Journal of Neuroimmune Pharmacology

, Volume 8, Issue 3, pp 608–620

Cannabinoid Receptor 2: Potential Role in Immunomodulation and Neuroinflammation

INVITED REVIEW

Abstract

An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB1, CB2) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer’s disease to name a few), mainly mediated by CB2 activation. Development of CB2 agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB2 activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection.

Keywords

Cannabinoid receptor Endocannabinoids Medical marijuana HIV-1 Monocyte/macrophage Endothelial cells 

References

  1. Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, Kelly ME, Rowbotham MC, Petersen KL (2007) Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 68:515–521PubMedCrossRefGoogle Scholar
  2. Adhikary S, Kocieda VP, Yen JH, Tuma RF, Ganea D (2012) Signaling through cannabinoid receptor 2 suppresses murine dendritic cell migration by inhibiting matrix metalloproteinase 9 expression. Blood 120:3741–3749PubMedCrossRefGoogle Scholar
  3. Ahn KH, Pellegrini M, Tsomaia N, Yatawara AK, Kendall DA, Mierke DF (2009) Structural analysis of the human cannabinoid receptor one carboxyl-terminus identifies two amphipathic helices. Biopolymers 91:565–573PubMedCrossRefGoogle Scholar
  4. Anday JK, Mercier RW (2005) Gene ancestry of the cannabinoid receptor family. Pharmacol Res 52:463–466PubMedCrossRefGoogle Scholar
  5. Ashton CH, Moore PB (2011) Endocannabinoid system dysfunction in mood and related disorders. Acta Psychiatr Scand 124:250–261PubMedCrossRefGoogle Scholar
  6. Ashton JC, Rahman RM, Nair SM, Sutherland BA, Glass M, Appleton I (2007) Cerebral hypoxia-ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neurosci Lett 412:114–117PubMedCrossRefGoogle Scholar
  7. Atwood BK, Straiker A, Mackie K (2012) CB(2): therapeutic target-in-waiting. Prog Neuropsychopharmacol Biol Psychiatry 38:16–20PubMedCrossRefGoogle Scholar
  8. Azorlosa JL, Heishman SJ, Stitzer ML, Mahaffey JM (1992) Marijuana smoking: effect of varying delta 9-tetrahydrocannabinol content and number of puffs. J Pharmacol Exp Ther 261:114–122PubMedGoogle Scholar
  9. Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Makriyannis A, Khanolkar A, Layward L, Fezza F, Bisogno T, Di Marzo V (2001) Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J 15:300–302PubMedGoogle Scholar
  10. Barbato L (2007) Dronabinol treatment for migraine. In. USGoogle Scholar
  11. Bari M, Spagnuolo P, Fezza F, Oddi S, Pasquariello N, Finazzi-Agro A, Maccarrone M (2006) Effect of lipid rafts on Cb2 receptor signaling and 2-arachidonoyl-glycerol metabolism in human immune cells. J Immunol 177:4971–4980PubMedGoogle Scholar
  12. Ben Amar M (2006) Cannabinoids in medicine: a review of their therapeutic potential. J Ethnopharmacol 105:1–25PubMedCrossRefGoogle Scholar
  13. Benito C, Tolon RM, Pazos MR, Nunez E, Castillo AI, Romero J (2008) Cannabinoid CB2 receptors in human brain inflammation. Br J Pharmacol 153:277–285PubMedCrossRefGoogle Scholar
  14. Benito C, Kim WK, Chavarria I, Hillard CJ, Mackie K, Tolon RM, Williams K, Romero J (2005) A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci 25:2530–2536PubMedCrossRefGoogle Scholar
  15. Benito C, Romero JP, Tolon RM, Clemente D, Docagne F, Hillard CJ, Guaza C, Romero J (2007) Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 27:2396–2402PubMedCrossRefGoogle Scholar
