Journal of Neuroimmune Pharmacology

, Volume 8, Issue 5, pp 1062–1076 | Cite as

Towards Clinical Application of Mesenchymal Stem Cells for Treatment of Neurological Diseases of the Central Nervous System

  • Alice Laroni
  • Giovanni Novi
  • Nicole Kerlero de Rosbo
  • Antonio Uccelli


The diagnosis of a neurological disease of the central nervous system (CNS) is often associated with the anticipation of an irreversible and untreatable disability. This is the case also of multiple sclerosis (MS) where approved treatments effectively modulate the autoimmune attack to myelin antigens, but poorly affect neurodegeneration and do not promote tissue repair. Thus, stem cell-based therapies are increasingly being considered a possible strategy for diseases of the CNS. Mesenchymal stem cells (MSC), the safety of which has been demonstrated in the last 20 years through clinical trials and case studies, are of particular interest in view not only of their neuroprotective, but also of their immunomodulatory properties. Here, we review the therapeutic features of MSC that make them relevant in the treatment of CNS illnesses and discuss the pioneer clinical experience with MSC-based therapy in neurological diseases.


Mesenchymal stem cells Neurological diseases Multiple sclerosis Amyotrophic lateral sclerosis Alzheimer’s disease Parkinson’s disease Multiple system atrophy Stroke Brain ischemia Spinal cord injury 


Conflict of interest statement

The authors declare that they have no conflict of interest.


  1. Akiyama Y, Radtke C, Honmou O, Kocsis JD (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39(3):229–236. doi: 10.1002/glia.10102 PubMedPubMedCentralGoogle Scholar
  2. Andrews EM, Tsai SY, Johnson SC, Farrer JR, Wagner JP, Kopen GC, Kartje GL (2008) Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 211(2):588–592. doi: 10.1016/j.expneurol.2008.02.027 PubMedGoogle Scholar
  3. Babaei P, Soltani Tehrani B, Alizadeh A (2012) Transplanted bone marrow mesenchymal stem cells improve memory in rat models of Alzheimer’s disease. Stem Cells Int 2012:369417. doi: 10.1155/2012/369417 PubMedPubMedCentralGoogle Scholar
  4. Bae JS, Jin HK, Richardson JC, Carter JE (2012) Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-beta deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer’s disease. Curr Alzheimer ResGoogle Scholar
  5. Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57(11):1192–1203. doi: 10.1002/glia.20841 PubMedPubMedCentralGoogle Scholar
  6. Bai L, Lennon DP, Caplan AI, Dechant A, Hecker J, Kranso J, Zaremba A, Miller RH (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci. doi: 10.1038/nn.3109 PubMedPubMedCentralGoogle Scholar
  7. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031. doi: 10.1016/S0140-6736(10)61349-9 PubMedGoogle Scholar
  8. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57(6):874–882PubMedGoogle Scholar
  9. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48PubMedGoogle Scholar
  10. Barzilay R, Kan I, Ben-Zur T, Bulvik S, Melamed E, Offen D (2008) Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev 17(3):547–554. doi: 10.1089/scd.2007.0172 PubMedGoogle Scholar
  11. Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 133(2):433–447. doi: 10.1093/brain/awp322 PubMedPubMedCentralGoogle Scholar
  12. Bhasin A, Srivastava MV, Kumaran SS, Mohanty S, Bhatia R, Bose S, Gaikwad S, Garg A, Airan B (2011) Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra 1(1):93–104. doi: 10.1159/000333381 PubMedPubMedCentralGoogle Scholar
  13. Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res TherGoogle Scholar
  14. Boucherie C, Schafer S, Lavand’homme P, Maloteaux JM, Hermans E (2009) Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J Neurosci Res 87(9):2034–2046. doi: 10.1002/jnr.22038 PubMedGoogle Scholar
  15. Bouchez G, Sensebe L, Vourc’h P, Garreau L, Bodard S, Rico A, Guilloteau D, Charbord P, Besnard JC, Chalon S (2008) Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochem Int 52(7):1332–1342. doi: 10.1016/j.neuint.2008.02.003 PubMedGoogle Scholar
