Journal of Neuroimmune Pharmacology

, Volume 8, Issue 4, pp 774–790 | Cite as

Adaptive Immune Responses in CNS Autoimmune Disease: Mechanisms and Therapeutic Opportunities

INVITED REVIEW

Abstract

The processes underlying autoimmune CNS inflammation are complex, but key roles for autoimmune lymphocytes seem inevitable, based on clinical investigations in multiple sclerosis (MS) and related diseases such as neuromyelitis optica, together with the known pathogenic activity of T cells in experimental autoimmune encephalomyelitis (EAE) models. Despite intense investigation, the details of etiopathology in these diseases have been elusive. Here we describe recent advances in the rodent models that begin to allow a map of pathogenic and protective immunity to be drawn. This map might illuminate previous successful and unsuccessful therapeutic strategies targeting particular pathways, whilst also providing better opportunities for the future, leading to tailored intervention based on understanding the quality of each individual’s autoimmune response.

Keywords

Multiple sclerosis EAE Autoimmunity T cells 

References

  1. Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 94(20):10821–10826PubMedCrossRefGoogle Scholar
  2. Aharoni R, Teitelbaum D, Arnon R, Sela M (1999) Copolymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci USA 96(2):634–639PubMedCrossRefGoogle Scholar
  3. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149. doi:10.1038/nn.2887 PubMedCrossRefGoogle Scholar
  4. Allen M, Sandberg-Wollheim M, Sjogren K, Erlich HA, Petterson U, Gyllensten U (1994) Association of susceptibility to multiple sclerosis in Sweden with HLA class II DRB1 and DQB1 alleles. Hum Immunol 39(1):41–48PubMedCrossRefGoogle Scholar
  5. Anderton SM, Wraith DC (1998) Hierarchy in the ability of T cell epitopes to induce peripheral tolerance to antigens from myelin. Eur J Immunol 28(4):1251–1261. doi:10.1002/(SICI)1521-4141(199804)28:04<1251::AID-IMMU1251>3.0.CO;2-O PubMedCrossRefGoogle Scholar
  6. Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124(1):132–143PubMedCrossRefGoogle Scholar
  7. Antel JP, Williams K, Blain M, McRea E, McLaurin J (1994) Oligodendrocyte lysis by CD4+ T cells independent of tumor necrosis factor. Ann Neurol 35(3):341–348. doi:10.1002/ana.410350315 PubMedCrossRefGoogle Scholar
  8. Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, Naves R, Han M, Zhong F, Castellanos JG, Mair R, Christakos A, Kolkowitz I, Katz L, Killestein J, Polman CH, de Waal Malefyt R, Steinman L, Raman C (2010) T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16(4):406–412. doi:10.1038/nm.2110 PubMedCrossRefGoogle Scholar
  9. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, Ravid R, Rajewsky K (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192(3):393–404PubMedCrossRefGoogle Scholar
  10. Baker D, Butler D, Scallon BJ, O’Neill JK, Turk JL, Feldmann M (1994) Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins. Eur J Immunol 24(9):2040–2048. doi:10.1002/eji.1830240916 PubMedCrossRefGoogle Scholar
  11. Barcellos LF, Oksenberg JR, Begovich AB, Martin ER, Schmidt S, Vittinghoff E, Goodin DS, Pelletier D, Lincoln RR, Bucher P, Swerdlin A, Pericak-Vance MA, Haines JL, Hauser SL (2003) HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 72(3):710–716. doi:10.1086/367781 PubMedCrossRefGoogle Scholar
  12. Barna BP, Chou SM, Jacobs B, Yen-Lieberman B, Ransohoff RM (1989) Interferon-beta impairs induction of HLA-DR antigen expression in cultured adult human astrocytes. J Neuroimmunol 23(1):45–53PubMedCrossRefGoogle Scholar
  13. Bar-Or A, Calabresi PA, Arnold D, Markowitz C, Shafer S, Kasper LH, Waubant E, Gazda S, Fox RJ, Panzara M, Sarkar N, Agarwal S, Smith CH (2008) Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 63(3):395–400. doi:10.1002/ana.21363 PubMedCrossRefGoogle Scholar
  14. Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, Fan B, O’Connor RA, Anderton SM, Bar-Or A, Fillatreau S, Gray D (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209(5):1001–1010. doi:10.1084/jem.20111675 jem.20111675 PubMedCrossRefGoogle Scholar
  15. Becher B, Durell BG, Noelle RJ (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 110(4):493–497. doi:10.1172/JCI15751 PubMedGoogle Scholar
  16. Bechmann I, Galea I, Perry VH (2007) What is the blood–brain barrier (not)? Trends Immunol 28(1):5–11. doi:10.1016/j.it.2006.11.007 PubMedCrossRefGoogle Scholar
  17. Begum-Haque S, Sharma A, Kasper IR, Foureau DM, Mielcarz DW, Haque A, Kasper LH (2008) Downregulation of IL-17 and IL-6 in the central nervous system by glatiramer acetate in experimental autoimmune encephalomyelitis. J Neuroimmunol 204(1–2):58–65. doi:10.1016/j.jneuroim.2008.07.018 PubMedCrossRefGoogle Scholar
  18. Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11(3):195–199. doi:10.1002/eji.1830110307 PubMedCrossRefGoogle Scholar
  19. Bettelli E, Sullivan B, Szabo SJ, Sobel RA, Glimcher LH, Kuchroo VK (2004) Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200(1):79–87. doi:10.1084/jem.20031819 jem.20031819 PubMedCrossRefGoogle Scholar
  20. Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H, Meulepas E, Carton H (1988) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J Immunol 140(5):1506–1510PubMedGoogle Scholar
  21. Boon M, Nolte IM, Bruinenberg M, Spijker GT, Terpstra P, Raelson J, De Keyser J, Zwanikken CP, Hulsbeek M, Hofstra RM, Buys CH, te Meerman GJ (2001) Mapping of a susceptibility gene for multiple sclerosis to the 51 kb interval between G511525 and D6S1666 using a new method of haplotype sharing analysis. Neurogenetics 3(4):221–230PubMedGoogle Scholar
  22. Booss J, Esiri MM, Tourtellotte WW, Mason DY (1983) Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J Neurol Sci 62(1–3):219–232PubMedCrossRefGoogle Scholar