  16. Berdyshev E, Boichot E, Corbel M, Germain N, Lagente V (1998) Effects of cannabinoid receptor ligands on LPS-induced pulmonary inflammation in mice. Life Sci 63:PL125–PL129PubMedCrossRefGoogle Scholar
  17. Carissimi M, Gentili P, Grumelli E, Milla E, Picciola G, Ravenna F (1976) Basic ethers of cyclohexylphenols with beta-blocking activity: synthesis and pharmacological study of exaprolol. Arzneimittelforschung 26:506–516PubMedGoogle Scholar
  18. Carlisle SJ, Marciano-Cabral F, Staab A, Ludwick C, Cabral GA (2002) Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int Immunopharmacol 2:69–82PubMedCrossRefGoogle Scholar
  19. Chen Y, Buck J (2000) Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther 293:807–812PubMedGoogle Scholar
  20. Chuchawankul S, Shima M, Buckley NE, Hartmann CB, McCoy KL (2004) Role of cannabinoid receptors in inhibiting macrophage costimulatory activity. Int Immunopharmacol 4:265–278PubMedCrossRefGoogle Scholar
  21. Condie R, Herring A, Koh WS, Lee M, Kaminski NE (1996) Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2. J Biol Chem 271:13175–13183PubMedCrossRefGoogle Scholar
  22. Console-Bram L, Marcu J, Abood ME (2012) Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuropsychopharmacol Biol PsychiatryGoogle Scholar
  23. Conti S, Costa B, Colleoni M, Parolaro D, Giagnoni G (2002) Antiinflammatory action of endocannabinoid palmitoylethanolamide and the synthetic cannabinoid nabilone in a model of acute inflammation in the rat. Br J Pharmacol 135:181–187PubMedCrossRefGoogle Scholar
  24. Correa F, Docagne F, Mestre L, Clemente D, Hernangomez M, Loria F, Guaza C (2009) A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochem Pharmacol 77:86–100PubMedCrossRefGoogle Scholar
  25. Costantino CM, Gupta A, Yewdall AW, Dale BM, Devi LA, Chen BK (2012) Cannabinoid receptor 2-mediated attenuation of CXCR4-tropic HIV infection in primary CD4+ T cells. PLoS One 7:e33961PubMedCrossRefGoogle Scholar
  26. Crandall J, Matragoon S, Khalifa YM, Borlongan C, Tsai NT, Caldwell RB, Liou GI (2007) Neuroprotective and intraocular pressure-lowering effects of (−)Delta9-tetrahydrocannabinol in a rat model of glaucoma. Ophthalmic Res 39:69–75PubMedCrossRefGoogle Scholar
  27. Crippa JA, Zuardi AW (2006) Duloxetine in the treatment of panic disorder. Int J Neuropsychopharmacol 9:633–634PubMedCrossRefGoogle Scholar
  28. Dainese E, Oddi S, Maccarrone M (2008) Lipid-mediated dimerization of beta2-adrenergic receptor reveals important clues for cannabinoid receptors. Cell Mol Life Sci 65:2277–2279PubMedCrossRefGoogle Scholar
  29. Dejesus E, Rodwick BM, Bowers D, Cohen CJ, Pearce D (2007) Use of Dronabinol improves appetite and reverses weight loss in HIV/AIDS-infected patients. J Int Assoc Physicians AIDS Care (Chic) 6:95–100CrossRefGoogle Scholar
  30. Derocq JM, Segui M, Marchand J, Le Fur G, Casellas P (1995) Cannabinoids enhance human B-cell growth at low nanomolar concentrations. FEBS Lett 369:177–182PubMedCrossRefGoogle Scholar
  31. Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613PubMedGoogle Scholar
  32. Docagne F, Muneton V, Clemente D, Ali C, Loria F, Correa F, Hernangomez M, Mestre L, Vivien D, Guaza C (2007) Excitotoxicity in a chronic model of multiple sclerosis: neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. Mol Cell Neurosci 34:551–561PubMedCrossRefGoogle Scholar
  33. El-Remessy AB, Tang Y, Zhu G, Matragoon S, Khalifa Y, Liu EK, Liu JY, Hanson E, Mian S, Fatteh N, Liou GI (2008) Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation. Mol Vis 14:2190–2203PubMedGoogle Scholar
