Advertisement

Journal of Neuroimmune Pharmacology

, Volume 8, Issue 4, pp 824–839 | Cite as

Immune Players in the CNS: The Astrocyte

  • Cathy J. Jensen
  • Ann Massie
  • Jacques De Keyser
INVITED REVIEW

Abstract

In the finely balanced environment of the central nervous system astrocytes, the most numerous cell type, play a role in regulating almost every physiological system. First found to regulate extracellular ions and pH, they have since been shown to regulate neurotransmitter levels, cerebral blood flow and energy metabolism. There is also growing evidence for an essential role of astrocytes in central immunity, which is the topic of this review. In the healthy state, the central nervous system is potently anti-inflammatory but under threat astrocytes readily respond to pathogens and to both sterile and pathogen-induced cell damage. In response, astrocytes take on some of the roles of immune cells, releasing cyto- and chemokines to influence effector cells, modulating the blood–brain barrier and forming glial scars. To date, much of the data supporting a role for astrocytes in immunity have been obtained from in vitro systems; however data from experimental models and clinical samples support the suggestion that astrocytes perform similar roles in more complex environments. This review will discuss some aspects of the role of astrocytes in central nervous system immunity.

Keywords

Astrocyte Immunity Cytokine Chemokine APC PAMP Astrogliosis 

Notes

Acknowledgments

The authors wish to thank Dr Scott Preiss and Ms Wendy Stroop for their thoughtful reading of the manuscript and the insightful comments that they provided.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Aloisi F, Penna G, Cerase J, Menendez Iglesias B, Adorini L (1997) IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 159:1604–1612PubMedGoogle Scholar
  2. Aloisi F, Ria F, Columba-Cabezas S, Hess H, Penna G, Adorini L (1999) Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. Eur J Immunol 29:2705–2714PubMedCrossRefGoogle Scholar
  3. Alter A, Duddy M, Hebert S, Biernacki K, Prat A, Antel JP, Yong VW, Nuttall RK, Pennington CJ, Edwards DR, Bar-Or A (2003) Determinants of human B cell migration across brain endothelial cells. J Immunol 170:4497–4505PubMedGoogle Scholar
  4. An Y, Chen Q, Quan N (2011) Interleukin-1 exerts distinct actions on different cell types of the brain in vitro. J Inflamm Res 2011:11–20PubMedGoogle Scholar
  5. Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, Wallstrom E, Lobell A, Brundin L, Lassmann H, Harris RA (2008) Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 84:1248–1255PubMedCrossRefGoogle Scholar
  6. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR (2012) Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468PubMedCrossRefGoogle Scholar
  7. Bachoo RM, Kim RS, Ligon KL, Maher EA, Brennan C, Billings N, Chan S, Li C, Rowitch DH, Wong WH, DePinho RA (2004) Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci USA 101:8384–8389PubMedCrossRefGoogle Scholar
  8. Ballestas ME, Benveniste EN (1997) Elevation of cyclic AMP levels in astrocytes antagonizes cytokine-induced adhesion molecule expression. J Neurochem 69:1438–1448PubMedCrossRefGoogle Scholar
  9. Bechmann I, Galea I, Perry VH (2007) What is the blood–brain barrier (not)? Trends Immunol 28:5–11PubMedCrossRefGoogle Scholar
  10. Benveniste EN, Tang LP, Law RM (1995) Differential regulation of astrocyte TNF-alpha expression by the cytokines TGF-beta, IL-6 and IL-10. Int J Dev Neurosci 13:341–349PubMedCrossRefGoogle Scholar
  11. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710PubMedCrossRefGoogle Scholar