  23. Bradl M, Bauer J, Flugel A, Wekerle H, Lassmann H (2005) Complementary contribution of CD4 and CD8 T lymphocytes to T-cell infiltration of the intact and the degenerative spinal cord. Am J Pathol 166(5):1441–1450. doi:10.1016/S0002-9440(10)62361-9 PubMedCrossRefGoogle Scholar
  24. Brendecke SM, Prinz M (2012) How type I interferons shape myeloid cell function in CNS autoimmunity. J Leukoc Biol 92(3):479–488. doi:10.1189/jlb.0112043 jlb.0112043 PubMedCrossRefGoogle Scholar
  25. Bright JJ, Du C, Coon M, Sriram S, Klaus SJ (1998) Prevention of experimental allergic encephalomyelitis via inhibition of IL-12 signaling and IL-12-mediated Th1 differentiation: an effect of the novel anti-inflammatory drug lisofylline. J Immunol 161(12):7015–7022PubMedGoogle Scholar
  26. Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9(11):883–897. doi:10.1038/nrd3248 PubMedCrossRefGoogle Scholar
  27. Brosnan CF, Bornstein MB, Bloom BR (1981) The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J Immunol 126(2):614–620PubMedGoogle Scholar
  28. Broux B, Pannemans K, Zhang X, Markovic-Plese S, Broekmans T, Eijnde BO, Van Wijmeersch B, Somers V, Geusens P, van der Pol S, van Horssen J, Stinissen P, Hellings N (2012) CX(3)CR1 drives cytotoxic CD4(+)CD28(-) T cells into the brain of multiple sclerosis patients. J Autoimmun 38(1):10–19. doi:10.1016/j.jaut.2011.11.006 PubMedCrossRefGoogle Scholar
  29. Bruck W (2005) The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol 252(Suppl 5):v3–v9. doi:10.1007/s00415-005-5002-7 PubMedCrossRefGoogle Scholar
  30. Burkhart C, Liu GY, Anderton SM, Metzler B, Wraith DC (1999) Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10. Int Immunol 11(10):1625–1634PubMedCrossRefGoogle Scholar
  31. Burns J, Rosenzweig A, Zweiman B, Lisak RP (1983) Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell Immunol 81(2):435–440PubMedCrossRefGoogle Scholar
  32. Carrithers MD, Visintin I, Viret C, Janeway CS Jr (2002) Role of genetic background in P selectin-dependent immune surveillance of the central nervous system. J Neuroimmunol 129(1–2):51–57PubMedCrossRefGoogle Scholar
  33. Chen ML, Yan BS, Kozoriz D, Weiner HL (2009) Novel CD8+ Treg suppress EAE by TGF-beta- and IFN-gamma-dependent mechanisms. Eur J Immunol 39(12):3423–3435. doi:10.1002/eji.200939441 PubMedCrossRefGoogle Scholar
  34. Ciccone A, Beretta S, Brusaferri F, Galea I, Protti A, Spreafico C (2008) Corticosteroids for the long-term treatment in multiple sclerosis. Cochrane Database Syst Rev (1):CD006264. doi:10.1002/14651858.CD006264.pub2
  35. Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567. doi:10.1038/ni.2027 PubMedCrossRefGoogle Scholar
  36. Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, Norris K, Tandon PK (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359(17):1786–1801. doi:10.1056/NEJMoa0802670 PubMedCrossRefGoogle Scholar
  37. Comi G, Hartung HP, Martinelli Boneschi F (2005) Evidence for use of glatiramer acetate in multiple sclerosis. Lancet Neurol 4(2):75–76. doi:10.1016/S1474-4422(05)00975-0, discussion 76–77PubMedCrossRefGoogle Scholar
  38. Conrad AT, Dittel BN (2011) Taming of macrophage and microglial cell activation by microRNA-124. Cell Res 21(2):213–216. doi:10.1038/cr.2011.9 PubMedCrossRefGoogle Scholar
  39. Cossburn M, Pace AA, Jones J, Ali R, Ingram G, Baker K et al (2011) Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology 77(6):573–579PubMedCrossRefGoogle Scholar
  40. Crawford MP, Yan SX, Ortega SB, Mehta RS, Hewitt RE, Price DA, Stastny P, Douek DC, Koup RA, Racke MK, Karandikar NJ (2004) High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103(11):4222–4231. doi:10.1182/blood-2003-11-4025 2003-11-4025 PubMedCrossRefGoogle Scholar
  41. Critchfield JM, Racke MK, Zuniga-Pflucker JC, Cannella B, Raine CS, Goverman J, Lenardo MJ (1994) T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263(5150):1139–1143PubMedCrossRefGoogle Scholar
  42. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421(6924):744–748. doi:10.1038/nature01355 nature01355 PubMedCrossRefGoogle Scholar
  43. de Graaf MT, Smitt PA, Luitwieler RL, van Velzen C, van den Broek PD, Kraan J, Gratama JW (2011) Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom 80(1):43–50. doi:10.1002/cyto.b.20542 PubMedGoogle Scholar
  44. de Jong R, Bezemer AC, Zomerdijk TP, van de Pouw-Kraan T, Ottenhoff TH, Nibbering PH (1996) Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. Eur J Immunol 26(9):2067–2074. doi:10.1002/eji.1830260916 PubMedCrossRefGoogle Scholar
  45. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265. doi:10.1084/jem.20062512 PubMedCrossRefGoogle Scholar
  46. Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G (2010) Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 5(11):e15531. doi:10.1371/journal.pone.0015531 PubMedCrossRefGoogle Scholar
  47. Duong TT, St Louis J, Gilbert JJ, Finkelman FD, Strejan GH (1992) Effect of anti-interferon-gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J Neuroimmunol 36(2–3):105–115PubMedCrossRefGoogle Scholar
  48. Durelli L, Cocito D, Riccio A, Barile C, Bergamasco B, Baggio GF, Perla F, Delsedime M, Gusmaroli G, Bergamini L (1986) High-dose intravenous methylprednisolone in the treatment of multiple sclerosis: clinical-immunologic correlations. Neurology 36(2):238–243PubMedCrossRefGoogle Scholar
  49. Edan G, Miller D, Clanet M, Confavreux C, Lyon-Caen O, Lubetzki C, Brochet B, Berry I, Rolland Y, Froment JC, Cabanis E, Iba-Zizen MT, Gandon JM, Lai HM, Moseley I, Sabouraud O (1997) Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry 62(2):112–118PubMedCrossRefGoogle Scholar