  16. Braak H, Del Tredici K (2008) Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 70(20):1916–1925. doi: 10.1212/01.wnl.0000312279.49272.9f PubMedGoogle Scholar
  17. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084. doi: 10.1002/jcb.20886 PubMedGoogle Scholar
  18. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32(4):1005–1011PubMedGoogle Scholar
  19. Chiesa S, Morbelli S, Morando S, Massollo M, Marini C, Bertoni A, Frassoni F, Bartolome ST, Sambuceti G, Traggiai E, Uccelli A (2011) Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci U S A 108(42):17384–17389. doi: 10.1073/pnas.1103650108 PubMedPubMedCentralGoogle Scholar
  20. Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He XL, Richardson K, Barber K, Webber DJ, Wheeler-Kingshott CA, Tozer DJ, Samson RS, Thomas DL, Du MQ, Luan SL, Michell AW, Altmann DR, Thompson AJ, Miller DH, Compston A, Chandran S (2011) The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 12:62. doi: 10.1186/1745-6215-12-62 PubMedPubMedCentralGoogle Scholar
  21. Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, Gini B, Bach SD, Martinello M, Bifari F, Galie M, Turano E, Budui S, Sbarbati A, Krampera M, Bonetti B (2009) Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27(10):2624–2635. doi: 10.1002/stem.194 PubMedGoogle Scholar
  22. de Vasconcelos dos Santos A, da Costa Reis J, Diaz Paredes B, Moraes L, Jasmin, Giraldi-Guimarães A, Mendez-Otero R (2010) Therapeutic window for treatment of cortical ischemia with bone marrow-derived cells in rats. Brain Res 1306:149–158. doi: 10.1016/j.brainres.2009.09.094 PubMedGoogle Scholar
  23. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113(12):1701–1710. doi: 10.1172/JCI20935 PubMedPubMedCentralGoogle Scholar
  24. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843PubMedGoogle Scholar
  25. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102(10):3837–3844PubMedGoogle Scholar
  26. Dongmei H, Jing L, Mei X, Ling Z, Hongmin Y, Zhidong W, Li D, Zikuan G, Hengxiang W (2011) Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 13(8):913–917. doi: 10.3109/14653249.2011.579958 PubMedGoogle Scholar
  27. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106(13):4057–4065PubMedGoogle Scholar
  28. Forostyak S, Jendelova P, Kapcalova M, Arboleda D, Sykova E (2011) Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy 13(9):1036–1046. doi: 10.3109/14653249.2011.592521 PubMedGoogle Scholar
  29. Forslöw U, Blennow O, LeBlanc K, Ringdén O, Gustafsson B, Mattsson J, Remberger M (2012) Treatment with mesenchymal stromal cells is a risk factor for pneumonia-related death after allogeneic hematopoietic stem cell transplantation. Eur J Haematol 89(3):220–227. doi: 10.1111/j.1600-0609.2012.01824.x PubMedGoogle Scholar
  30. Fouillard L, Bensidhoum M, Bories D, Bonte H, Lopez M, Moseley AM, Smith A, Lesage S, Beaujean F, Thierry D, Gourmelon P, Najman A, Gorin NC (2003) Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia 17(2):474–476. doi: 10.1038/sj.leu.2402786 PubMedGoogle Scholar
  31. Freedman MS, Bar-Or A, Atkins HL, Karussis D, Frassoni F, Lazarus H, Scolding N, Slavin S, Le Blanc K, Uccelli A (2010) The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult Scler 16(4):503–510. doi: 10.1177/1352458509359727 PubMedGoogle Scholar
  32. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340PubMedGoogle Scholar
  33. Gandhi R, Laroni A, Weiner HL (2010) Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 221(1–2):7–14. doi: 10.1016/j.jneuroim.2009.10.015 PubMedPubMedCentralGoogle Scholar
  34. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, Mantegazza R, Frassoni F, Mancardi G, Pedotti R, Uccelli A (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61(3):219–227PubMedGoogle Scholar