  12. Brenneman DE, Hauser J, Spong CY, Phillips TM (2000) Chemokines released from astroglia by vasoactive intestinal peptide. Mechanism of neuroprotection from HIV envelope protein toxicity. Ann N Y Acad Sci 921:109–114PubMedCrossRefGoogle Scholar
  13. Brenneman DE, Phillips TM, Hauser J, Hill JM, Spong CY, Gozes I (2003) Complex array of cytokines released by vasoactive intestinal peptide. Neuropeptides 37:111–119PubMedCrossRefGoogle Scholar
  14. Brosnan CF, Cannella B, Battistini L, Raine CS (1995) Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology 45:S16–S21PubMedCrossRefGoogle Scholar
  15. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271PubMedCrossRefGoogle Scholar
  16. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021PubMedGoogle Scholar
  17. Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM (2006) Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53:688–695PubMedCrossRefGoogle Scholar
  18. Burns SA, Lee Archer R, Chavis JA, Tull CA, Hensley LL, Drew PD (2012) Mitoxantrone repression of astrocyte activation: relevance to multiple sclerosis. Brain ResGoogle Scholar
  19. Burudi EM, Regnier-Vigouroux A (2001) Regional and cellular expression of the mannose receptor in the post-natal developing mouse brain. Cell Tissue Res 303:307–317PubMedCrossRefGoogle Scholar
  20. Calderon TM, Eugenin EA, Lopez L, Kumar SS, Hesselgesser J, Raine CS, Berman JW (2006) A role for CXCL12 (SDF-1alpha) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. J Neuroimmunol 177:27–39PubMedCrossRefGoogle Scholar
  21. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, Mucke L (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci USA 90:10061–10065PubMedCrossRefGoogle Scholar
  22. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–374PubMedCrossRefGoogle Scholar
  23. Chaboub LS, Deneen B (2012) Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Dev Neurosci 34:379–388PubMedCrossRefGoogle Scholar
  24. Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53:344–354PubMedCrossRefGoogle Scholar
  25. Chastain EM, Duncan DS, Rodgers JM, Miller SD (2010) The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta 1812:265–274PubMedGoogle Scholar
  26. Chauhan VS, Furr SR, Grdzelishvili VZ, Marriott I (2009a) Primary human astrocytes functionally express RIG-I, a member of the retinoic acid-inducible gene-I family of viral pattern recognition receptors. J Immunol 182(Meeting Abstract Supplement):133–148Google Scholar
  27. Chauhan VS, Sterka DG Jr, Furr SR, Young AB, Marriott I (2009b) NOD2 plays an important role in the inflammatory responses of microglia and astrocytes to bacterial CNS pathogens. Glia 57:414–423PubMedCrossRefGoogle Scholar
  28. Choi SJ, Lee KH, Park HS, Kim SK, Koh CM, Park JY (2005) Differential expression, shedding, cytokine regulation and function of TNFR1 and TNFR2 in human fetal astrocytes. Yonsei Med J 46:818–826PubMedCrossRefGoogle Scholar
  29. Chung IY, Benveniste EN (1990) Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol 144:2999–3007PubMedGoogle Scholar
  30. Colodner KJ, Montana RA, Anthony DC, Folkerth RD, De Girolami U, Feany MB (2005) Proliferative potential of human astrocytes. J Neuropathol Exp Neurol 64:163–169PubMedGoogle Scholar
  31. Constantinescu CS, Tani M, Ransohoff RM, Wysocka M, Hilliard B, Fujioka T, Murphy S, Tighe PJ, Das Sarma J, Trinchieri G, Rostami A (2005) Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. J Neurochem 95:331–340PubMedCrossRefGoogle Scholar
  32. Croitoru-Lamoury J, Guillemin GJ, Boussin FD, Mognetti B, Gigout LI, Cheret A, Vaslin B, Le Grand R, Brew BJ, Dormont D (2003) Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNF alpha and IFN gamma in CXCR4 and CCR5 modulation. Glia 41:354–370PubMedCrossRefGoogle Scholar