  50. El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A (2011) The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12(6):568–575. doi:10.1038/ni.2031 PubMedCrossRefGoogle Scholar
  51. Engelhardt B, Sorokin L (2009) The blood–brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31(4):497–511. doi:10.1007/s00281-009-0177-0 PubMedCrossRefGoogle Scholar
  52. Epstein LG, Prineas JW, Raine CS (1983) Attachment of myelin to coated pits on macrophages in experimental allergic encephalomyelitis. J Neurol Sci 61(3):341–348PubMedCrossRefGoogle Scholar
  53. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, Dalton D, Fathman CG (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 156(1):5–7PubMedGoogle Scholar
  54. Fidler JM, DeJoy SQ, Smith FR 3rd, Gibbons JJ Jr (1986) Selective immunomodulation by the antineoplastic agent mitoxantrone. II. Nonspecific adherent suppressor cells derived from mitoxantrone-treated mice. J Immunol 136(8):2747–2754PubMedGoogle Scholar
  55. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944–950. doi:10.1038/ni833 ni833 PubMedCrossRefGoogle Scholar
  56. Fillatreau S, Gray D, Anderton SM (2008) Not always the bad guys: B cells as regulators of autoimmune pathology. Nat Rev Immunol 8(5):391–397. doi:10.1038/nri2315 PubMedCrossRefGoogle Scholar
  57. Flechter S, Vardi J, Pollak L, Rabey JM (2002) Comparison of glatiramer acetate (Copaxone) and interferon beta-1b (Betaferon) in multiple sclerosis patients: an open-label 2-year follow-up. J Neurol Sci 197(1–2):51–55PubMedCrossRefGoogle Scholar
  58. Ford ML, Evavold BD (2005) Specificity, magnitude, and kinetics of MOG-specific CD8+ T cell responses during experimental autoimmune encephalomyelitis. Eur J Immunol 35(1):76–85. doi:10.1002/eji.200425660 PubMedCrossRefGoogle Scholar
  59. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132(Pt 5):1175–1189. doi:10.1093/brain/awp070 PubMedCrossRefGoogle Scholar
  60. Fujino M, Funeshima N, Kitazawa Y, Kimura H, Amemiya H, Suzuki S, Li XK (2003) Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 305(1):70–77. doi:10.1124/jpet.102.045658 PubMedCrossRefGoogle Scholar
  61. Gaur A, Wiers B, Liu A, Rothbard J, Fathman CG (1992) Amelioration of autoimmune encephalomyelitis by myelin basic protein synthetic peptide-induced anergy. Science 258(5087):1491–1494PubMedCrossRefGoogle Scholar
  62. Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5(2):170–175. doi:10.1038/5532 PubMedCrossRefGoogle Scholar
  63. Ghoreschi K, Bruck J, Kellerer C, Deng C, Peng H, Rothfuss O, Hussain RZ, Gocke AR, Respa A, Glocova I, Valtcheva N, Alexander E, Feil S, Feil R, Schulze-Osthoff K, Rupec RA, Lovett-Racke AE, Dringen R, Racke MK, Rocken M (2011) Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med 208(11):2291–2303. doi:10.1084/jem.20100977 jem.20100977 PubMedCrossRefGoogle Scholar
  64. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107. doi:10.1056/NEJMoa1114287 PubMedCrossRefGoogle Scholar
  65. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9(6):393–407. doi:10.1038/nri2550 PubMedCrossRefGoogle Scholar
  66. Group TLMSSGaTUoBCMMA (1999) TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology 53(3):457–465CrossRefGoogle Scholar
  67. Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A (2009) IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119(1):61–69. doi:10.1172/JCI35997 35997 PubMedGoogle Scholar
  68. Haines JL, Terwedow HA, Burgess K, Pericak-Vance MA, Rimmler JB, Martin ER, Oksenberg JR, Lincoln R, Zhang DY, Banatao DR, Gatto N, Goodkin DE, Hauser SL (1998) Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 7(8):1229–1234PubMedCrossRefGoogle Scholar
  69. Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, Krapf H, Zwingers T (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360(9350):2018–2025. doi:10.1016/S0140-6736(02)12023-X PubMedCrossRefGoogle Scholar
  70. Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL (1986) Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 19(6):578–587. doi:10.1002/ana.410190610 PubMedCrossRefGoogle Scholar
  71. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688. doi:10.1056/NEJMoa0706383 358/7/676 PubMedCrossRefGoogle Scholar
  72. Hedlund G, Sandberg-Wollheim M, Sjogren HO (1989) Increased proportion of CD4+CDw29+CD45R-UCHL-1+ lymphocytes in the cerebrospinal fluid of both multiple sclerosis patients and healthy individuals. Cell Immunol 118(2):406–412PubMedCrossRefGoogle Scholar
  73. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239(4837):290–292PubMedCrossRefGoogle Scholar
  74. Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28(2):254–260. doi:10.1002/jnr.490280213 PubMedCrossRefGoogle Scholar
  75. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U, Garefalaki A, Potocnik AJ, Stockinger B (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12(3):255–263. doi:10.1038/ni.1993 PubMedCrossRefGoogle Scholar
  76. Hjelmstrom P, Juedes AE, Fjell J, Ruddle NH (1998) B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization. J Immunol 161(9):4480–4483PubMedGoogle Scholar
  77. Hochweller K, Sweenie CH, Anderton SM (2006) Immunological tolerance using synthetic peptides–basic mechanisms and clinical application. Curr Mol Med 6(6):631–643PubMedCrossRefGoogle Scholar
  78. Hoehlig K, Shen P, Lampropoulou V, Roch T, Malissen B, O’Connor R, Ries S, Hilgenberg E, Anderton SM, Fillatreau S (2012) Activation of CD4(+) Foxp3(+) regulatory T cells proceeds normally in the absence of B cells during EAE. Eur J Immunol 42(5):1164–1173. doi:10.1002/eji.201142242 PubMedCrossRefGoogle Scholar
  79. Horakova D, Kalincik T, Dolezal O, Krasensky J, Vaneckova M, Seidl Z, Havrdova E (2012) Early predictors of non-response to interferon in multiple sclerosis. Acta Neurol Scand 126(6):390–397. doi:10.1111/j.1600-0404.2012.01662.x PubMedCrossRefGoogle Scholar