  34. Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49:67–79PubMedCrossRefGoogle Scholar
  35. Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26:485–495PubMedCrossRefGoogle Scholar
  36. Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A (2003) Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide. Glia 41:161–168PubMedCrossRefGoogle Scholar
  37. Fan P (1995) Cannabinoid agonists inhibit the activation of 5-HT3 receptors in rat nodose ganglion neurons. J Neurophysiol 73:907–910PubMedGoogle Scholar
  38. Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 48:443–450PubMedGoogle Scholar
  39. Fernandez-Lopez D, Martinez-Orgado J, Nunez E, Romero J, Lorenzo P, Moro MA, Lizasoain I (2006) Characterization of the neuroprotective effect of the cannabinoid agonist WIN-55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats. Pediatr Res 60:169–173PubMedCrossRefGoogle Scholar
  40. Fraga D, Raborn ES, Ferreira GA, Cabral GA (2011) Cannabinoids inhibit migration of microglial-like cells to the HIV protein Tat. J Neuroimmune Pharmacol 6:566–577PubMedCrossRefGoogle Scholar
  41. Gaoni Y, Mechoulam R (1971) The isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 93:217–224PubMedCrossRefGoogle Scholar
  42. Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci U S A 105:9099–9104PubMedCrossRefGoogle Scholar
  43. Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E, Spatz M (2004) Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res 132:87–92PubMedCrossRefGoogle Scholar
  44. Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (−)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A 95:8268–8273PubMedCrossRefGoogle Scholar
  45. Han KH, Lim S, Ryu J, Lee CW, Kim Y, Kang JH, Kang SS, Ahn YK, Park CS, Kim JJ (2009) CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages. Cardiovasc Res 84:378–386PubMedCrossRefGoogle Scholar
  46. Heishman SJ, Stitzer ML, Yingling JE (1989) Effects of tetrahydrocannabinol content on marijuana smoking behavior, subjective reports, and performance. Pharmacol Biochem Behav 34:173–179PubMedCrossRefGoogle Scholar
  47. Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol pp 53–79Google Scholar
  48. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202PubMedCrossRefGoogle Scholar
  49. Huestis MA (2007) Human cannabinoid pharmacokinetics. Chem Biodivers 4:1770–1804PubMedCrossRefGoogle Scholar
  50. Huffman JW, Padgett LW, Isherwood ML, Wiley JL, Martin BR (2006) 1-Alkyl-2-aryl-4-(1-naphthoyl)pyrroles: new high affinity ligands for the cannabinoid CB1 and CB2 receptors. Bioorg Med Chem Lett 16:5432–5435PubMedCrossRefGoogle Scholar
  51. Huffman JW, Lu J, Dai D, Kitaygorodskiy A, Wiley JL, Martin BR (2000) Synthesis and pharmacology of a hybrid cannabinoid. Bioorg Med Chem 8:439–447PubMedCrossRefGoogle Scholar
  52. Huffman JW, Hepburn SA, Lyutenko N, Thompson AL, Wiley JL, Selley DE, Martin BR (2010) 1-Bromo-3-(1′,1′-dimethylalkyl)-1-deoxy-Delta(8)-tetrahydrocannabinols: new selective ligands for the cannabinoid CB(2) receptor. Bioorg Med Chem 18:7809–7815PubMedCrossRefGoogle Scholar
  53. Huffman JW, Yu S, Showalter V, Abood ME, Wiley JL, Compton DR, Martin BR, Bramblett RD, Reggio PH (1996) Synthesis and pharmacology of a very potent cannabinoid lacking a phenolic hydroxyl with high affinity for the CB2 receptor. J Med Chem 39:3875–3877PubMedCrossRefGoogle Scholar