  33. Cross AH, Ku G (2000) Astrocytes and central nervous system endothelial cells do not express B7-1 (CD80) or B7-2 (CD86) immunoreactivity during experimental autoimmune encephalomyelitis. J Neuroimmunol 110:76–82PubMedCrossRefGoogle Scholar
  34. D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K (2012) Brain dendritic cells: biology and pathology. Acta NeuropatholGoogle Scholar
  35. De Keyser J, Wilczak N, Leta R, Streetland C (1999) Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology 53:1628–1633PubMedCrossRefGoogle Scholar
  36. De Miranda J, Yaddanapudi K, Hornig M, Lipkin WI (2009) Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5. FASEB J 23:1064–1071PubMedCrossRefGoogle Scholar
  37. Deiva K, Khiati A, Hery C, Salim H, Leclerc P, Horellou P, Tardieu M (2006) CCR5-, DC-SIGN-dependent endocytosis and delayed reverse transcription after human immunodeficiency virus type 1 infection in human astrocytes. AIDS Res Hum Retroviruses 22:1152–1161PubMedCrossRefGoogle Scholar
  38. Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117:3720–3732PubMedCrossRefGoogle Scholar
  39. Drickamer K (1999) C-type lectin-like domains. Curr Opin Struct Biol 9:585–590PubMedCrossRefGoogle Scholar
  40. Durrenberger PF, Ettorre A, Kamel F, Webb LV, Sim M, Nicholas RS, Malik O, Reynolds R, Boyton RJ, Altmann DM (2012) Innate immunity in multiple sclerosis white matter lesions: expression of natural cytotoxicity triggering receptor 1 (NCR1). J Neuroinflammation 9:1PubMedCrossRefGoogle Scholar
  41. Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2:175–186PubMedCrossRefGoogle Scholar
  42. Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends ImmunolGoogle Scholar
  43. Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 159:12–19PubMedCrossRefGoogle Scholar
  44. Fattori E, Lazzaro D, Musiani P, Modesti A, Alonzi T, Ciliberto G (1995) IL-6 expression in neurons of transgenic mice causes reactive astrocytosis and increase in ramified microglial cells but no neuronal damage. Eur J Neurosci 7:2441–2449PubMedCrossRefGoogle Scholar
  45. Frohman EM, Vayuvegula B, Gupta S, van den Noort S (1988a) Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms. Proc Natl Acad Sci USA 85:1292–1296PubMedCrossRefGoogle Scholar
  46. Frohman EM, Frohman TC, Vayuvegula B, Gupta S, van den Noort S (1988b) Vasoactive intestinal polypeptide inhibits the expression of the MHC class II antigens on astrocytes. J Neurol Sci 88:339–346PubMedCrossRefGoogle Scholar
  47. Furr SR, Chauhan VS, Sterka D Jr, Grdzelishvili V, Marriott I (2008) Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. J Neurovirol 14:503–513PubMedCrossRefGoogle Scholar
  48. Furr SR, Chauhan VS, Moerdyk-Schauwecker MJ, Marriott I (2011) A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells. J Neuroinflammation 8:99PubMedCrossRefGoogle Scholar
  49. Ge S, Murugesan N, Pachter JS (2009) Astrocyte- and endothelial-targeted CCL2 conditional knockout mice: critical tools for studying the pathogenesis of neuroinflammation. J Mol Neurosci 39:269–283PubMedCrossRefGoogle Scholar
  50. Geijtenbeek TB, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479PubMedCrossRefGoogle Scholar
  51. Geurts JJ, Wolswijk G, Bo L, van der Valk P, Polman CH, Troost D, Aronica E (2003) Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 126:1755–1766PubMedCrossRefGoogle Scholar
  52. Geurts JJ, Wolswijk G, Bo L, Redeker S, Ramkema M, Troost D, Aronica E (2005) Expression patterns of Group III metabotropic glutamate receptors mGluR4 and mGluR8 in multiple sclerosis lesions. J Neuroimmunol 158:182–190PubMedCrossRefGoogle Scholar
  53. Gimenez MA, Sim JE, Russell JH (2004) TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. J Neuroimmunol 151:116–125PubMedCrossRefGoogle Scholar
