGoogle Scholar
  98. Mizoguchi A, Bhan AK (2006) A case for regulatory B cells. J Immunol 176:705–710PubMedGoogle Scholar
  99. Murawski MR, Bowen GN, Cerny AM, Anderson LJ, Haynes LM, Tripp RA, Kurt-Jones EA, Finberg RW (2009) Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J Virol 83:1492–1500PubMedCrossRefGoogle Scholar
  100. Nicodemus CF, Berek JS (2010) TLR3 agonists as immunotherapeutic agents. Immunotherapy 2:137–140PubMedCrossRefGoogle Scholar
  101. Nicolle LE (2008) Uncomplicated urinary tract infection in adults including uncomplicated pyelonephritis. Urol Clin N Am 35:1–12, vCrossRefGoogle Scholar
  102. Nyirenda MH, O’Brien K, Sanvito L, Constantinescu CS, Gran B (2009) Modulation of regulatory T cells in health and disease: role of toll-like receptors. Inflamm Allergy Drug Targets 8:124–129PubMedCrossRefGoogle Scholar
  103. Nyirenda MH, Sanvito L, Darlington PJ, O’Brien K, Zhang GX, Constantinescu CS, Bar-Or A, Gran B (2011) TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function. J Immunol 187:2278–2290PubMedCrossRefGoogle Scholar
  104. O’Brien K, Fitzgerald D, Rostami A, Gran B (2010) The TLR7 agonist, imiquimod, increases IFN-beta production and reduces the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 221:107–111PubMedCrossRefGoogle Scholar
  105. O’Brien K, Fitzgerald DC, Naiken K, Alugupalli KR, Rostami AM, Gran B (2008) Role of the innate immune system in autoimmune inflammatory demyelination. Curr Med Chem 15:1105–1115PubMedCrossRefGoogle Scholar
  106. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364PubMedCrossRefGoogle Scholar
  107. O’Neill LA, Bryant CE, Doyle SL (2009) Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev 61:177–197PubMedCrossRefGoogle Scholar
  108. Oberg HH, Ly TT, Ussat S, Meyer T, Kabelitz D, Wesch D (2010) Differential but direct abolishment of human regulatory T cell suppressive capacity by various TLR2 ligands. J Immunol 184:4733–4740PubMedCrossRefGoogle Scholar
  109. Ostuni R, Zanoni I, Granucci F (2010) Deciphering the complexity of Toll-like receptor signaling. Cell Mol Life Sci 67:4109–4134PubMedCrossRefGoogle Scholar
  110. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci 97:13766–13771PubMedCrossRefGoogle Scholar
  111. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195PubMedCrossRefGoogle Scholar
  112. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T, Wang DY, Li Y, Wang HY, Wang RF (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309:1380–1384PubMedCrossRefGoogle Scholar
  113. Reynolds JM, Pappu BP, Peng J, Martinez GJ, Zhang Y, Chung Y, Ma L, Yang XO, Nurieva RI, Tian Q, Dong C (2010) Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity 32:692–702PubMedCrossRefGoogle Scholar
  114. Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, Wunderink LU, Schreurs BW, van den Berg WB, Radstake TR (2006) Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 176:7021–7027PubMedGoogle Scholar
  115. Sanna A, Huang YM, Arru G, Fois ML, Link H, Rosati G, Sotgiu S (2008) Multiple sclerosis: reduced proportion of circulating plasmacytoid dendritic cells expressing BDCA-2 and BDCA-4 and reduced production of IL-6 and IL-10 in response to herpes simplex virus type 1. Mult Scler 14:1199–1207PubMedCrossRefGoogle Scholar
  116. Sawcer S et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219PubMedCrossRefGoogle Scholar
  117. Schachtele SJ, Hu S, Little MR, Lokensgard JR (2010) Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J Neuroinflammation 7:35PubMedCrossRefGoogle Scholar
  118. Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, Marsche G, Young MF, Mihalik D, Gotte M, Malle E, Schaefer RM, Grone HJ (2005) The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223–2233PubMedCrossRefGoogle Scholar