  54. Huffman JW, Mabon R, Wu MJ, Lu J, Hart R, Hurst DP, Reggio PH, Wiley JL, Martin BR (2003) 3-Indolyl-1-naphthylmethanes: new cannabimimetic indoles provide evidence for aromatic stacking interactions with the CB(1) cannabinoid receptor. Bioorg Med Chem 11:539–549PubMedCrossRefGoogle Scholar
  55. Huffman JW, Zengin G, Wu MJ, Lu J, Hynd G, Bushell K, Thompson AL, Bushell S, Tartal C, Hurst DP, Reggio PH, Selley DE, Cassidy MP, Wiley JL, Martin BR (2005) Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorg Med Chem 13:89–112PubMedCrossRefGoogle Scholar
  56. Karst M, Wippermann S, Ahrens J (2010) Role of cannabinoids in the treatment of pain and (painful) spasticity. Drugs 70:2409–2438PubMedCrossRefGoogle Scholar
  57. Kim HJ, Shin AH, Thayer SA (2011) Activation of cannabinoid type 2 receptors inhibits HIV-1 envelope glycoprotein gp120-induced synapse loss. Mol Pharmacol 80:357–366PubMedCrossRefGoogle Scholar
  58. Kim K, Moore DH, Makriyannis A, Abood ME (2006) AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Eur J Pharmacol 542:100–105PubMedCrossRefGoogle Scholar
  59. Klegeris A, Bissonnette CJ, McGeer PL (2003) Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol 139:775–786PubMedCrossRefGoogle Scholar
  60. Kogan NM, Schlesinger M, Peters M, Marincheva G, Beeri R, Mechoulam R (2007) A cannabinoid anticancer quinone, HU-331, is more potent and less cardiotoxic than doxorubicin: a comparative in vivo study. J Pharmacol Exp Ther 322:646–653PubMedCrossRefGoogle Scholar
  61. Krymchantowski AV, Jevoux Cda C (2007) The experience of combining agents, specially triptans and non steroidal anti-inflammatory drugs, for the acute treatment of migraine - a review. Recent Pat CNS Drug Discov 2:141–144PubMedCrossRefGoogle Scholar
  62. Kurihara R, Tohyama Y, Matsusaka S, Naruse H, Kinoshita E, Tsujioka T, Katsumata Y, Yamamura H (2006) Effects of peripheral cannabinoid receptor ligands on motility and polarization in neutrophil-like HL60 cells and human neutrophils. J Biol Chem 281:12908–12918PubMedCrossRefGoogle Scholar
  63. Lakhan SE, Rowland M (2009) Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review. BMC Neurol 9:59PubMedCrossRefGoogle Scholar
  64. Law B, Mason PA, Moffat AC, Gleadle RI, King LJ (1984) Forensic aspects of the metabolism and excretion of cannabinoids following oral ingestion of cannabis resin. J Pharm Pharmacol 36:289–294PubMedCrossRefGoogle Scholar
  65. Lee SF, Newton C, Widen R, Friedman H, Klein TW (2001) Differential expression of cannabinoid CB(2) receptor mRNA in mouse immune cell subpopulations and following B cell stimulation. Eur J Pharmacol 423:235–241PubMedCrossRefGoogle Scholar
  66. Leussink VI, Husseini L, Warnke C, Broussalis E, Hartung HP, Kieseier BC (2012) Symptomatic therapy in multiple sclerosis: the role of cannabinoids in treating spasticity. Ther Adv Neurol Disord 5:255–266PubMedCrossRefGoogle Scholar
  67. Liu QR, Pan CH, Hishimoto A, Li CY, Xi ZX, Llorente-Berzal A, Viveros MP, Ishiguro H, Arinami T, Onaivi ES, Uhl GR (2009) Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav 8:519–530PubMedCrossRefGoogle Scholar
  68. Lombard C, Nagarkatti M, Nagarkatti P (2007) CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin Immunol 122:259–270PubMedCrossRefGoogle Scholar
  69. Louvet A, Teixeira-Clerc F, Chobert MN, Deveaux V, Pavoine C, Zimmer A, Pecker F, Mallat A, Lotersztajn S (2011) Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology 54:1217–1226PubMedCrossRefGoogle Scholar