  54. Gold R, Schmied M, Tontsch U, Hartung HP, Wekerle H, Toyka KV, Lassmann H (1996) Antigen presentation by astrocytes primes rat T lymphocytes for apoptotic cell death. A model for T-cell apoptosis in vivo. Brain 119(Pt 2):651–659PubMedCrossRefGoogle Scholar
  55. Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM (2010) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59:242–255CrossRefGoogle Scholar
  56. Goursaud S, Kozlova EN, Maloteaux JM, Hermans E (2009) Cultured astrocytes derived from corpus callosum or cortical grey matter show distinct glutamate handling properties. J Neurochem 108:1442–1452PubMedCrossRefGoogle Scholar
  57. Halassa MM, Fellin T, Haydon PG (2007a) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63PubMedCrossRefGoogle Scholar
  58. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007b) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477PubMedCrossRefGoogle Scholar
  59. Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H (1997) Induction of various blood–brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia 19:13–26PubMedCrossRefGoogle Scholar
  60. Hellendall RP, Ting JP (1997) Differential regulation of cytokine-induced major histocompatibility complex class II expression and nitric oxide release in rat microglia and astrocytes by effectors of tyrosine kinase, protein kinase C, and cAMP. J Neuroimmunol 74:19–29PubMedCrossRefGoogle Scholar
  61. Huang D, Wujek J, Kidd G, He TT, Cardona A, Sasse ME, Stein EJ, Kish J, Tani M, Charo IF, Proudfoot AE, Rollins BJ, Handel T, Ransohoff RM (2005) Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB J 19:761–772PubMedCrossRefGoogle Scholar
  62. Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nat Rev Neurosci 10:199–210PubMedCrossRefGoogle Scholar
  63. Issazadeh S, Navikas V, Schaub M, Sayegh M, Khoury S (1998) Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo. J Immunol 161:1104–1112PubMedGoogle Scholar
  64. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330PubMedGoogle Scholar
  65. Jelinek I, Leonard JN, Price GE, Brown KN, Meyer-Manlapat A, Goldsmith PK, Wang Y, Venzon D, Epstein SL, Segal DM (2011) TLR3-specific double-stranded RNA oligonucleotide adjuvants induce dendritic cell cross-presentation, CTL responses, and antiviral protection. J Immunol 186:2422–2429PubMedCrossRefGoogle Scholar
  66. Jiang G, Sun D, Kaplan HJ, Shao H (2012) Retinal astrocytes pretreated with NOD2 and TLR2 ligands activate uveitogenic T cells. PLoS One 7:e40510PubMedCrossRefGoogle Scholar
  67. Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N, Qin H, Liu L, Qian W, Ransohoff RM, Bergmann C, Stohlman S, Tuohy VK, Li X (2010) Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 32:414–425PubMedCrossRefGoogle Scholar
  68. Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N, Suzumura A (2006) Production of interferon-gamma by microglia. Mult Scler 12:558–564PubMedCrossRefGoogle Scholar
  69. Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, Lee MH, Han PL, Park JS, Lee JK (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26:6413–6421PubMedCrossRefGoogle Scholar
  70. Kim H, Yang E, Lee J, Kim SH, Shin JS, Park JY, Choi SJ, Kim SJ, Choi IH (2008) Double-stranded RNA mediates interferon regulatory factor 3 activation and interleukin-6 production by engaging Toll-like receptor 3 in human brain astrocytes. Immunology 124:480–488PubMedCrossRefGoogle Scholar
  71. Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169PubMedCrossRefGoogle Scholar
  72. Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE (2008) Astrocytic regulation of human monocytic/microglial activation. J Immunol 181:5425–5432PubMedGoogle Scholar