  35. Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC (2010) Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson’s disease. J Neurosci Res 88(12):2669–2681. doi: 10.1002/jnr.22435 PubMedGoogle Scholar
  36. Gordon D, Pavlovska G, Glover CP, Uney JB, Wraith D, Scolding NJ (2008) Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci Lett 448(1):71–73. doi: 10.1016/j.neulet.2008.10.040 PubMedPubMedCentralGoogle Scholar
  37. Grigoriadis N, Lourbopoulos A, Lagoudaki R, Frischer JM, Polyzoidou E, Touloumi O, Simeonidou C, Deretzi G, Kountouras J, Spandou E, Kotta K, Karkavelas G, Tascos N, Lassmann H (2011) Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. Exp Neurol 230(1):78–89. doi: 10.1016/j.expneurol.2011.02.021 PubMedGoogle Scholar
  38. Gutiérrez-Fernández M, Rodríguez-Frutos B, Álvarez-Grech J, Vallejo-Cremades MT, Expósito-Alcaide M, Merino J, Roda JM, Díez-Tejedor E (2011) Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience 175:394–405. doi: 10.1016/j.neuroscience.2010.11.054 PubMedGoogle Scholar
  39. Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG (2012) An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev 21(12):2222–2238. doi: 10.1089/scd.2011.0596 PubMedPubMedCentralGoogle Scholar
  40. Hayashi T, Wakao S, Kitada M, Ose T, Watabe H, Kuroda Y, Mitsunaga K, Matsuse D, Shigemoto T, Ito A, Ikeda H, Fukuyama H, Onoe H, Tabata Y, Dezawa M (2013) Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J Clin Investig 123(1):272–284. doi: 10.1172/jci62516 PubMedPubMedCentralGoogle Scholar
  41. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134(6):1790–1807. doi: 10.1093/brain/awr063 PubMedPubMedCentralGoogle Scholar
  42. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313PubMedGoogle Scholar
  43. Hughes V (2011) A raw nerve. Nat Med 17(11):1333–1335. doi: 10.1038/nm1111-1333 PubMedGoogle Scholar
  44. Inoue M, Honmou O, Oka S, Houkin K, Hashi K, Kocsis JD (2003) Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord. Glia 44(2):111–118. doi: 10.1002/glia.10285 PubMedPubMedCentralGoogle Scholar
  45. Jeong SR, Park JH, Lee JH, Kim DY, Kim HS, Sung GIY, Jeon MH, Gook G (2010) Treatment of spinal cord injury with bone marrow-derived, cultured autologous mesenchymal stem cells. Tissue Eng Regen Med 7(3):316–322. doi: 10.3345/kjp.2010.7.3.316 Google Scholar
  46. Jin HK, Bae JS, Furuya S, Carter JE (2009) Amyloid beta-derived neuroplasticity in bone marrow-derived mesenchymal stem cells is mediated by NPY and 5-HT2B receptors via ERK1/2 signalling pathways. Cell Prolif 42(5):571–586. doi: 10.1111/j.1365-2184.2009.00625.x PubMedGoogle Scholar
  47. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183(2):355–366. doi: 10.1016/S0014-4886(03)00089-X PubMedGoogle Scholar
  48. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194. doi: 10.1001/archneurol.2010.248 PubMedPubMedCentralGoogle Scholar
  49. Kassis I, Grigoriadis N, Gowda-Kurkalli B, Mizrachi-Kol R, Ben-Hur T, Slavin S, Abramsky O, Karussis D (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65(6):753–761. doi: 10.1001/archneur.65.6.753 PubMedGoogle Scholar
  50. Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH (2009) Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 57(1):13–23. doi: 10.1002/glia.20731 PubMedGoogle Scholar
  51. Kim H, Kim HY, Choi MR, Hwang S, Nam KH, Kim HC, Han JS, Kim KS, Yoon HS, Kim SH (2010) Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett 468(3):190–194. doi: 10.1016/j.neulet.2009.10.074 PubMedGoogle Scholar
  52. Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ, Lee EH, Choi SJ, Seo SW, Lee JI, Na DL, Yang YS, Oh W, Chang JW (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell Death Differ 19(4):680–691. doi: 10.1038/cdd.2011.140 PubMedPubMedCentralGoogle Scholar
  53. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316PubMedGoogle Scholar
  54. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30(4):215–222PubMedGoogle Scholar