  119. Schwab N, Zozulya AL, Kieseier BC, Toyka KV, Wiendl H (2010) An imbalance of two functionally and phenotypically different subsets of plasmacytoid dendritic cells characterizes the dysfunctional immune regulation in multiple sclerosis. J Immunol 184:5368–5374PubMedCrossRefGoogle Scholar
  120. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274:17406–17409PubMedCrossRefGoogle Scholar
  121. Severa M, Giacomini E, Gafa V, Anastasiadou E, Rizzo F, Corazzari M, Romagnoli A, Trivedi P, Fimia GM, Coccia EM (2013) EBV stimulates TLR- and autophagy-dependent pathways and impairs maturation in plasmacytoid dendritic cells: implications for viral immune escape. Eur J Immunol 43:147–158PubMedCrossRefGoogle Scholar
  122. Sibley WA, Bamford CR, Clark K (1985) Clinical viral infections and multiple sclerosis. Lancet 1:1313–1315PubMedCrossRefGoogle Scholar
  123. Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci 107:11555–11560PubMedCrossRefGoogle Scholar
  124. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747PubMedCrossRefGoogle Scholar
  125. Soulika AM, Lee E, McCauley E, Miers L, Bannerman P, Pleasure D (2009) Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis. J Neurosci 29:14965–14979PubMedCrossRefGoogle Scholar
  126. Stasiolek M, Bayas A, Kruse N, Wieczarkowiecz A, Toyka KV, Gold R, Selmaj K (2006) Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 129:1293–1305PubMedCrossRefGoogle Scholar
  127. Strayer DR, Carter WA, Stouch BC, Stevens SR, Bateman L, Cimoch PJ, Lapp CW, Peterson DL, Mitchell WM (2012) A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS One 7:e31334PubMedCrossRefGoogle Scholar
  128. Sutmuller RP, Morgan ME, Netea MG, Grauer O, Adema GJ (2006a) Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27:387–393PubMedCrossRefGoogle Scholar
  129. Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, Joosten LA, Akira S, Netea MG, Adema GJ (2006b) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116:485–494PubMedCrossRefGoogle Scholar
  130. Sweeney CM, Lonergan R, Basdeo SA, Kinsella K, Dungan LS, Higgins SC, Kelly PJ, Costelloe L, Tubridy N, Mills KH, Fletcher JM (2011) IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 25:1170–1181PubMedCrossRefGoogle Scholar
  131. t Hart BA, Gran B, Weissert R (2011) EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 17:119–125CrossRefGoogle Scholar
  132. Tabel Y, Berdeli A, Mir S (2007) Association of TLR2 gene Arg753Gln polymorphism with urinary tract infection in children. Int J Immunogenet 34:399–405PubMedCrossRefGoogle Scholar
  133. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14PubMedCrossRefGoogle Scholar
  134. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820PubMedCrossRefGoogle Scholar
  135. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10–14PubMedGoogle Scholar
  136. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175PubMedCrossRefGoogle Scholar
  137. Thacker EL, Mirzaei F, Ascherio A (2006) Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol 59:499–503PubMedCrossRefGoogle Scholar
  138. The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43:655–661CrossRefGoogle Scholar
  139. Tompkins SM, Padilla J, Dal Canto MC, Ting JP, Van Kaer L, Miller SD (2002) De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J Immunol 168:4173–4183PubMedGoogle Scholar
  140. Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B (2006) Cutting Edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol 177:7505–7509PubMedGoogle Scholar
  141. Tzima S, Victoratos P, Kranidioti K, Alexiou M, Kollias G (2009) Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-beta production. J Exp Med 206:1167–1179PubMedCrossRefGoogle Scholar