  73. Lee SC, Collins M, Vanguri P, Shin ML (1992) Glutamate differentially inhibits the expression of class-II MHC antigens on astrocytes and microglia. J Immunol 148:3391–3397PubMedGoogle Scholar
  74. Lee SC, Liu W, Dickson DW, Brosnan CF, Berman JW (1993) Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 150:2659–2667PubMedGoogle Scholar
  75. Lukaszevicz AC, Sampaio N, Guegan C, Benchoua A, Couriaud C, Chevalier E, Sola B, Lacombe P, Onteniente B (2002) High sensitivity of protoplasmic cortical astroglia to focal ischemia. J Cereb Blood Flow Metab 22:289–298PubMedCrossRefGoogle Scholar
  76. Luo Y, Berman MA, Zhai Q, Fischer FR, Abromson-Leeman SR, Zhang Y, Kuziel WA, Gerard C, Dorf ME (2002) RANTES stimulates inflammatory cascades and receptor modulation in murine astrocytes. Glia 39:19–30PubMedCrossRefGoogle Scholar
  77. Ma X, Reynolds SL, Baker BJ, Li X, Benveniste EN, Qin H (2010) IL-17 enhancement of the IL-6 signaling cascade in astrocytes. J Immunol 184:4898–4906PubMedCrossRefGoogle Scholar
  78. Magalhaes JG, Fritz JH, Le Bourhis L, Sellge G, Travassos LH, Selvanantham T, Girardin SE, Gommerman JL, Philpott DJ (2008) Nod2-dependent Th2 polarization of antigen-specific immunity. J Immunol 181:7925–7935PubMedGoogle Scholar
  79. Manni M, Granstein RD, Maestroni G (2011) beta2-Adrenergic agonists bias TLR-2 and NOD2 activated dendritic cells towards inducing an IL-17 immune response. Cytokine 55:380–386PubMedCrossRefGoogle Scholar
  80. Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171:3154–3162PubMedGoogle Scholar
  81. Matsushita T, Tateishi T, Isobe N, Yonekawa T, Yamasaki R, Matsuse D, Murai H, Kira J (2013) Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS One 8:e61835PubMedCrossRefGoogle Scholar
  82. McKimmie CS, Fazakerley JK (2005) In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J Neuroimmunol 169:116–125PubMedCrossRefGoogle Scholar
  83. McKimmie CS, Graham GJ (2010) Astrocytes modulate the chemokine network in a pathogen-specific manner. Biochem Biophys Res Commun 394:1006–1011PubMedCrossRefGoogle Scholar
  84. McNamee EN, Ryan KM, Griffin EW, Gonzalez-Reyes RE, Ryan KJ, Harkin A, Connor TJ (2010) Noradrenaline acting at central beta-adrenoceptors induces interleukin-10 and suppressor of cytokine signaling-3 expression in rat brain: Implications for neurodegeneration. Brain Behav Immun 24:660–671PubMedCrossRefGoogle Scholar
  85. Meeuwsen S, Persoon-Deen C, Bsibsi M, Ravid R, van Noort JM (2003) Cytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli. Glia 43:243–253PubMedCrossRefGoogle Scholar
  86. Meinl E, Aloisi F, Ertl B, Weber F, de Waal MR, Wekerle H, Hohlfeld R (1994) Multiple sclerosis. Immunomodulatory effects of human astrocytes on T cells. Brain 117(Pt 6):1323–1332PubMedCrossRefGoogle Scholar
  87. Moreno M, Guo F, Ko EM, Bannerman P, Soulika A, Pleasure D (2013) Origins and significance of astrogliosis in the multiple sclerosis model, MOG peptide EAE. J Neurol SciGoogle Scholar
  88. Morga E, Faber C, Heuschling P (2000) Stimulation of endothelin B receptor modulates the inflammatory activation of rat astrocytes. J Neurochem 74:603–612PubMedCrossRefGoogle Scholar
  89. Morga E, Mouad-Amazzal L, Felten P, Heurtaux T, Moro M, Michelucci A, Gabel S, Grandbarbe L, Heuschling P (2009) Jagged1 regulates the activation of astrocytes via modulation of NFkappaB and JAK/STAT/SOCS pathways. Glia 57:1741–1753PubMedCrossRefGoogle Scholar
  90. Myers KJ, Dougherty JP, Ron Y (1993) In vivo antigen presentation by both brain parenchymal cells and hematopoietically derived cells during the induction of experimental autoimmune encephalomyelitis. J Immunol 151:2252–2260PubMedGoogle Scholar
  91. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530PubMedCrossRefGoogle Scholar