  70. Lu TS, Avraham HK, Seng S, Tachado SD, Koziel H, Makriyannis A, Avraham S (2008) Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells. J Immunol 181:6406–6416PubMedGoogle Scholar
  71. Mahadevan A, Siegel C, Martin BR, Abood ME, Beletskaya I, Razdan RK (2000) Novel cannabinol probes for CB1 and CB2 cannabinoid receptors. J Med Chem 43:3778–3785PubMedCrossRefGoogle Scholar
  72. Maresz K, Pryce G, Ponomarev ED, Marsicano G, Croxford JL, Shriver LP, Ledent C, Cheng X, Carrier EJ, Mann MK, Giovannoni G, Pertwee RG, Yamamura T, Buckley NE, Hillard CJ, Lutz B, Baker D, Dittel BN (2007) Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med 13:492–497PubMedCrossRefGoogle Scholar
  73. Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225PubMedCrossRefGoogle Scholar
  74. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, van der Stelt M, Lopez-Rodriguez ML, Casanova E, Schutz G, Zieglgansberger W, Di Marzo V, Behl C, Lutz B (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84–88PubMedCrossRefGoogle Scholar
  75. Martin-Moreno AM, Brera B, Spuch C, Carro E, Garcia-Garcia L, Delgado M, Pozo MA, Innamorato NG, Cuadrado A, Ceballos ML (2012) Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J Neuroinflammation 9:8PubMedCrossRefGoogle Scholar
  76. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564PubMedCrossRefGoogle Scholar
  77. Maurer M, Henn V, Dittrich A, Hofmann A (1990) Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial. Eur Arch Psychiatry Clin Neurosci 240:1–4PubMedCrossRefGoogle Scholar
  78. McKallip RJ, Lombard C, Martin BR, Nagarkatti M, Nagarkatti PS (2002a) Delta(9)-tetrahydrocannabinol-induced apoptosis in the thymus and spleen as a mechanism of immunosuppression in vitro and in vivo. J Pharmacol Exp Ther 302:451–465PubMedCrossRefGoogle Scholar
  79. McKallip RJ, Lombard C, Fisher M, Martin BR, Ryu S, Grant S, Nagarkatti PS, Nagarkatti M (2002b) Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood 100:627–634PubMedCrossRefGoogle Scholar
  80. Mechoulam R, Gaoni Y (1965) Hashish. IV. The isolation and structure of cannabinolic cannabidiolic and cannabigerolic acids. Tetrahedron 21:1223–1229PubMedCrossRefGoogle Scholar
  81. Mechoulam R, Gaoni Y (1967) Recent advances in the chemistry of hashish. Fortschr Chem Org Naturst 25:175–213PubMedGoogle Scholar
  82. Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus LO (2007) Cannabidiol–recent advances. Chem Biodivers 4:1678–1692PubMedCrossRefGoogle Scholar
  83. Merighi S, Gessi S, Varani K, Simioni C, Fazzi D, Mirandola P, Borea PA (2011) Cannabinoid CB(2) receptors modulate ERK-1/2 kinase signalling and NO release in microglial cells stimulated with bacterial lipopolysaccharide. Br J Pharmacol 165:1773–1788CrossRefGoogle Scholar
  84. Mestre L, Docagne F, Correa F, Loria F, Hernangomez M, Borrell J, Guaza C (2009) A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol Cell Neurosci 40:258–266PubMedCrossRefGoogle Scholar
  85. Miller AM, Stella N (2008) CB2 receptor-mediated migration of immune cells: it can go either way. Br J Pharmacol 153:299–308PubMedCrossRefGoogle Scholar
  86. Molina PE, Amedee A, LeCapitaine NJ, Zabaleta J, Mohan M, Winsauer P, Vande Stouwe C (2011) Cannabinoid neuroimmune modulation of SIV disease. J Neuroimmune Pharmacol 6:516–527PubMedCrossRefGoogle Scholar
  87. Molina PE, Winsauer P, Zhang P, Walker E, Birke L, Amedee A, Stouwe CV, Troxclair D, McGoey R, Varner K, Byerley L, Lamotte L (2010) Cannabinoid Administration Attenuates the Progression of Simian Immunodeficiency Virus. AIDS Res Hum RetrovirusesGoogle Scholar