  80. Hoyne GF, O’Hehir RE, Wraith DC, Thomas WR, Lamb JR (1993) Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J Exp Med 178(5):1783–1788PubMedCrossRefGoogle Scholar
  81. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260(5107):547–549PubMedCrossRefGoogle Scholar
  82. Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172(4):1025–1033PubMedCrossRefGoogle Scholar
  83. Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194(5):669–676PubMedCrossRefGoogle Scholar
  84. Hutchinson M (2007) Natalizumab: a new treatment for relapsing remitting multiple sclerosis. Ther Clin Risk Manag 3(2):259–268PubMedCrossRefGoogle Scholar
  85. Inoue M, Williams KL, Oliver T, Vandenabeele P, Rajan JV, Miao EA, Shinohara ML (2012) Interferon-beta therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci Signal 5(225):ra38. doi:10.1126/scisignal.2002767 PubMedCrossRefGoogle Scholar
  86. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39(3):285–294PubMedCrossRefGoogle Scholar
  87. Jiang H, Zhang SI, Pernis B (1992) Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science 256(5060):1213–1215PubMedCrossRefGoogle Scholar
  88. Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10. doi:10.1186/1743-8454-5-10 PubMedCrossRefGoogle Scholar
  89. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, Myers LW, Panitch HS, Rose JW, Schiffer RB (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45(7):1268–1276PubMedCrossRefGoogle Scholar
  90. Jones JL, Phuah CL, Cox AL, Thompson SA, Ban M, Shawcross J et al (2009) IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J Clin Invest 119(7):2052–2061PubMedGoogle Scholar
  91. Kappos L, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH et al (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370(9585):389–397PubMedCrossRefGoogle Scholar
  92. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5):387–401. doi:10.1056/NEJMoa0909494 PubMedCrossRefGoogle Scholar
  93. Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA 100(14):8389–8394. doi:10.1073/pnas.1433000100 1433000100 PubMedCrossRefGoogle Scholar
  94. Kivisakk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, Khoury SJ (2009) Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 65(4):457–469. doi:10.1002/ana.21379 PubMedCrossRefGoogle Scholar
  95. Kleinschmidt-DeMasters BK, Tyler KL (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 353(4):369–374. doi:10.1056/NEJMoa051782 PubMedCrossRefGoogle Scholar
  96. Koh DR, Fung-Leung WP, Ho A, Gray D, Acha-Orbea H, Mak TW (1992) Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice. Science 256(5060):1210–1213PubMedCrossRefGoogle Scholar
  97. Krakowski M, Owens T (1996) Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol 26(7):1641–1646. doi:10.1002/eji.1830260735 PubMedCrossRefGoogle Scholar
  98. Kretschmer K, Heng TS, von Boehmer H (2006) De novo production of antigen-specific suppressor cells in vivo. Nat Protoc 1(2):653–661PubMedCrossRefGoogle Scholar
  99. Krishnamoorthy G, Saxena A, Mars LT, Domingues HS, Mentele R, Ben-Nun A, Lassmann H, Dornmair K, Kurschus FC, Liblau RS, Wekerle H (2009) Myelin-specific T cells also recognize neuronal autoantigen in a transgenic mouse model of multiple sclerosis. Nat Med 15(6):626–632. doi:10.1038/nm.1975 PubMedCrossRefGoogle Scholar
  100. Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205(7):1535–1541. doi:10.1084/jem.20080159 jem.20080159 PubMedCrossRefGoogle Scholar
  101. Kroenke MA, Chensue SW, Segal BM (2010) EAE mediated by a non-IFN-gamma/non-IL-17 pathway. Eur J Immunol 40(8):2340–2348. doi:10.1002/eji.201040489 PubMedCrossRefGoogle Scholar
  102. Kurschus FC, Croxford AL, Heinen AP, Wortge S, Ielo D, Waisman A (2010) Genetic proof for the transient nature of the Th17 phenotype. Eur J Immunol 40(12):3336–3346. doi:10.1002/eji.201040755 PubMedCrossRefGoogle Scholar
  103. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712. doi:10.1093/brain/awh641 PubMedCrossRefGoogle Scholar
  104. Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderon Gomez E, Sweenie CH, Hao Y, Freitas AA, Steinhoff U, Anderton SM, Fillatreau S (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180(7):4763–4773PubMedGoogle Scholar
  105. Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353(4):375–381. doi:10.1056/NEJMoa051847 PubMedCrossRefGoogle Scholar
  106. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233–240. doi:10.1084/jem.20041257 PubMedCrossRefGoogle Scholar
  107. Larche M, Wraith DC (2005) Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat Med 11(4 Suppl):S69–S76. doi:10.1038/nm1226 PubMedCrossRefGoogle Scholar
  108. Leech MD, Carrillo-Vico A, Liblau RS, Anderton SM (2011) Recognition of a high affinity MHC class I-restricted epitope of myelin oligodendrocyte glycoprotein by CD8(+) T cells derived from autoantigen-deficient mice. Front Immun 2:17. doi:10.3389/fimmu.2011.00017 CrossRefGoogle Scholar
  109. Leech MD, Barr TA, Turner DG, Brown S, O’Connor RA, Gray D, Mellanby RJ, Anderton SM (2013) Cutting edge: IL-6-dependent autoimmune disease: dendritic cells as a sufficient, but transient, source. J Immunol 190(3):881–885. doi:10.4049/jimmunol.1202925 jimmunol.1202925 PubMedCrossRefGoogle Scholar
  110. Leonard JP, Waldburger KE, Goldman SJ (1995) Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 181(1):381–386PubMedCrossRefGoogle Scholar
  111. Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, Flores M, Li N, Schweighoffer E, Greenberg S, Tybulewicz V, Vignali D, Clynes R (2008) Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 180(9):5916–5926PubMedGoogle Scholar
  112. Lindsey J, Haden-Pinneri K, Memon N, Buja L (2012) Sudden unexpected death on fingolimod. Mult Scler 18(10):1507–1508. doi:10.1177/1352458512438456 PubMedCrossRefGoogle Scholar