  92. Nikcevich KM, Gordon KB, Tan L, Hurst SD, Kroepfl JF, Gardinier M, Barrett TA, Miller SD (1997) IFN-gamma-activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. J Immunol 158:614–621PubMedGoogle Scholar
  93. Nikcevich KM, Piskurich JF, Hellendall RP, Wang Y, Ting JPY (1999) Differential selectivity of CIITA promoter activation by IFN-[gamma] and IRF-1 in astrocytes and macrophages: CIITA promoter activation is not affected by TNF-[alpha]. J Neuroimmunol 99:195–204PubMedCrossRefGoogle Scholar
  94. O’Keefe GM, Nguyen VT, Benveniste EN (1999) Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol 29:1275–1285PubMedCrossRefGoogle Scholar
  95. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553PubMedCrossRefGoogle Scholar
  96. Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113:221–233PubMedCrossRefGoogle Scholar
  97. Oh JW, Van Wagoner NJ, Rose-John S, Benveniste EN (1998) Role of IL-6 and the soluble IL-6 receptor in inhibition of VCAM-1 gene expression. J Immunol 161:4992–4999PubMedGoogle Scholar
  98. Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15:1096–1101PubMedCrossRefGoogle Scholar
  99. Pagenstecher A, Lassmann S, Carson MJ, Kincaid CL, Stalder AK, Campbell IL (2000) Astrocyte-targeted expression of IL-12 induces active cellular immune responses in the central nervous system and modulates experimental allergic encephalomyelitis. J Immunol 164:4481–4492PubMedGoogle Scholar
  100. Park C, Lee S, Cho IH, Lee HK, Kim D, Choi SY, Oh SB, Park K, Kim JS, Lee SJ (2006) TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia 53:248–256PubMedCrossRefGoogle Scholar
  101. Pedrazzi M, Patrone M, Passalacqua M, Ranzato E, Colamassaro D, Sparatore B, Pontremoli S, Melloni E (2007) Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling. J Immunol 179:8525–8532PubMedGoogle Scholar
  102. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431PubMedCrossRefGoogle Scholar
  103. Pereira A Jr, Furlan FA (2010) Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Prog Neurobiol 92:405–420PubMedCrossRefGoogle Scholar
  104. Peters A, Palay S, Webster H (1991) The fine structure of the nervous system, Thirdth edn. Oxford University Press, New YorkGoogle Scholar
  105. Pratt BM, McPherson JM (1997) TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev 8:267–292PubMedCrossRefGoogle Scholar
  106. Proell M, Riedl SJ, Fritz JH, Rojas AM, Schwarzenbacher R (2008) The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One 3:e2119PubMedCrossRefGoogle Scholar
  107. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28:927–938PubMedCrossRefGoogle Scholar
  108. Quintana A, Erta M, Ferrer B, Comes G, Giralt M, Hidalgo J (2012) Astrocyte-specific deficiency of interleukin-6 and its receptor reveal specific roles in survival, body weight and behavior. Brain Behav ImmunGoogle Scholar
  109. Ransohoff RM, Hamilton TA, Tani M, Stoler MH, Shick HE, Major JA, Estes ML, Thomas DM, Tuohy VK (1993) Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J 7:592–600PubMedGoogle Scholar
  110. Reier PJ, Houle JD (1988) The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol 47:87–138PubMedGoogle Scholar
  111. Rivieccio MA, Suh H-S, Zhao Y, Zhao M-L, Chin KC, Lee SC, Brosnan CF (2006) TLR3 ligation activates an antiviral response in human fetal astrocytes: a role for Viperin/cig5. J Immunol 177:4735–4741PubMedGoogle Scholar
  112. Saad B, Constam DB, Ortmann R, Moos M, Fontana A, Schachner M (1991) Astrocyte-derived TGF-beta 2 and NGF differentially regulate neural recognition molecule expression by cultured astrocytes. J Cell Biol 115:473–484PubMedCrossRefGoogle Scholar
  113. Saikali P, Antel JP, Pittet CL, Newcombe J, Arbour N (2010) Contribution of astrocyte-derived IL-15 to CD8 T cell effector functions in multiple sclerosis. J Immunol 185:5693–5703PubMedCrossRefGoogle Scholar