  88. Molina-Holgado F, Molina-Holgado E, Guaza C (1998) The endogenous cannabinoid anandamide potentiates interleukin-6 production by astrocytes infected with Theiler’s murine encephalomyelitis virus by a receptor-mediated pathway. FEBS Lett 433:139–142PubMedCrossRefGoogle Scholar
  89. Montecucco F, Burger F, Mach F, Steffens S (2008) CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. Am J Physiol Heart Circ Physiol 294:H1145–H1155PubMedCrossRefGoogle Scholar
  90. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65PubMedCrossRefGoogle Scholar
  91. Murikinati S, Juttler E, Keinert T, Ridder DA, Muhammad S, Waibler Z, Ledent C, Zimmer A, Kalinke U, Schwaninger M (2010) Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J 24:788–798PubMedCrossRefGoogle Scholar
  92. Nunez E, Benito C, Pazos MR, Barbachano A, Fajardo O, Gonzalez S, Tolon RM, Romero J (2004) Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 53:208–213PubMedCrossRefGoogle Scholar
  93. Offertaler L, Mo FM, Batkai S, Liu J, Begg M, Razdan RK, Martin BR, Bukoski RD, Kunos G (2003) Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor. Mol Pharmacol 63:699–705PubMedCrossRefGoogle Scholar
  94. Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462PubMedCrossRefGoogle Scholar
  95. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745PubMedCrossRefGoogle Scholar
  96. Panikashvili D, Shein NA, Mechoulam R, Trembovler V, Kohen R, Alexandrovich A, Shohami E (2006) The endocannabinoid 2-AG protects the blood–brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol Dis 22:257–264PubMedCrossRefGoogle Scholar
  97. Persidsky Y, Ho W, Ramirez SH, Potula R, Abood ME, Unterwald E, Tuma R (2011) HIV-1 infection and alcohol abuse: neurocognitive impairment, mechanisms of neurodegeneration and therapeutic interventions. Brain Behav Immun 25(Suppl 1):S61–S70PubMedCrossRefGoogle Scholar
  98. Peterson PK, Gekker G, Hu S, Cabral G, Lokensgard JR (2004) Cannabinoids and morphine differentially affect HIV-1 expression in CD4(+) lymphocyte and microglial cell cultures. J Neuroimmunol 147:123–126PubMedCrossRefGoogle Scholar
  99. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775PubMedCrossRefGoogle Scholar
  100. Pini A, Mannaioni G, Pellegrini-Giampietro D, Passani MB, Mastroianni R, Bani D, Masini E (2012) The role of cannabinoids in inflammatory modulation of allergic respiratory disorders, inflammatory pain and ischemic stroke. Curr Drug Targets 13:984–993PubMedCrossRefGoogle Scholar
  101. Pryce G, Baker D (2005) Emerging properties of cannabinoid medicines in management of multiple sclerosis. Trends Neurosci 28:272–276PubMedCrossRefGoogle Scholar
  102. Puffenbarger RA, Boothe AC, Cabral GA (2000) Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 29:58–69PubMedCrossRefGoogle Scholar
  103. Racz I, Nadal X, Alferink J, Banos JE, Rehnelt J, Martin M, Pintado B, Gutierrez-Adan A, Sanguino E, Bellora N, Manzanares J, Zimmer A, Maldonado R (2008) Interferon-gamma is a critical modulator of CB(2) cannabinoid receptor signaling during neuropathic pain. J Neurosci 28:12136–12145PubMedCrossRefGoogle Scholar
  104. Rajesh M, Mukhopadhyay P, Batkai S, Hasko G, Liaudet L, Huffman JW, Csiszar A, Ungvari Z, Mackie K, Chatterjee S, Pacher P (2007) CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol 293:H2210–H2218PubMedCrossRefGoogle Scholar
  105. Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25:1904–1913PubMedCrossRefGoogle Scholar
