Journal of Neuroimmune Pharmacology

, Volume 8, Issue 4, pp 1037–1047 | Cite as

Subclinical CNS Inflammation as Response to a Myelin Antigen in Humanized Mice

  • Morad Zayoud
  • Khalifa El Malki
  • Katrin Frauenknecht
  • Bettina Trinschek
  • Luise Kloos
  • Khalad Karram
  • Florian Wanke
  • Julia Georgescu
  • Udo F. Hartwig
  • Clemens Sommer
  • Helmut Jonuleit
  • Ari Waisman
  • Florian C. Kurschus


Multiple sclerosis is a demyelinating autoimmune disease of the CNS. Its animal model experimental autoimmune encephalomyelitis is commonly induced by active immunization with myelin antigens. To investigate human immune responses against myelin antigens in vivo we established a new subclinical experimental autoimmune encephalomyelitis model in humanized mice. NOD/Scidγc−/− animals were transferred with peripheral blood mononuclear cells from healthy human donors and immunized with myelin antigens in complete Freund’s adjuvant and antigen-pulsed autologous dendritic cells. Human T cells recovered from these animals reacted specifically to the soluble domain of myelin oligodendrocyte glycoprotein and secreted proinflammatory cytokines. Furthermore, immunized animals developed subclinical CNS inflammation with infiltrating CD4+ and CD8+ T cells and production of encephalitogenic cytokines. Thus, this model of myelin-induced CNS inflammation by human T cells may allow testing of new human-specific therapeuticals for multiple sclerosis.


EAE Humanized mice MOG NSG moDC 



graft-versus-host disease




monocyte-derived dendritic cells


myelin oligodendrocyte glycoprotein


ionized calcium binding adaptor molecule 1



We thank André Heinen, Petra Adams and Nicole Roder for excellent technical support. This work was supported by the DFG via TR128 to FK (TP A03) and to AW (TP A07).

Disclosure of conflicts of interest

The authors have no conflict of interest. The manuscript contains a part of the medical thesis of Morad Zayoud.

Supplementary material

11481_2013_9466_MOESM1_ESM.pdf (4.1 mb)
ESM 1 (PDF 4.10 MB)