  114. Santello M, Volterra A (2012) TNFalpha in synaptic function: switching gears. Trends Neurosci 35:638–647PubMedCrossRefGoogle Scholar
  115. Santello M, Bezzi P, Volterra A (2011) TNFalpha controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69:988–1001PubMedCrossRefGoogle Scholar
  116. Santello M, Cali C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331PubMedCrossRefGoogle Scholar
  117. Savarin C, Stohlman SA, Rietsch AM, Butchi N, Ransohoff RM, Bergmann CC (2011) MMP9 deficiency does not decrease blood–brain barrier disruption, but increases astrocyte MMP3 expression during viral encephalomyelitis. Glia 59:1770–1781PubMedCrossRefGoogle Scholar
  118. Schweitzer AN, Sharpe AH (1998) Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Th1 cytokine production. J Immunol 161:2762–2771PubMedGoogle Scholar
  119. Scumpia PO, Kelly KM, Reeves WH, Stevens BR (2005) Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia 52:153–162PubMedCrossRefGoogle Scholar
  120. Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA 103:13606–13611PubMedCrossRefGoogle Scholar
  121. Shrikant P, Weber E, Jilling T, Benveniste EN (1995) Intercellular adhesion molecule-1 gene expression by glial cells. Differential mechanisms of inhibition by IL-10 and IL-6. J Immunol 155:1489–1501PubMedGoogle Scholar
  122. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35PubMedCrossRefGoogle Scholar
  123. Soos JM, Ashley TA, Morrow J, Patarroyo JC, Szente BE, Zamvil SS (1999) Differential expression of B7 co-stimulatory molecules by astrocytes correlates with T cell activation and cytokine production. Int Immunol 11:1169–1179PubMedCrossRefGoogle Scholar
  124. Spacek J (1985) Three-dimensional analysis of dendritic spines. III. Glial sheath. Anat Embryol (Berl) 171:245–252CrossRefGoogle Scholar
  125. Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S (2011) Interleukin-6, a mental cytokine. Brain Res Rev 67:157–183PubMedCrossRefGoogle Scholar
  126. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440:1054–1059PubMedCrossRefGoogle Scholar
  127. Sterka D Jr, Rati DM, Marriott I (2006) Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes. Glia 53:322–330PubMedCrossRefGoogle Scholar
  128. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178PubMedCrossRefGoogle Scholar
  129. Sulkowski G, Dabrowska-Bouta B, Kwiatkowska-Patzer B, Struzynska L (2009) Alterations in glutamate transport and group I metabotropic glutamate receptors in the rat brain during acute phase of experimental autoimmune encephalomyelitis. Folia Neuropathol 47:329–337PubMedGoogle Scholar
  130. Sunnemark D, Eltayeb S, Nilsson M, Wallstrom E, Lassmann H, Olsson T, Berg AL, Ericsson-Dahlstrand A (2005) CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J Neuroinflammation 2:17PubMedCrossRefGoogle Scholar
  131. Tan L, Gordon KB, Mueller JP, Matis LA, Miller SD (1998) Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol 160:4271–4279PubMedGoogle Scholar
  132. Tanaka M, Shih PY, Gomi H, Yoshida T, Nakai J, Ando R, Furuichi T, Mikoshiba K, Semyanov A, Itohara S (2013) Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol Brain 6:6PubMedCrossRefGoogle Scholar
  133. Tisell A, Leinhard OD, Warntjes JB, Aalto A, Smedby O, Landtblom AM, Lundberg P (2013) Increased concentrations of glutamate and glutamine in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. PLoS One 8:e61817PubMedCrossRefGoogle Scholar
  134. Trajkovic V, Vuckovic O, Stosic-Grujicic S, Miljkovic D, Popadic D, Markovic M, Bumbasirevic V, Backovic A, Cvetkovic I, Harhaji L, Ramic Z, Mostarica Stojkovic M (2004) Astrocyte-induced regulatory T cells mitigate CNS autoimmunity. Glia 47:168–179PubMedCrossRefGoogle Scholar