  55. Komatsu K, Honmou O, Suzuki J, Houkin K, Hamada H, Kocsis JD (2010) Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia. Brain Res 1334:84–92. doi: 10.1016/j.brainres.2010.04.006 PubMedGoogle Scholar
  56. Lanz TV, Opitz CA, Ho PP, Agrawal A, Lutz C, Weller M, Mellor AL, Steinman L, Wick W, Platten M (2010) Mouse mesenchymal stem cells suppress antigen-specific TH cell immunity independent of indoleamine 2,3-dioxygenase 1 (IDO1). Stem Cells Dev 19(5):657–668. doi: 10.1089/scd.2009.0385 PubMedPubMedCentralGoogle Scholar
  57. Lanza C, Morando S, Voci A, Canesi L, Principato MC, Serpero LD, Mancardi G, Uccelli A, Vergani L (2009) Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem 110(5):1674–1684. doi: 10.1111/j.1471-4159.2009.06268.x PubMedGoogle Scholar
  58. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16(4):557–564PubMedGoogle Scholar
  59. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586PubMedGoogle Scholar
  60. Lee ST, Jang JH, Cheong JW, Kim JS, Maemg HY, Hahn JS, Ko YW, Min YH (2002) Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 118(4):1128–1131PubMedGoogle Scholar
  61. Lee PH, Kim JW, Bang OY, Ahn YH, Joo IS, Huh K (2008) Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther 83(5):723–730. doi: 10.1038/sj.clpt.6100386 PubMedGoogle Scholar
  62. Lee ES, Chan J, Shuter B, Tan LG, Chong MS, Ramachandra DL, Dawe GS, Ding J, Teoh SH, Beuf O, Briguet A, Tam KC, Choolani M, Wang SC (2009a) Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging. Stem Cells 27(8):1921–1931. doi: 10.1002/stem.112 PubMedGoogle Scholar
  63. Lee JK, Jin HK, Bae JS (2009b) Bone marrow-derived mesenchymal stem cells reduce brain amyloid-beta deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci Lett 450(2):136–141. doi: 10.1016/j.neulet.2008.11.059 PubMedGoogle Scholar
  64. Lee HJ, Lee JK, Lee H, Shin JW, Carter JE, Sakamoto T, Jin HK, Bae JS (2010a) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481(1):30–35. doi: 10.1016/j.neulet.2010.06.045 PubMedGoogle Scholar
  65. Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS (2010b) Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28(2):329–343. doi: 10.1002/stem.277 PubMedGoogle Scholar
  66. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010c) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28(6):1099–1106. doi: 10.1002/stem.430 PubMedGoogle Scholar
  67. Lee HJ, Lee JK, Lee H, Carter JE, Chang JW, Oh W, Yang YS, Suh JG, Lee BH, Jin HK, Bae JS (2012a) Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiol Aging 33(3):588–602. doi: 10.1016/j.neurobiolaging.2010.03.024 PubMedGoogle Scholar
  68. Lee JK, Schuchman EH, Jin HK, Bae J-S (2012b) Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells 30(7):1544–1555. doi: 10.1002/stem.1125 PubMedGoogle Scholar
  69. Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, Cheong JW, Jeong Y, Park HJ, Kim DJ, Nam CM, Lee JD, Kim HO, Sohn YH (2012c) A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 72(1):32–40. doi: 10.1002/ana.23612 PubMedGoogle Scholar
  70. Levy YS, Bahat-Stroomza M, Barzilay R, Burshtein A, Bulvik S, Barhum Y, Panet H, Melamed E, Offen D (2008) Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson’s disease. Cytotherapy 10(4):340–352. doi: 10.1080/14653240802021330 PubMedGoogle Scholar
  71. Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, Zhang Z (2000) Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 20(9):1311–1319. doi: 10.1097/00004647-200009000-00006 PubMedGoogle Scholar
  72. Li Y, Chen J, Wang L, Lu M, Chopp M (2001) Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56(12):1666–1672PubMedGoogle Scholar
  73. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59(4):514–523PubMedGoogle Scholar
  74. Lu L, Zhao C, Liu Y, Sun X, Duan C, Ji M, Zhao H, Xu Q, Yang H (2005) Therapeutic benefit of TH-engineered mesenchymal stem cells for Parkinson’s disease. Brain Res Brain Res Protocol 15(1):46–51. doi: 10.1016/j.brainresprot.2005.03.002 Google Scholar