  113. Linington C, Bradl M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130(3):443–454PubMedGoogle Scholar
  114. Liu GY, Wraith DC (1995) Affinity for class II MHC determines the extent to which soluble peptides tolerize autoreactive T cells in naive and primed adult mice–implications for autoimmunity. Int Immunol 7(8):1255–1263PubMedCrossRefGoogle Scholar
  115. Liu H, Hu B, Xu D, Liew FY (2003) CD4+CD25+ regulatory T cells cure murine colitis: the role of IL-10, TGF-beta, and CTLA4. J Immunol 171(10):5012–5017PubMedGoogle Scholar
  116. Lovett-Racke AE, Rocchini AE, Choy J, Northrop SC, Hussain RZ, Ratts RB, Sikder D, Racke MK (2004) Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21(5):719–731. doi:10.1016/j.immuni.2004.09.010 PubMedCrossRefGoogle Scholar
  117. Lublin FD, Knobler RL, Kalman B, Goldhaber M, Marini J, Perrault M, D’Imperio C, Joseph J, Alkan SS, Korngold R (1993) Monoclonal anti-gamma interferon antibodies enhance experimental allergic encephalomyelitis. Autoimmunity 16(4):267–274PubMedCrossRefGoogle Scholar
  118. Lyons JA, San M, Happ MP, Cross AH (1999) B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur J Immunol 29(11):3432–3439. doi:10.1002/(SICI)1521-4141(199911)29:11<3432::AID-IMMU3432>3.0.CO;2-2 PubMedCrossRefGoogle Scholar
  119. Lyons JA, Ramsbottom MJ, Cross AH (2002) Critical role of antigen-specific antibody in experimental autoimmune encephalomyelitis induced by recombinant myelin oligodendrocyte glycoprotein. Eur J Immunol 32(7):1905–1913. doi:10.1002/1521-4141(200207)32:7<1905::AID-IMMU1905>3.0.CO;2-L PubMedCrossRefGoogle Scholar
  120. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM, O’Garra A (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154(10):5071–5079PubMedGoogle Scholar
  121. Markowitz CE (2007) Interferon-beta: mechanism of action and dosing issues. Neurology 68(24 Suppl 4):S8–S11PubMedCrossRefGoogle Scholar
  122. Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 118(10):3420–3430. doi:10.1172/JCI36030 PubMedGoogle Scholar
  123. Matsushita T, Horikawa M, Iwata Y, Tedder TF (2010) Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol 185(4):2240–2252. doi:10.4049/jimmunol.1001307 PubMedCrossRefGoogle Scholar
  124. Matthews PM (2004) Primary progressive multiple sclerosis takes centre stage. J Neurol Neurosurg Psychiatry 75(9):1232–1233. doi:10.1136/jnnp.2004.044263 75/9/1232-a PubMedCrossRefGoogle Scholar
  125. Mauri C, Gray D, Mushtaq N, Londei M (2003) Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 197(4):489–501PubMedCrossRefGoogle Scholar
  126. McGeachy MJ, Stephens LA, Anderton SM (2005) Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 175(5):3025–3032PubMedGoogle Scholar
  127. McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA, Reid HH, Bernard CC (2001) Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med 194(7):873–882PubMedCrossRefGoogle Scholar
  128. Mendel I, Katz A, Kozak N, Ben-Nun A, Revel M (1998) Interleukin-6 functions in autoimmune encephalomyelitis: a study in gene-targeted mice. Eur J Immunol 28(5):1727–1737PubMedCrossRefGoogle Scholar
  129. Merrill JE, Kono DH, Clayton J, Ando DG, Hinton DR, Hofman FM (1992) Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc Natl Acad Sci USA 89(2):574–578PubMedCrossRefGoogle Scholar
  130. Mikol DD, Barkhof F, Chang P, Coyle PK, Jeffery DR, Schwid SR, Stubinski B, Uitdehaag B (2008) Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 7(10):903–914. doi:10.1016/S1474-4422(08)70200-X S1474-4422(08)70200-X PubMedCrossRefGoogle Scholar
  131. Miller SD, Turley DM, Podojil JR (2007) Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol 7(9):665–677. doi:10.1038/nri2153 PubMedCrossRefGoogle Scholar
  132. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16(2):219–230PubMedCrossRefGoogle Scholar
  133. Montero E, Nussbaum G, Kaye JF, Perez R, Lage A, Ben-Nun A, Cohen IR (2004) Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies. J Autoimmun 23(1):1–7. doi:10.1016/j.jaut.2004.05.001 S0896841104000526 PubMedCrossRefGoogle Scholar
  134. Moreau T, Thorpe J, Miller D, Moseley I, Hale G, Waldmann H, Clayton D, Wing M, Scolding N, Compston A (1994) Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis. Lancet 344(8918):298–301PubMedCrossRefGoogle Scholar
  135. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357PubMedGoogle Scholar
  136. Muls N, Jnaoui K, Dang HA, Wauters A, Van Snick J, Sindic CJ, van Pesch V (2012) Upregulation of IL-17, but not of IL-9, in circulating cells of CIS and relapsing MS patients. Impact of corticosteroid therapy on the cytokine network. J Neuroimmunol 243(1–2):73–80. doi:10.1016/j.jneuroim.2011.12.010 PubMedCrossRefGoogle Scholar
  137. Munari LM, Filippini G (2004) Lack of evidence for use of glatiramer acetate in multiple sclerosis. Lancet Neurol 3(11):641. doi:10.1016/S1474-4422(04)00899-3 PubMedCrossRefGoogle Scholar
  138. Munari L, Lovati R, Boiko A (2004) Therapy with glatiramer acetate for multiple sclerosis. Cochrane Database Syst Rev (1):CD004678. doi:10.1002/14651858.CD004678Google Scholar
  139. Nicolson KS, O’Neill EJ, Sundstedt A, Streeter HB, Minaee S, Wraith DC (2006) Antigen-induced IL-10+ regulatory T cells are independent of CD25+ regulatory cells for their growth, differentiation, and function. J Immunol 176(9):5329–5337PubMedGoogle Scholar
  140. Noronha A, Toscas A, Jensen MA (1993) Interferon beta decreases T cell activation and interferon gamma production in multiple sclerosis. J Neuroimmunol 46(1–2):145–153PubMedCrossRefGoogle Scholar
  141. O'Connor RA, Malpass KH, Anderton SM (2007) The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J Immunol 179(2):958–966PubMedGoogle Scholar