  106. Ramirez SH, Hasko J, Skuba A, Fan S, Dykstra H, McCormick R, Reichenbach N, Krizbai I, Mahadevan A, Zhang M, Tuma R, Son YJ, Persidsky Y (2012) Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood–brain barrier dysfunction under inflammatory conditions. J Neurosci 32:4004–4016PubMedCrossRefGoogle Scholar
  107. Rieder SA, Chauhan A, Singh U, Nagarkatti M, Nagarkatti P (2010) Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 215:598–605PubMedCrossRefGoogle Scholar
  108. Ronco AM, Llanos M, Tamayo D, Hirsch S (2007) Anandamide inhibits endothelin-1 production by human cultured endothelial cells: a new vascular action of this endocannabinoid. Pharmacology 79:12–16PubMedCrossRefGoogle Scholar
  109. Russo EB, Guy GW, Robson PJ (2007) Cannabis, pain, and sleep: lessons from therapeutic clinical trials of Sativex, a cannabis-based medicine. Chem Biodivers 4:1729–1743PubMedCrossRefGoogle Scholar
  110. Ryberg E, Vu HK, Larsson N, Groblewski T, Hjorth S, Elebring T, Sjogren S, Greasley PJ (2005) Identification and characterisation of a novel splice variant of the human CB1 receptor. FEBS Lett 579:259–264PubMedCrossRefGoogle Scholar
  111. Sanchez AJ, Garcia-Merino A (2011) Neuroprotective agents: cannabinoids. Clin Immunol 142:57–67PubMedCrossRefGoogle Scholar
  112. Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H (2008) Cannabinoids for cancer treatment: progress and promise. Cancer Res 68:339–342PubMedCrossRefGoogle Scholar
  113. Sastre-Garriga J, Vila C, Clissold S, Montalban X (2007) THC and CBD oromucosal spray (Sativex(R)) in the management of spasticity associated with multiple sclerosis. Expert Rev Neurother 11:627–637CrossRefGoogle Scholar
  114. Schwarz H, Blanco FJ, Lotz M (1994) Anadamide, an endogenous cannabinoid receptor agonist inhibits lymphocyte proliferation and induces apoptosis. J Neuroimmunol 55:107–115PubMedCrossRefGoogle Scholar
  115. Shoemaker JL, Ruckle MB, Mayeux PR, Prather PL (2005) Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther 315:828–838PubMedCrossRefGoogle Scholar
  116. Solas M, Francis PT, Franco R, Ramirez MJ (2012) CB(2) receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients. Neurobiol AgingGoogle Scholar
  117. Storr MA, Keenan CM, Zhang H, Patel KD, Makriyannis A, Sharkey KA (2009) Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis. Inflamm Bowel Dis 15:1678–1685PubMedCrossRefGoogle Scholar
  118. Tao Q, McAllister SD, Andreassi J, Nowell KW, Cabral GA, Hurst DP, Bachtel K, Ekman MC, Reggio PH, Abood ME (1999) Role of a conserved lysine residue in the peripheral cannabinoid receptor (CB2): evidence for subtype specificity. Mol Pharmacol 55:605–613PubMedGoogle Scholar
  119. Todaro B (2012) Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting. J Natl Compr Canc Netw 10:487–492PubMedGoogle Scholar
  120. Tschop J, Kasten KR, Nogueiras R, Goetzman HS, Cave CM, England LG, Dattilo J, Lentsch AB, Tschop MH, Caldwell CC (2009) The cannabinoid receptor 2 is critical for the host response to sepsis. J Immunol 183:499–505PubMedCrossRefGoogle Scholar
  121. Tuma RF, Steffens S (2012) Targeting the endocannabinod system to limit myocardial and cerebral ischemic and reperfusion injury. Curr Pharm Biotechnol 13:46–58PubMedCrossRefGoogle Scholar
  122. Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP, Witkin JM, Nomikos GG (2003) The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol 138:544–553PubMedCrossRefGoogle Scholar