  75. Lucchini G, Dander E, Pavan F, Di Ceglie I, Balduzzi A, Perseghin P, Gaipa G, Algarotti A, Introna M, Rambaldi A, Rovelli A, Biondi A, Biagi E, D’Amico G (2012) Mesenchymal stromal cells do not increase the risk of viral reactivation nor the severity of viral events in recipients of allogeneic stem cell transplantation. Stem Cells Int 2012:690236. doi: 10.1155/2012/690236 PubMedPubMedCentralGoogle Scholar
  76. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, Oggioni GD, Testa L, Fagioli F (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265(1–2):78–83. doi: 10.1016/j.jns.2007.05.016 PubMedGoogle Scholar
  77. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, Vercelli R, Oggioni GD, Carriero A, Cantello R, Monaco F, Fagioli F (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 223(1):229–237. doi: 10.1016/j.expneurol.2009.08.007 PubMedGoogle Scholar
  78. Mazzini L, Mareschi K, Ferrero I, Miglioretti M, Stecco A, Servo S, Carriero A, Monaco F, Fagioli F (2012) Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 14(1):56–60. doi: 10.3109/14653249.2011.613929 PubMedGoogle Scholar
  79. Meirelles LDS, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(11):2204–2213Google Scholar
  80. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. doi: 10.1038/nature09262 PubMedPubMedCentralGoogle Scholar
  81. Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, Alimoghaddom K, Talebian F, Hooshmand F, Ghavamzadeh A, Nikbin B (2007) Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 4(1):50–57PubMedGoogle Scholar
  82. Moloney TC, Rooney GE, Barry FP, Howard L, Dowd E (2010) Potential of rat bone marrow-derived mesenchymal stem cells as vehicles for delivery of neurotrophins to the Parkinsonian rat brain. Brain Res 1359:33–43. doi: 10.1016/j.brainres.2010.08.040 PubMedGoogle Scholar
  83. Morando S, Vigo T, Esposito M, Casazza S, Novi G, Principato MC, Furlan R, Uccelli A (2012) The therapeutic effect of mesenchymal stem cell transplantation in experimental autoimmune encephalomyelitis is mediated by peripheral and central mechanisms. Stem Cell Res Ther 3(1):3. doi: 10.1186/scrt94 PubMedPubMedCentralGoogle Scholar
  84. Morita E, Watanabe Y, Ishimoto M, Nakano T, Kitayama M, Yasui K, Fukada Y, Doi K, Karunaratne A, Murrell WG, Sutharsan R, Mackay-Sim A, Hata Y, Nakashima K (2008) A novel cell transplantation protocol and its application to an ALS mouse model. Exp Neurol 213(2):431–438. doi: 10.1016/j.expneurol.2008.07.011 PubMedGoogle Scholar
  85. Mottaghi S, Larijani B, Sharifi AM (2013) Atorvastatin: an efficient step forward in mesenchymal stem cell therapy of diabetic retinopathy. Cytotherapy 15(3):263–266. doi: 10.1016/j.jcyt.2012.11.002 PubMedGoogle Scholar
  86. Offen D, Barhum Y, Levy YS, Burshtein A, Panet H, Cherlow T, Melamed E (2007) Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson’s disease. J Neural Transm Suppl 72:133–143PubMedGoogle Scholar
  87. Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, Dixit A, Rauthan A, Murgod U, Totey S (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11(7):897–911. doi: 10.3109/14653240903253857 PubMedGoogle Scholar
  88. Park HJ, Lee PH, Bang OY, Lee G, Ahn YH (2008) Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem 107(1):141–151. doi: 10.1111/j.1471-4159.2008.05589.x PubMedGoogle Scholar
  89. Park H-W, Lim M-J, Jung H, Lee S-P, Paik K-S, Chang M-S (2010) Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia 58(9):1118–1132. doi: 10.1002/glia.20992 PubMedGoogle Scholar
  90. Park HJ, Bang G, Lee BR, Kim HO, Lee PH (2011) Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin-induced multiple system atrophy parkinsonism. Cell Transplant 20(6):827–835. doi: 10.3727/096368910X540630 PubMedGoogle Scholar
  91. Pastor D, Viso-Leon MC, Jones J, Jaramillo-Merchan J, Toledo-Aral JJ, Moraleda JM, Martinez S (2011) Comparative effects between bone marrow and mesenchymal stem cell transplantation in GDNF expression and motor function recovery in a motorneuron degenerative mouse model. Stem Cell Rev. doi: 10.1007/s12015-011-9295-x Google Scholar