  1. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149PubMedCrossRefGoogle Scholar
  2. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404PubMedCrossRefGoogle Scholar
  3. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D (2012) Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481(7379):81–84CrossRefGoogle Scholar
  4. Becker C, Taube C, Bopp T, Michel K, Kubach J, Reuter S et al (2009) Protection from graft-versus-host disease by HIV-1 envelope protein gp120-mediated activation of human CD4 + CD25+ regulatory T cells. Blood 114(6):1263–1269PubMedCrossRefGoogle Scholar
  5. Bernard CC, Johns TG, Slavin A, Ichikawa M, Ewing C, Liu J et al (1997) Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. J Mol Med 75(2):77–88PubMedCrossRefGoogle Scholar
  6. Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J et al (2010) Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol 135(1):84–98PubMedCrossRefGoogle Scholar
  7. Bruno R, Sabater L, Sospedra M, Ferrer-Francesch X, Escudero D, Martinez-Caceres E et al (2002) Multiple sclerosis candidate autoantigens except myelin oligodendrocyte glycoprotein are transcribed in human thymus. Eur J Immunol 32(10):2737–2747PubMedCrossRefGoogle Scholar
  8. Cardona AE, Huang D, Sasse ME, Ransohoff RM (2006) Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat Protoc 1(4):1947–1951PubMedCrossRefGoogle Scholar
  9. Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L et al (2011) RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567PubMedCrossRefGoogle Scholar
  10. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106PubMedCrossRefGoogle Scholar
  11. Croxford AL, Kurschus FC, Waisman A (2011) Mouse models for multiple sclerosis: Historical facts and future implications. Biochim Biophys Acta 1812(2):177–183PubMedCrossRefGoogle Scholar
  12. El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F et al (2011) The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12(6):568–575PubMedCrossRefGoogle Scholar
  13. Friese MA, Montalban X, Willcox N, Bell JI, Martin R, Fugger L (2006) The value of animal models for drug development in multiple sclerosis. Brain 129(Pt 8):1940–1952PubMedCrossRefGoogle Scholar
  14. Harui A, Kiertscher SM, Roth MD (2011) Reconstitution of huPBL-NSG mice with donor-matched dendritic cells enables antigen-specific T-cell activation. J Neuroimmune Pharmacol 6(1):148–157PubMedCrossRefGoogle Scholar
  15. Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C (2001) T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia 36(2):220–234PubMedCrossRefGoogle Scholar
  16. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27(12):3135–3142PubMedCrossRefGoogle Scholar
  17. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192(9):1213–1222PubMedCrossRefGoogle Scholar
  18. Kamath AT, Henri S, Battye F, Tough DF, Shortman K (2002) Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100(5):1734–1741PubMedGoogle Scholar
  19. King IL, Dickendesher TL, Segal BM (2009) Circulating Ly-6C + myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113(14):3190–3197PubMedCrossRefGoogle Scholar
  20. King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M et al (2008) A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 126(3):303–314PubMedCrossRefGoogle Scholar
  21. Krishnamoorthy G, Saxena A, Mars LT, Domingues HS, Mentele R, Ben-Nun A et al (2009) Myelin-specific T cells also recognize neuronal autoantigen in a transgenic mouse model of multiple sclerosis. Nat Med 15(6):626–632PubMedCrossRefGoogle Scholar
  22. Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL et al (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134(4):577–586PubMedCrossRefGoogle Scholar
  23. Kurschus FC, Wortge S, Waisman A (2011) Modeling a complex disease: multiple sclerosis. Adv Immunol 110:111–137PubMedCrossRefGoogle Scholar
  24. Lagasse E, Weissman IL (1997) Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89(7):1021–1031PubMedCrossRefGoogle Scholar
  25. Lindert RB, Haase CG, Brehm U, Linington C, Wekerle H, Hohlfeld R (1999) Multiple sclerosis: B- and T-cell responses to the extracellular domain of the myelin oligodendrocyte glycoprotein. Brain: J Neurol 122(Pt 11):2089–2100CrossRefGoogle Scholar
  26. Linington C, Bradl M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130(3):443–454PubMedGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  28. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717PubMedCrossRefGoogle Scholar
  29. Martin H, Reuter S, Dehzad N, Heinz A, Bellinghausen I, Saloga J et al (2012) CD4-mediated regulatory T-cell activation inhibits the development of disease in a humanized mouse model of allergic airway disease. J Allergy Clin Immunol 129(2):521–528, 528 e521-527PubMedCrossRefGoogle Scholar
  30. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738PubMedGoogle Scholar
  31. Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335(6187):256–259PubMedCrossRefGoogle Scholar
  32. Pette M, Fujita K, Wilkinson D, Altmann DM, Trowsdale J, Giegerich G et al (1990) Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors. Proc Natl Acad Sci U S A 87(20):7968–7972PubMedCrossRefGoogle Scholar
  33. Pöllinger B, Krishnamoorthy G, Berer K, Lassmann H, Bosl MR, Dunn R et al (2009) Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206(6):1303–1316PubMedCrossRefGoogle Scholar
  34. Roep BO, Buckner J, Sawcer S, Toes R, Zipp F (2012) The problems and promises of research into human immunology and autoimmune disease. Nat Med 18(1):48–53PubMedCrossRefGoogle Scholar
  35. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219PubMedCrossRefGoogle Scholar
  36. Schluesener HJ, Wekerle H (1985) Autoaggressive T lymphocyte lines recognizing the encephalitogenic region of myelin basic protein: in vitro selection from unprimed rat T lymphocyte populations. J Immunol 135(5):3128–3133PubMedGoogle Scholar
  37. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7(2):118–130PubMedCrossRefGoogle Scholar
  38. Sonar SS, Hsu YM, Conrad ML, Majeau GR, Kilic A, Garber E et al (2010) Antagonism of TIM-1 blocks the development of disease in a humanized mouse model of allergic asthma. J Clin Investig 120(8):2767–2781PubMedCrossRefGoogle Scholar
  39. Soulika AM, Lee E, McCauley E, Miers L, Bannerman P, Pleasure D (2009) Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis. J Neurosci: Off J Soc Neurosci 29(47):14965–14979CrossRefGoogle Scholar
  40. Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60(1):12–21PubMedCrossRefGoogle Scholar
  41. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028PubMedCrossRefGoogle Scholar
  42. t Hart BA, Gran B, Weissert R (2011) EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 17(3):119–125CrossRefGoogle Scholar
  43. van Rijn RS, Simonetti ER, Hagenbeek A, Hogenes MC, de Weger RA, Canninga-van Dijk MR et al (2003) A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2−/− gammac−/− double-mutant mice. Blood 102(7):2522–2531PubMedCrossRefGoogle Scholar
  44. Wekerle H, Flugel A, Fugger L, Schett G, Serreze D (2012) Autoimmunity’s next top models. Nature Med 18(1):66–70PubMedCrossRefGoogle Scholar
  45. Wekerle H, Kurschus FC (2006) Animal models of multiple sclerosis. Drug Disc Today: Dis Models 3(4):359–367CrossRefGoogle Scholar
  46. Wiendl H, Hohlfeld R (2009) Multiple sclerosis therapeutics: unexpected outcomes clouding undisputed successes. Neurology 72(11):1008–1015PubMedCrossRefGoogle Scholar
  47. Zehntner SP, Brickman C, Bourbonniere L, Remington L, Caruso M, Owens T (2005) Neutrophils that infiltrate the central nervous system regulate T cell responses. J Immunol 174(8):5124–5131PubMedGoogle Scholar
  48. Zhou D, Srivastava R, Nessler S, Grummel V, Sommer N, Bruck W et al (2006) Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci U S A 103(50):19057–19062PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Morad Zayoud
    • 1
  • Khalifa El Malki
    • 1
  • Katrin Frauenknecht
    • 2
  • Bettina Trinschek
    • 3
  • Luise Kloos
    • 1
  • Khalad Karram
    • 1
  • Florian Wanke
    • 1
  • Julia Georgescu
    • 4
  • Udo F. Hartwig
    • 5
  • Clemens Sommer
    • 2
  • Helmut Jonuleit
    • 3
  • Ari Waisman
    • 1
  • Florian C. Kurschus
    • 1
  1. 1.Institute for Molecular MedicineUniversity Medical Center of the Johannes Gutenberg-University MainzMainzGermany
  2. 2.Department of NeuropathologyUniversity Medical Center of the Johannes Gutenberg-University MainzMainzGermany
  3. 3.Department of DermatologyUniversity Medical Center of the Johannes Gutenberg-University MainzMainzGermany
  4. 4.SandozKundlAustria
  5. 5.III. Department of Medicine – Hematology, Internal Oncology & PneumologyUniversity Medical Center of the Johannes Gutenberg-University MainzMainzGermany

Personalised recommendations