  142. O’Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, Anderton SM (2008) Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 181(6):3750–3754PubMedGoogle Scholar
  143. O’Connor P, Filippi M, Arnason B, Comi G, Cook S, Goodin D, Hartung HP, Jeffery D, Kappos L, Boateng F, Filippov V, Groth M, Knappertz V, Kraus C, Sandbrink R, Pohl C, Bogumil T (2009) 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 8(10):889–897. doi:10.1016/S1474-4422(09)70226-1 S1474-4422(09)70226-1 PubMedCrossRefGoogle Scholar
  144. O’Connor RA, Leech MD, Suffner J, Hammerling GJ, Anderton SM (2010) Myelin-reactive, TGF-beta-induced regulatory T cells can be programmed to develop Th1-like effector function but remain less proinflammatory than myelin-reactive Th1 effectors and can suppress pathogenic T cell clonal expansion in vivo. J Immunol 185(12):7235–7243. doi:10.4049/jimmunol.1001551 PubMedCrossRefGoogle Scholar
  145. O’Connor RA, Floess S, Huehn J, Jones SA, Anderton SM (2012) Foxp3(+) Treg cells in the inflamed CNS are insensitive to IL-6-driven IL-17 production. Eur J Immunol 42(5):1174–1179. doi:10.1002/eji.201142216 PubMedCrossRefGoogle Scholar
  146. Oliver AR, Lyon GM, Ruddle NH (2003) Rat and human myelin oligodendrocyte glycoproteins induce experimental autoimmune encephalomyelitis by different mechanisms in C57BL/6 mice. J Immunol 171(1):462–468PubMedGoogle Scholar
  147. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13(5):715–725PubMedCrossRefGoogle Scholar
  148. Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346(6280):183–187. doi:10.1038/346183a0 PubMedCrossRefGoogle Scholar
  149. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8(12):1353–1362. doi:10.1038/ni1536 PubMedCrossRefGoogle Scholar
  150. Panitch HS, Hirsch RL, Haley AS, Johnson KP (1987) Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1(8538):893–895PubMedCrossRefGoogle Scholar
  151. Paty DW, Li DK (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43(4):662–667PubMedCrossRefGoogle Scholar
  152. Pender MP, Stanley GP, Yoong G, Nguyen KB (1990) The neuropathology of chronic relapsing experimental allergic encephalomyelitis induced in the Lewis rat by inoculation with whole spinal cord and treatment with cyclosporin A. Acta Neuropathol 80(2):172–183PubMedCrossRefGoogle Scholar
  153. Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, Vestweber D, Butcher EC, Constantin G (2002) Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 168(4):1940–1949PubMedGoogle Scholar
  154. Pollinger B, Krishnamoorthy G, Berer K, Lassmann H, Bosl MR, Dunn R, Domingues HS, Holz A, Kurschus FC, Wekerle H (2009) Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206(6):1303–1316. doi:10.1084/jem.20090299 PubMedCrossRefGoogle Scholar
  155. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354(9):899–910. doi:10.1056/NEJMoa044397 PubMedCrossRefGoogle Scholar
  156. Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81(3):374–389. doi:10.1002/jnr.20488 PubMedCrossRefGoogle Scholar
  157. Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN (2007) GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 178(1):39–48PubMedGoogle Scholar
  158. Prendergast CT, Anderton SM (2009) Immune cell entry to central nervous system–current understanding and prospective therapeutic targets. Endocr Metab Immune Disord Drug Targets 9(4):315–327PubMedCrossRefGoogle Scholar
  159. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10(5):514–523. doi:10.1038/ni.1716 PubMedCrossRefGoogle Scholar
  160. Rice GP, Hartung HP, Calabresi PA (2005) Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 64(8):1336–1342. doi:10.1212/01.WNL.0000158329.30470.D0 PubMedCrossRefGoogle Scholar
  161. Rio J, Nos C, Tintore M, Tellez N, Galan I, Pelayo R, Comabella M, Montalban X (2006) Defining the response to interferon-beta in relapsing-remitting multiple sclerosis patients. Ann Neurol 59(2):344–352. doi:10.1002/ana.20740 PubMedCrossRefGoogle Scholar
  162. Rothhammer V, Heink S, Petermann F, Srivastava R, Claussen MC, Hemmer B, Korn T (2011) Th17 lymphocytes traffic to the central nervous system independently of alpha4 integrin expression during EAE. J Exp Med 208(12):2465–2476. doi:10.1084/jem.20110434 PubMedCrossRefGoogle Scholar
  163. Rubio JP, Bahlo M, Butzkueven H, van Der Mei IA, Sale MM, Dickinson JL, Groom P, Johnson LJ, Simmons RD, Tait B, Varney M, Taylor B, Dwyer T, Williamson R, Gough NM, Kilpatrick TJ, Speed TP, Foote SJ (2002) Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis. Am J Hum Genet 70(5):1125–1137. doi:10.1086/339932 PubMedCrossRefGoogle Scholar
  164. Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW, Lublin FD, Weinstock-Guttman B, Wynn DR, Lynn F, Panzara MA, Sandrock AW (2006) Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 354(9):911–923. doi:10.1056/NEJMoa044396 PubMedCrossRefGoogle Scholar
  165. Samoilova EB, Horton JL, Hilliard B, Liu TS, Chen Y (1998) IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol 161(12):6480–6486PubMedGoogle Scholar
  166. Scolding NJ, Compston DA (1991) Oligodendrocyte-macrophage interactions in vitro triggered by specific antibodies. Immunology 72(1):127–132PubMedGoogle Scholar
  167. Segal BM, Dwyer BK, Shevach EM (1998) An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 187(4):537–546PubMedCrossRefGoogle Scholar
  168. Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH (2008) Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol 7(9):796–804. doi:10.1016/S1474-4422(08)70173-X PubMedCrossRefGoogle Scholar
  169. Selmaj K, Raine CS, Cross AH (1991) Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann Neurol 30(5):694–700. doi:10.1002/ana.410300510 PubMedCrossRefGoogle Scholar