  92. Paul C, Samdani AF, Betz RR, Fischer I, Neuhuber B (2009) Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods. Spine (Phila Pa 1976) 34(4):328–334. doi: 10.1097/BRS.0b013e31819403ce Google Scholar
  93. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74PubMedGoogle Scholar
  94. Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R (2012) Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 7(6):e39500PubMedPubMedCentralGoogle Scholar
  95. Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, Kim YJ, Jo JY, Yoon EJ, Choi HJ, Kwon E (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. doi: 10.1089/scd.2010.0466 PubMedGoogle Scholar
  96. Rafei M, Campeau PM, Aguilar-Mahecha A, Buchanan M, Williams P, Birman E, Yuan S, Young YK, Boivin MN, Forner K, Basik M, Galipeau J (2009) Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 182(10):5994–6002. doi: 10.4049/jimmunol.0803962 PubMedGoogle Scholar
  97. Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y, Suzuki Y, Onodera R, Fukushima M, Ide C (2008) Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma 64(1):53–59. doi: 10.1097/TA.0b013e31815b847d PubMedGoogle Scholar
  98. Saito F, Nakatani T, Iwase M, Maeda Y, Murao Y, Suzuki Y, Fukushima M, Ide C (2012) Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci 30(2):127–136. doi: 10.3233/RNN-2011-0629 PubMedGoogle Scholar
  99. Sensebé L, Tarte K, Galipeau J, Krampera M, Martin I, Phinney Donald G, Shi Y (2012) Limited acquisition of chromosomal aberrations in human adult mesenchymal stromal cells. Cell Stem Cell 10(1):9–10. doi: 10.1016/j.stem.2011.12.005 PubMedGoogle Scholar
  100. Shi D, Chen G, Lv L, Li L, Wei D, Gu P, Gao J, Miao Y, Hu W (2011) The effect of lentivirus-mediated TH and GDNF genetic engineering mesenchymal stem cells on Parkinson’s disease rat model. Neurol Sci 32(1):41–51. doi: 10.1007/s10072-010-0385-3 PubMedGoogle Scholar
  101. Shintani A, Nakao N, Kakishita K, Itakura T (2007) Protection of dopamine neurons by bone marrow stromal cells. Brain Res 1186:48–55. doi: 10.1016/j.brainres.2007.09.086 PubMedGoogle Scholar
  102. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747. doi: 10.1146/annurev.immunol.23.021704.115707 PubMedGoogle Scholar
  103. Stemberger S, Jamnig A, Stefanova N, Lepperdinger G, Reindl M, Wenning GK (2011) Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PLoS One 6(5):e19808. doi: 10.1371/journal.pone.0019808 PubMedPubMedCentralGoogle Scholar
  104. Suzuki M, McHugh J, Tork C, Shelley B, Hayes A, Bellantuono I, Aebischer P, Svendsen CN (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16(12):2002–2010. doi: 10.1038/mt.2008.197 PubMedPubMedCentralGoogle Scholar
  105. Thomas MG, Stone L, Evill L, Ong S, Ziman M, Hool L (2011) Bone marrow stromal cells as replacement cells for Parkinson’s disease: generation of an anatomical but not functional neuronal phenotype. Transl Res 157(2):56–63. doi: 10.1016/j.trsl.2010.11.001 PubMedGoogle Scholar
  106. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM, Westendorf JJ, McIvor RS, Hogendoom PC, Szuhai K, Oseth L, Hirsch B, Yant SR, Kay MA, Peister A, Prockop DJ, Fibbe WE, Blazar BR (2006) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25:371–379PubMedGoogle Scholar
  107. Trzaska KA, Kuzhikandathil EV, Rameshwar P (2007) Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells 25(11):2797–2808. doi: 10.1634/stemcells.2007-0212 PubMedGoogle Scholar
  108. Ubhi K, Low P, Masliah E (2011) Multiple system atrophy: a clinical and neuropathological perspective. Trends Neurosci 34(11):581–590. doi: 10.1016/j.tins.2011.08.003 PubMedPubMedCentralGoogle Scholar
  109. Uccelli A, Prockop DJ (2010) Why should mesenchymal stem cells (MSCs) cure autoimmune diseases? Curr Opin Immunol 22(6):768–774. doi: 10.1016/j.coi.2010.10.012 PubMedGoogle Scholar
  110. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736PubMedGoogle Scholar