  135. Traugott U, Scheinberg LC, Raine CS (1985) On the presence of Ia-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. J Neuroimmunol 8:1–14PubMedCrossRefGoogle Scholar
  136. Tubridy N, Behan PO, Capildeo R, Chaudhuri A, Forbes R, Hawkins CP, Hughes RA, Palace J, Sharrack B, Swingler R, Young C, Moseley IF, MacManus DG, Donoghue S, Miller DH (1999) The effect of anti-alpha4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group. Neurology 53:466–472PubMedCrossRefGoogle Scholar
  137. Ulvestad E, Williams K, Bo L, Trapp B, Antel J, Mork S (1994) HLA class II molecules (HLA-DR, -DP, -DQ) on cells in the human CNS studied in situ and in vitro. Immunology 82:535–541PubMedGoogle Scholar
  138. van Heteren JT, Rozenberg F, Aronica E, Troost D, Lebon P, Kuijpers TW (2008) Astrocytes produce interferon-alpha and CXCL10, but not IL-6 or CXCL8, in Aicardi-Goutieres syndrome. Glia 56:568–578PubMedCrossRefGoogle Scholar
  139. Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906PubMedGoogle Scholar
  140. Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36:291–300PubMedCrossRefGoogle Scholar
  141. Weber F, Meinl E, Aloisi F, Nevinny-Stickel C, Albert E, Wekerle H, Hohlfeld R (1994) Human astrocytes are only partially competent antigen presenting cells. Possible implications for lesion development in multiple sclerosis. Brain 117(Pt 1):59–69PubMedCrossRefGoogle Scholar
  142. Werry EL, Liu GJ, Lovelace MD, Nagarajah R, Hickie IB, Bennett MR (2011) Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate. Neuroscience 175:93–103PubMedCrossRefGoogle Scholar
  143. Werry EL, Liu GJ, Lovelace MD, Nagarajah R, Bennett MR (2012) Glutamate potentiates lipopolysaccharide-stimulated interleukin-10 release from neonatal rat spinal cord astrocytes. Neuroscience 207:12–24PubMedCrossRefGoogle Scholar
  144. Williams A, Piaton G, Lubetzki C (2007) Astrocytes–friends or foes in multiple sclerosis? Glia 55:1300–1312PubMedCrossRefGoogle Scholar
  145. Wong GH, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW (1984) Inducible expression of H-2 and Ia antigens on brain cells. Nature 310:688–691PubMedCrossRefGoogle Scholar
  146. Xie L, Poteet EC, Li W, Scott AE, Liu R, Wen Y, Ghorpade A, Simpkins JW, Yang SH (2010) Modulation of polymorphonuclear neutrophil functions by astrocytes. J Neuroinflammation 7:53PubMedCrossRefGoogle Scholar
  147. Yong VW, Yong FP, Ruijs TC, Antel JP, Kim SU (1991) Expression and modulation of HLA-DR on cultured human adult astrocytes. J Neuropathol Exp Neurol 50:16–28PubMedCrossRefGoogle Scholar
  148. Zeinstra E, Wilczak N, De Keyser J (2000) [3H]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain. Neurosci Lett 289:75–77PubMedCrossRefGoogle Scholar
  149. Zeinstra E, Wilczak N, De Keyser J (2003) Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2. J Neuroimmunol 135:166–171PubMedCrossRefGoogle Scholar
  150. Zeinstra EM, Wilczak N, Wilschut JC, Glazenburg L, Chesik D, Kroese FG, De Keyser J (2006) 5HT4 agonists inhibit interferon-gamma-induced MHC class II and B7 costimulatory molecules expression on cultured astrocytes. J Neuroimmunol 179:191–195PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cathy J. Jensen
    • 1
  • Ann Massie
    • 2
  • Jacques De Keyser
    • 1
    • 3
  1. 1.Department of Neurology, Universitair Ziekenhuis Brussel, Center for NeurosciencesVrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.Department of Pharmaceutical Biotechnology and Molecular Biology, Center for NeurosciencesVrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.Department of NeurologyUniversitair Medisch Centrum Groningen, Rijksuniversiteit GroningenGroningenThe Netherlands

Personalised recommendations