  142. Ungaro R, Fukata M, Hsu D, Hernandez Y, Breglio K, Chen A, Xu R, Sotolongo J, Espana C, Zaias J, Elson G, Mayer L, Kosco-Vilbois M, Abreu MT (2009) A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am J Physiol Gastrointest Liver Physiol 296:G1167–G1179PubMedCrossRefGoogle Scholar
  143. Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21:1121–1124PubMedCrossRefGoogle Scholar
  144. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979PubMedCrossRefGoogle Scholar
  145. Visser L, Jan de Heer H, Boven LA, van Riel D, van Meurs M, Melief MJ, Zahringer U, van Strijp J, Lambrecht BN, Nieuwenhuis EE, Laman JD (2005) Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. J Immunol 174:808–816PubMedGoogle Scholar
  146. Visser L, Melief MJ, van Riel D, van Meurs M, Sick EA, Inamura S, Bajramovic JJ, Amor S, Hintzen RQ, Boven LA, t Hart BA, Laman JD (2006) Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates. Am J Pathol 169:1671–1685PubMedCrossRefGoogle Scholar
  147. Volpi C, Fallarino F, Bianchi R, Orabona C, De Luca A, Vacca C, Romani L, Gran B, Grohmann U, Puccetti P, Belladonna ML (2012) A GpC-rich oligonucleotide acts on plasmacytoid dendritic cells to promote immune suppression. J Immunol 189:2283–2289PubMedCrossRefGoogle Scholar
  148. Waldner H, Collins M, Kuchroo VK (2004) Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J Clin Invest 113:990–997PubMedGoogle Scholar
  149. Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23:130–135PubMedCrossRefGoogle Scholar
  150. Wandinger KP, Wessel K, Neustock P, Siekhaus A, Kirchner H (1997) Diminished production of type-I interferons and interleukin-2 in patients with multiple sclerosis. J Neurol Sci 149:87–93PubMedCrossRefGoogle Scholar
  151. Wandinger KP, Reissland P, Kirchner H, Wessel K, Otto M (1998) Production of endogenous interferon-alpha and beta in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 64:277–278PubMedCrossRefGoogle Scholar
  152. Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW (2005) Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol 79:12658–12666PubMedCrossRefGoogle Scholar
  153. Warger T, Hilf N, Rechtsteiner G, Haselmayer P, Carrick DM, Jonuleit H, von Landenberg P, Rammensee HG, Nicchitta CV, Radsak MP, Schild H (2006) Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem 281:22545–22553PubMedCrossRefGoogle Scholar
  154. Wekerle H, Hohlfeld R (2003) Molecular mimicry in multiple sclerosis. N Engl J Med 349:185–186PubMedCrossRefGoogle Scholar
  155. Xu J, Drew PD (2007) Peroxisome proliferator-activated receptor-gamma agonists suppress the production of IL-12 family cytokines by activated glia. J Immunol 178:1904–1913PubMedGoogle Scholar
  156. Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, Cullimore ML, Rostami A, Xu H (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185:5953–5961PubMedCrossRefGoogle Scholar
  157. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163:1–5PubMedGoogle Scholar
  158. Zahringer U, Lindner B, Inamura S, Heine H, Alexander C (2008) TLR2 - promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 213:205–224PubMedCrossRefGoogle Scholar
  159. Zanin-Zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR (2006) Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J Clin Invest 116:2022–2032PubMedCrossRefGoogle Scholar
  160. Zhang X, Jin J, Tang Y, Speer D, Sujkowska D, Markovic-Plese S (2009) IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. J Immunol 182:3928–3936PubMedCrossRefGoogle Scholar
  161. Zhou S, Cerny AM, Bowen G, Chan M, Knipe DM, Kurt-Jones EA, Finberg RW (2010) Discovery of a novel TLR2 signaling inhibitor with anti-viral activity. Antivir Res 87:295–306PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giulio Podda
    • 1
  • Mukanthu Nyirenda
    • 1
  • James Crooks
    • 1
  • Bruno Gran
    • 1
  1. 1.Division of Clinical NeurologyUniversity of NottinghamNottinghamUK

Personalised recommendations