  111. Uccelli A, Laroni A, Freedman MS (2011) Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol 10(7):649–656. doi: 10.1016/S1474-4422(11)70121-1 PubMedGoogle Scholar
  112. Uccelli A, Laroni A, Freedman MS (2012a) Mesenchymal stem cells as treatment for MS—progress to date. Mult Scler. doi: 10.1177/1352458512464686 Google Scholar
  113. Uccelli A, Milanese M, Principato MC, Morando S, Bonifacino T, Vergani L, Giunti D, Voci A, Carminati E, Giribaldi F, Caponnetto C, Bonanno G (2012b) Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol Med. doi: 10.2119/molmed.2011.00498 PubMedPubMedCentralGoogle Scholar
  114. van Velthoven CTJ, van de Looij Y, Kavelaars A, Zijlstra J, van Bel F, Huppi PS, Sizonenko S, Heijnen CJ (2012) Mesenchymal stem cells restore cortical rewiring after neonatal ischemia in mice. Ann Neurol 71(6):785–796. doi: 10.1002/ana.23543 PubMedGoogle Scholar
  115. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155(2):62–70. doi: 10.1016/j.trsl.2009.07.006 PubMedGoogle Scholar
  116. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L, Madon E, Fagioli F (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31(3):395–405PubMedGoogle Scholar
  117. Vilalta M, Degano IR, Bago J, Gould D, Santos M, Garcia-Arranz M, Ayats R, Fuster C, Chernajovsky Y, Garcia-Olmo D, Rubio N, Blanco J (2008) Biodistribution, long-term survival, and safety of human adipose tissue-derived mesenchymal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging. Stem Cells Dev 17(5):993–1003. doi: 10.1089/scd.2007.0201 PubMedGoogle Scholar
  118. Voulgari-Kokota A, Fairless R, Karamita M, Kyrargyri V, Tseveleki V, Evangelidou M, Delorme B, Charbord P, Diem R, Probert L (2012) Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp Neurol 236(1):161–170. doi: 10.1016/j.expneurol.2012.04.011 PubMedGoogle Scholar
  119. Wright KT, El Masri W, Osman A, Chowdhury J, Johnson WE (2011) Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 29(2):169–178. doi: 10.1002/stem.570 PubMedPubMedCentralGoogle Scholar
  120. Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A, Herlopian A, Baz EK, Mahfouz R, Khalil-Hamdan R, Kreidieh NMA, El-Sabban M, Bazarbachi A (2010) Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 227(1):185–189PubMedGoogle Scholar
  121. Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, Suh-Kim H (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med 40(4):387–397PubMedPubMedCentralGoogle Scholar
  122. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T cell anergy. Blood 106(5):1755–1761PubMedGoogle Scholar
  123. Zhang J, Li Y, Chen J, Cui Y, Lu M, Elias SB, Mitchell JB, Hammill L, Vanguri P, Chopp M (2005) Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195(1):16–26PubMedGoogle Scholar
  124. Zhang J, Li Y, Lu M, Cui Y, Chen J, Noffsinger L, Elias SB, Chopp M (2006) Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J Neurosci Res 84(3):587–595PubMedGoogle Scholar
  125. Zhao CP, Zhang C, Zhou SN, Xie YM, Wang YH, Huang H, Shang YC, Li WY, Zhou C, Yu MJ, Feng SW (2007) Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy 9(5):414–426. doi: 10.1080/14653240701376413 PubMedGoogle Scholar
  126. Zhao X, Liu L, Liu D, Fan H, Wang Y, Hu Y, Hou Y (2012) Progesterone enhances immunoregulatory activity of human mesenchymal stem cells via PGE2 and IL-6. Am J Reprod Immunol 68(4):290–300. doi: 10.1111/j.1600-0897.2012.01163.x PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alice Laroni
    • 1
  • Giovanni Novi
    • 1
  • Nicole Kerlero de Rosbo
    • 1
    • 2
  • Antonio Uccelli
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Neurosciences Ophthalmology, Genetics, Rehabilitation and Child HealthUniversity of GenoaGenoaItaly
  2. 2.Advanced Biotechnology Center (ABC)GenoaItaly
  3. 3.Center of Excellence for Biomedical ResearchUniversity of GenoaGenoaItaly
  4. 4.Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenoaItaly

Personalised recommendations