  170. Selvaraj RK, Geiger TL (2008) Mitigation of experimental allergic encephalomyelitis by TGF-beta induced Foxp3+ regulatory T lymphocytes through the induction of anergy and infectious tolerance. J Immunol 180(5):2830–2838PubMedGoogle Scholar
  171. Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S, Yoshida H, Nishikawa T, Terabe F, Ohkawara T, Takahashi T, Ripley B, Kimura A, Kishimoto T, Naka T (2008) IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 105(26):9041–9046. doi:10.1073/pnas.0802218105 PubMedCrossRefGoogle Scholar
  172. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14(2):164–174PubMedCrossRefGoogle Scholar
  173. Simpson D, Noble S, Perry C (2002) Glatiramer acetate: a review of its use in relapsing-remitting multiple sclerosis. CNS Drugs 16(12):825–850PubMedCrossRefGoogle Scholar
  174. Spain RI, Cameron MH, Bourdette D (2009) Recent developments in multiple sclerosis therapeutics. BMC Med 7:74. doi:10.1186/1741-7015-7-74 PubMedCrossRefGoogle Scholar
  175. Sriram S, Roberts CA (1986) Treatment of established chronic relapsing experimental allergic encephalomyelitis with anti-L3T4 antibodies. J Immunol 136(12):4464–4469PubMedGoogle Scholar
  176. Sriram S, Solomon D, Rouse RV, Steinman L (1982) Identification of T cell subsets and B lymphocytes in mouse brain experimental allergic encephalitis lesions. J Immunol 129(4):1649–1651PubMedGoogle Scholar
  177. Steffen BJ, Breier G, Butcher EC, Schulz M, Engelhardt B (1996) ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol 148(6):1819–1838PubMedGoogle Scholar
  178. Steinman L (2005) Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov 4(6):510–518. doi:10.1038/nrd1752 PubMedCrossRefGoogle Scholar
  179. Stephens LA, Malpass KH, Anderton SM (2009) Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg. Eur J Immunol 39(4):1108–1117. doi:10.1002/eji.200839073 PubMedCrossRefGoogle Scholar
  180. Stromnes IM, Goverman JM (2006) Active induction of experimental allergic encephalomyelitis. Nat Protoc 1(4):1810–1819. doi:10.1038/nprot.2006.285 PubMedCrossRefGoogle Scholar
  181. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14(3):337–342. doi:10.1038/nm1715 PubMedCrossRefGoogle Scholar
  182. Stuve O, Marra CM, Jerome KR, Cook L, Cravens PD, Cepok S, Frohman EM, Phillips JT, Arendt G, Hemmer B, Monson NL, Racke MK (2006) Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol 59(5):743–747. doi:10.1002/ana.20858 PubMedCrossRefGoogle Scholar
  183. Sun J, Link H, Olsson T, Xiao BG, Andersson G, Ekre HP, Linington C, Diener P (1991) T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J Immunol 146(5):1490–1495PubMedGoogle Scholar
  184. Sun D, Zhang Y, Wei B, Peiper SC, Shao H, Kaplan HJ (2003) Encephalitogenic activity of truncated myelin oligodendrocyte glycoprotein (MOG) peptides and their recognition by CD8+ MOG-specific T cells on oligomeric MHC class I molecules. Int Immunol 15(2):261–268PubMedCrossRefGoogle Scholar
  185. Sundstedt A, Hoiden I, Rosendahl A, Kalland T, van Rooijen N, Dohlsten M (1997) Immunoregulatory role of IL-10 during superantigen-induced hyporesponsiveness in vivo. J Immunol 158(1):180–186PubMedGoogle Scholar
  186. Sundstedt A, O’Neill EJ, Nicolson KS, Wraith DC (2003) Role for IL-10 in suppression mediated by peptide-induced regulatory T cells in vivo. J Immunol 170(3):1240–1248PubMedGoogle Scholar
  187. Svenningsson A, Andersen O, Edsbagge M, Stemme S (1995) Lymphocyte phenotype and subset distribution in normal cerebrospinal fluid. J Neuroimmunol 63(1):39–46PubMedCrossRefGoogle Scholar
  188. Taguchi F, Kajioka J, Miyamura T (1982) Prevalence rate and age of acquisition of antibodies against JC virus and BK virus in human sera. Microbiol Immunol 26(11):1057–1064PubMedGoogle Scholar
  189. Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199(11):1467–1477. doi:10.1084/jem.20040180 jem.20040180 PubMedCrossRefGoogle Scholar
  190. Teitelbaum D, Meshorer A, Hirshfeld T, Arnon R, Sela M (1971) Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol 1(4):242–248. doi:10.1002/eji.1830010406 PubMedCrossRefGoogle Scholar
  191. Thakker P, Leach MW, Kuang W, Benoit SE, Leonard JP, Marusic S (2007) IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol 178(4):2589–2598PubMedGoogle Scholar
  192. Then Bergh F, Kumpfel T, Schumann E, Held U, Schwan M, Blazevic M, Wismuller A, Holsboer F, Yassouridis A, Uhr M, Weber F, Daumer M, Trenkwalder C, Auer DP (2006) Monthly intravenous methylprednisolone in relapsing-remitting multiple sclerosis - reduction of enhancing lesions, T2 lesion volume and plasma prolactin concentrations. BMC Neurol 6:19. doi:10.1186/1471-2377-6-19 PubMedCrossRefGoogle Scholar
  193. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269. doi:10.1146/annurev.neuro.30.051606.094313 PubMedCrossRefGoogle Scholar
  194. Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12(3):295–302PubMedCrossRefGoogle Scholar
  195. Traugott U, Reinherz EL, Raine CS (1983a) Multiple sclerosis. Distribution of T cells, T cell subsets and Ia-positive macrophages in lesions of different ages. J Neuroimmunol 4(3):201–221PubMedCrossRefGoogle Scholar
  196. Traugott U, Reinherz EL, Raine CS (1983b) Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219(4582):308–310PubMedCrossRefGoogle Scholar
  197. Treumer F, Zhu K, Glaser R, Mrowietz U (2003) Dimethylfumarate is a potent inducer of apoptosis in human T cells. J Invest Dermatol 121(6):1383–1388. doi:10.1111/j.1523-1747.2003.12605.x PubMedCrossRefGoogle Scholar
  198. van Oosten BW, Barkhof F, Truyen L, Boringa JB, Bertelsmann FW, von Blomberg BM, Woody JN, Hartung HP, Polman CH (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47(6):1531–1534PubMedCrossRefGoogle Scholar
  199. van Oosten BW, Lai M, Hodgkinson S, Barkhof F, Miller DH, Moseley IF, Thompson AJ, Rudge P, McDougall A, McLeod JG, Ader HJ, Polman CH (1997) Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49(2):351–357PubMedCrossRefGoogle Scholar
  200. Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens JL, Medaer R, Hupperts R, Stinissen P (2008) Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123(1):79–89. doi:10.1111/j.1365-2567.2007.02690.x PubMedCrossRefGoogle Scholar
  201. Venken K, Hellings N, Liblau R, Stinissen P (2010) Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 16(2):58–68. doi:10.1016/j.molmed.2009.12.003 PubMedCrossRefGoogle Scholar
  202. Vieira PL, Heystek HC, Wormmeester J, Wierenga EA, Kapsenberg ML (2003) Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol 170(9):4483–4488PubMedGoogle Scholar
  203. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199(7):971–979. doi:10.1084/jem.20031579 jem.20031579 PubMedCrossRefGoogle Scholar
  204. Voorthuis JA, Uitdehaag BM, De Groot CJ, Goede PH, van der Meide PH, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin Exp Immunol 81(2):183–188PubMedCrossRefGoogle Scholar
  205. Waldor MK, Sriram S, Hardy R, Herzenberg LA, Lanier L, Lim M, Steinman L (1985) Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. Science 227(4685):415–417PubMedCrossRefGoogle Scholar
  206. Wang BS, Lumanglas AL, Silva J, Ruszala-Mallon VM, Durr FE (1986) Inhibition of the induction of alloreactivity with mitoxantrone. Int J Immunopharmacol 8(8):967–973PubMedCrossRefGoogle Scholar
  207. Webb M, Tham CS, Lin FF, Lariosa-Willingham K, Yu N, Hale J, Mandala S, Chun J, Rao TS (2004) Sphingosine 1-phosphate receptor agonists attenuate relapsing-remitting experimental autoimmune encephalitis in SJL mice. J Neuroimmunol 153(1-2):108–121. doi:10.1016/j.jneuroim.2004.04.015 S0165572804001560 PubMedCrossRefGoogle Scholar
  208. Weber MS, Starck M, Wagenpfeil S, Meinl E, Hohlfeld R, Farina C (2004) Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain 127(6):1370–1378PubMedCrossRefGoogle Scholar
  209. Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular Immune Reactivity within the Cns. Trends Neurosci 9(6):271–277. doi:10.1016/0166-2236(86)90077-9 CrossRefGoogle Scholar
  210. Wenning W, Haghikia A, Laubenberger J, Clifford DB, Behrens PF, Chan A, Gold R (2009) Treatment of progressive multifocal leukoencephalopathy associated with natalizumab. N Engl J Med 361(11):1075–1080. doi:10.1056/NEJMoa0810257 PubMedCrossRefGoogle Scholar
  211. Wensky AK, Furtado GC, Marcondes MC, Chen S, Manfra D, Lira SA, Zagzag D, Lafaille JJ (2005) IFN-gamma determines distinct clinical outcomes in autoimmune encephalomyelitis. J Immunol 174(3):1416–1423PubMedGoogle Scholar
  212. Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA (1996) IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157(8):3223–3227PubMedGoogle Scholar
  213. Willenborg DO, Fordham SA, Staykova MA, Ramshaw IA, Cowden WB (1999) IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J Immunol 163(10):5278–5286PubMedGoogle Scholar
  214. Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 38(6):323–337PubMedCrossRefGoogle Scholar
  215. Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184(6):2271–2278PubMedCrossRefGoogle Scholar
  216. Wraith DC (2009) Therapeutic peptide vaccines for treatment of autoimmune diseases. Immunol Lett 122(2):134–136. doi:10.1016/j.imlet.2008.11.013 PubMedCrossRefGoogle Scholar
  217. Xu L, Kitani A, Fuss I, Strober W (2007) Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178(11):6725–6729PubMedGoogle Scholar
  218. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS, Feng XH, Jetten AM, Dong C (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29(1):44–56. doi:10.1016/j.immuni.2008.05.007 S1074-7613(08)00270-7 PubMedCrossRefGoogle Scholar
  219. Yang Y, Weiner J, Liu Y, Smith AJ, Huss DJ, Winger R, Peng H, Cravens PD, Racke MK, Lovett-Racke AE (2009) T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J Exp Med 206(7):1549–1564. doi:10.1084/jem.20082584 PubMedCrossRefGoogle Scholar
  220. Yasuda CL, Al-Sabbagh A, Oliveira EC, Diaz-Bardales BM, Garcia AA, Santos LM (1999) Interferon beta modulates experimental autoimmune encephalomyelitis by altering the pattern of cytokine secretion. Immunol Invest 28(2–3):115–126PubMedCrossRefGoogle Scholar
  221. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356(6364):63–66. doi:10.1038/356063a0 PubMedCrossRefGoogle Scholar
  222. Zaguia F, Saikali P, Ludwin S, Newcombe J, Beauseigle D, McCrea E, Duquette P, Prat A, Antel JP, Arbour N (2013) Cytotoxic NKG2C+ CD4 T Cells Target Oligodendrocytes in Multiple Sclerosis. J Immunol. doi:10.4049/jimmunol.1202725 PubMedGoogle Scholar
  223. Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R, Fritz R, Steinman L (1985) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317(6035):355–358PubMedCrossRefGoogle Scholar
  224. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179(3):973–984PubMedCrossRefGoogle Scholar
  225. Zhang H, Podojil JR, Chang J, Luo X, Miller SD (2010) TGF-beta-induced myelin peptide-specific regulatory T cells mediate antigen-specific suppression of induction of experimental autoimmune encephalomyelitis. J Immunol 184(12):6629–6636. doi:10.4049/jimmunol.0904044 PubMedCrossRefGoogle Scholar
  226. Zivadinov R, Rudick RA, De Masi R, Nasuelli D, Ukmar M, Pozzi-Mucelli RS, Grop A, Cazzato G, Zorzon M (2001) Effects of IV methylprednisolone on brain atrophy in relapsing-remitting MS. Neurology 57(7):1239–1247PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Centre for Inflammation Research and Centre for Multiple Sclerosis Research, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUK
  2. 2.Centre for Inflammation Research, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUK

Personalised recommendations