  123. Viscomi MT, Oddi S, Latini L, Pasquariello N, Florenzano F, Bernardi G, Molinari M, Maccarrone M (2009) Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J Neurosci 29:4564–4570PubMedCrossRefGoogle Scholar
  124. Wiley JL, Compton DR, Dai D, Lainton JA, Phillips M, Huffman JW, Martin BR (1998) Structure-activity relationships of indole- and pyrrole-derived cannabinoids. J Pharmacol Exp Ther 285:995–1004PubMedGoogle Scholar
  125. Williams PB, Martin BR, Lattanzio FA, Samudre S, Razdan RK (2007) Novel cannabinoids and methods of use. InGoogle Scholar
  126. Witkin JM, Tzavara ET, Davis RJ, Li X, Nomikos GG (2005) A therapeutic role for cannabinoid CB1 receptor antagonists in major depressive disorders. Trends Pharmacol Sci 26:609–617PubMedCrossRefGoogle Scholar
  127. Woelkart K, Salo-Ahen OM, Bauer R (2008) CB receptor ligands from plants. Curr Top Med Chem 8:173–186PubMedGoogle Scholar
  128. Xiao JC, Jewell JP, Lin LS, Hagmann WK, Fong TM, Shen CP (2008) Similar in vitro pharmacology of human cannabinoid CB1 receptor variants expressed in CHO cells. Brain Res 1238:36–43PubMedCrossRefGoogle Scholar
  129. Xie XQ, Chen JZ (2005) NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupled CB1 and CB2 receptors in membrane mimetic dodecylphosphocholine micelles. J Biol Chem 280:3605–3612PubMedCrossRefGoogle Scholar
  130. Xie XQ, Chen JZ, Billings EM (2003) 3D structural model of the G-protein-coupled cannabinoid CB2 receptor. Proteins 53:307–319PubMedCrossRefGoogle Scholar
  131. Yao B, Mackie K (2009) Endocannabinoid receptor pharmacology. Curr Top Behav Neurosci 1:37–63PubMedCrossRefGoogle Scholar
  132. Yazulla S (2008) Endocannabinoids in the retina: from marijuana to neuroprotection. Prog Retin Eye Res 27:501–526PubMedCrossRefGoogle Scholar
  133. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12PubMedCrossRefGoogle Scholar
  134. Yu XH, Cao CQ, Martino G, Puma C, Morinville A, St-Onge S, Lessard E, Perkins MN, Laird JM (2010) A peripherally restricted cannabinoid receptor agonist produces robust anti-nociceptive effects in rodent models of inflammatory and neuropathic pain. Pain 151:337–344PubMedCrossRefGoogle Scholar
  135. Zhang M, Martin BR, Adler MW, Razdan RK, Jallo JI, Tuma RF (2007) Cannabinoid CB(2) receptor activation decreases cerebral infarction in a mouse focal ischemia/reperfusion model. J Cereb Blood Flow Metab 27:1387–1396PubMedCrossRefGoogle Scholar
  136. Zhang M, Adler MW, Abood ME, Ganea D, Jallo J, Tuma RF (2009) CB2 receptor activation attenuates microcirculatory dysfunction during cerebral ischemic/reperfusion injury. Microvasc Res 78:86–94PubMedCrossRefGoogle Scholar
  137. Zhu W, Friedman H, Klein TW (1998) Delta9-tetrahydrocannabinol induces apoptosis in macrophages and lymphocytes: involvement of Bcl-2 and caspase-1. J Pharmacol Exp Ther 286:1103–1109PubMedGoogle Scholar
  138. Ziring D, Wei B, Velazquez P, Schrage M, Buckley NE, Braun J (2006) Formation of B and T cell subsets require the cannabinoid receptor CB2. Immunogenetics 58:714–725PubMedCrossRefGoogle Scholar
  139. Zuardi AW, Crippa JA, Hallak JE, Moreira FA, Guimaraes FS (2006a) Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Braz J Med Biol Res 39:421–429PubMedCrossRefGoogle Scholar
  140. Zuardi AW, Hallak JE, Dursun SM, Morais SL, Sanches RF, Musty RE, Crippa JA (2006b) Cannabidiol monotherapy for treatment-resistant schizophrenia. J Psychopharmacol 20:683–686PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations