Journal of Neuroimmune Pharmacology

, Volume 8, Issue 3, pp 651–663 | Cite as

Glatiramer Acetate Protects Against Inflammatory Synaptopathy in Experimental Autoimmune Encephalomyelitis

  • Antonietta Gentile
  • Silvia Rossi
  • Valeria Studer
  • Caterina Motta
  • Valentina De Chiara
  • Alessandra Musella
  • Helena Sepman
  • Diego Fresegna
  • Gabriele Musumeci
  • Giorgio Grasselli
  • Nabila Haji
  • Sagit Weiss
  • Liat Hayardeny
  • Georgia Mandolesi
  • Diego Centonze
ORIGINAL ARTICLE

Abstract

Glutamate-mediated excitotoxicity is supposed to induce neurodegeneration in multiple sclerosis (MS). Glatiramer acetate (GA) is an immunomodulatory agent used in MS treatment with potential neuroprotective action. Aim of the present study was to investigate whether GA has effects on glutamate transmission alterations occurring in experimental autoimmune encephalomyelitis (EAE), to disclose a possible mechanism of GA-induced neuroprotection in this mouse model of MS. Single neuron electrophysiological recordings and immunofluorescence analysis of microglia activation were performed in the striatum of EAE mice, treated or not with GA, at different stages of the disease. GA treatment was able to reverse the tumor necrosis factor-α (TNF-α)-induced alterations of striatal glutamate-mediated excitatory postsynaptic currents (EPSCs) of EAE mice. Incubation of striatal slices of control animals with lymphocytes taken from EAE mice treated with GA failed to replicate such an anti-glutamatergic effect, while activated microglial cells stimulated with GA in vitro mimicked the effect of GA treatment of EAE mice. Consistently, EAE mice treated with GA had less microglial activation and less TNF-α expression than untreated EAE animals. Furthermore, direct application of GA to EAE slices replicated the in vivo protective activity of GA. Our results show that GA is neuroprotective against glutamate toxicity independently of its peripheral immunodulatory action, and through direct modulation of microglial activation and TNF-α release in the grey matter of EAE and possibly of MS brains.

Keywords

EAE EPSC GA Microglia Striatum TNF-α 

References

  1. Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 94:10821–10826PubMedCrossRefGoogle Scholar
  2. Aharoni R, Arnon R, Eilam R (2005a) Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 25:8217–8228PubMedCrossRefGoogle Scholar
  3. Aharoni R, Eilam R, Domev H, Labunskay G, Sela M, Arnon R (2005b) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 102:19045–19050PubMedCrossRefGoogle Scholar
  4. Aharoni R, Vainshtein A, Stock A, Eilam R, From R, Shinder V, Arnon R (2011) Distinct pathological patterns in relapsing-remitting and chronic models of experimental autoimmune enchephalomyelitis and the neuroprotective effect of glatiramer acetate. J Autoimmun 37:228–241PubMedCrossRefGoogle Scholar
  5. Arnon R, Aharoni R (2004) Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 101:14593–14598PubMedCrossRefGoogle Scholar
  6. Arnon R, Aharoni R (2007) Neurogenesis and neuroprotection in the CNS-fundamental elements in the effect of glatiramer acetate on treatment of auroimmune neurological disorders. Mol Neurobiol 36:245–253PubMedCrossRefGoogle Scholar
  7. Azoulay D, Vachapova V, Shihman B, Miler A, Karni A (2005) Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 167:215–218PubMedCrossRefGoogle Scholar
  8. Bakshi R, Benedict RH, Bermel RA, Caruthers SD, Puli SR, Tjoa CW, Fabiano AJ, Jacobs L (2002) T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 59:62–68PubMedCrossRefGoogle Scholar
  9. Bermel RA, Innus MD, Tjoa CW, Bakshi R (2003) Selective caudate atrophy in multiple sclerosis: a 3D MRI parcellation study. Neuroreport 14:335–339PubMedCrossRefGoogle Scholar
  10. Blair M, Pease ME, Hammond J, Valenta D, Kielczewski J, Levkovitch-Verbin H, Quigley H (2005) Effect of glatiramer acetate on primary and secondary degeneration of retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci 46(3):884–890PubMedCrossRefGoogle Scholar
  11. Bolton C, Paul C (1997) MK-801 limits neurovascular dysfunction during experimental allergic encephalomyelitis. J Pharmacol Exp Ther 282:397–402PubMedGoogle Scholar
  12. Boster A, Bartoszek MP, O’Connell C, Pitt D, Racke M (2011) Efficacy, safety, and cost-effectiveness of glatiramer acetate in the treatment of relapsing-remitting multiple sclerosis. Ther Adv Neurol Disord 4:319–332PubMedCrossRefGoogle Scholar
  13. Caragnano M, Tortorella P, Bergami A, Ruggieri M, Livrea P, Specchio LM, Martino G, Trojano M, Furlan R, Avolio C (2012) Monocytes P2X7 purinergic receptor is modulated by glatiramer acetate in multiple sclerosis. J Neuroimmunol 245(1–2):93–97PubMedCrossRefGoogle Scholar
  14. Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, Musella A, D’Amelio M, Cavallucci V, Martorana A, Bergamaschi A, Cencioni MT, Diamantini A, Butti E, Comi G, Bernardi G, Cecconi F, Battistini L, Furlan R, Martino G (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29:3442–3452PubMedCrossRefGoogle Scholar
  15. Chabot S, Williams G, Yong VW (1997) Microglial production of TNF-alpha is induced by activated T lymphocytes. Involvement of VLA-4 and inhibition by interferonbeta-1b. J Clin Invest 100:604–612PubMedCrossRefGoogle Scholar
  16. Chabot S, Yong FP, Le DM, Metz LM, Myles T, Yong VW (2002) Cytokine production in T lymphocyte-microglia interaction is attenuated by glatiramer acetate: a mechanism for therapeutic efficacy in multiple sclerosis. Mult Scler 8:299–306PubMedCrossRefGoogle Scholar
  17. Comi G, Cohen JA, Arnold DL, Wynn D, Filippi M (2011) Phase III dose-comparison study of glatiramer acetate for multiple sclerosis. Ann Neurol 69:75–82PubMedCrossRefGoogle Scholar
  18. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517PubMedCrossRefGoogle Scholar
  19. Dupuis M, De Jesús Ibarra-Sánchez M, Tremblay ML, Duplay P (2003) Gr-1+ myeloid cells lacking T cell protein tyrosine phosphatase inhibit lymphocyte proliferation by an IFN-gamma- and nitric oxide-dependent mechanism. J Immunol 171:726–732PubMedGoogle Scholar
  20. Fridkis-Hareli M, Teitelbaum D, Pecht I, Arnon R, Sela M (1997) Binding of copolymer 1 and myelin basic protein leads to clustering of class II MHC molecules on antigen-presenting cells. Int Immunol 9:925–934PubMedCrossRefGoogle Scholar
  21. Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–851PubMedCrossRefGoogle Scholar
  22. Gonsette RE (2008) Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci 274:48–53PubMedCrossRefGoogle Scholar
  23. Haji N, Mandolesi G, Gentile A, Sacchetti L, Fresegna D, Rossi S, Musella A, Sepman H, Motta C, Studer V, De Chiara V, Bernardi G, Strata P, Centonze D (2012) TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp Neurol 237(2):296–303PubMedCrossRefGoogle Scholar
  24. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hövelmeyer N, Waisman A, Rülicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152PubMedCrossRefGoogle Scholar
  25. Herrmann AM, Göbel K, Simon OJ, Melzer N, Schuhmann MK, Stenner MP, Weishaupt A, Kleinschnitz C, Bittner S, Meuth P, Stuve O, Budde T, Kieseier BC, Wiendl H, Meuth SG (2010) Glatiramer acetate attenuates pro-inflammatory T cell responses but does not directly protect neurons from inflammatory cell death. Am J Pathol 177:3051–3060PubMedCrossRefGoogle Scholar
  26. Hong J, Li N, Zhang X, Zheng B, Zhang JZ (2005) Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A 102:6449–6454PubMedCrossRefGoogle Scholar
  27. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, Myers LW, Panitch HS, Rose JW, Schiffer RB (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45:1268–1276PubMedCrossRefGoogle Scholar
  28. Kala M, Miravalle A, Vollmer T (2011) Recent insights into the mechanism of action of glatiramer acetate. J Neuroimmunol 235:9–17PubMedCrossRefGoogle Scholar
  29. Kim HJ, Ifergan I, Antel JP, Seguin R, Duddy M, Lapierre Y, Jalili F, Bar-Or A (2004) Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 172:7144–7153PubMedGoogle Scholar
  30. Liu J, Johnson TV, Lin J, Ramirez SH, Bronich TK, Caplan S, Persidsky Y, Gendelman HE, Kipnis J (2007) T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 37:3143–3154PubMedCrossRefGoogle Scholar
  31. Lynch MA (2009) The multifaceted profile of activated microglia. Mol Neurobiol 40:139–156PubMedCrossRefGoogle Scholar
  32. Miller A, Shapiro S, Gershtein R, Kinarty A, Rawashdeh H, Honigman S, Lahat N (1998) Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol 92:113–121PubMedCrossRefGoogle Scholar
  33. Muzio L, Martino G, Furlan R (2007) Multifaceted aspects of inflammation in multiple sclerosis: the role of microglia. J Neuroimmunol 191:39–44PubMedCrossRefGoogle Scholar
  34. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70PubMedCrossRefGoogle Scholar
  35. Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. Neurosci Res 81:374–389CrossRefGoogle Scholar
  36. Pul R, Moharregh-Khiabani D, Škuljec J, Skripuletz T, Garde N, Voss EV, Stangel M (2011) Glatiramer acetate modulates TNF-α and IL-10 secretion in microglia and promotes their phagocytic activity. J Neuroimmune Pharmacol 6:381–388PubMedCrossRefGoogle Scholar
  37. Ratchford JN, Endres CJ, Hammoud DA, Pomper MG, Shiee N, McGready J, Pham DL, Calabresi PA (2012) Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 259:1199–1205PubMedCrossRefGoogle Scholar
  38. Rossi S, Furlan R, De Chiara V, Muzio L, Musella A, Motta C, Studer V, Cavasinni F, Bernardi G, Martino G, Cravatt BF, Lutz B, Maccarrone M, Centonze D (2011a) Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. Brain Behav Immun 25:1242–1248PubMedCrossRefGoogle Scholar
  39. Rossi S, Muzio L, De Chiara V, Grasselli G, Musella A, Musumeci G, Mandolesi G, De Ceglia R, Maida S, Biffi E, Pedrocchi A, Menegon A, Bernardi G, Furlan R, Martino G, Centonze D (2011b) Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain Behav Immun 25:947–956PubMedCrossRefGoogle Scholar
  40. Rossi S, Furlan R, De Chiara V, Motta C, Studer V, Mori F, Musella A, Bergami A, Muzio L, Bernardi G, Battistini L, Martino G, Centonze D (2012) Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 71:76–83PubMedCrossRefGoogle Scholar
  41. Sanna A, Fois ML, Arru G, Huang Y-M, Link H, Pugliatti M, Rosati G, Sotgiu S (2006) Glatiramer acetate reduces lymphocyte proliferation and enhances IL-5 and IL-13 production through modulation of monocyte-derived dendritic cells in multiple sclerosis. Clin Exp Immunol 143:357–362PubMedCrossRefGoogle Scholar
  42. Saresella M, Marventano I, Longhi R, Lissoni F, Trabattoni D, Mendozzi L, Caputo D, Clerici M (2008) CD4+CD25+FoxP3+PD1 regulatory T cells in acute and stable relapsing–remitting multiple sclerosis and their modulation by therapy. FASEB J 22:3500–3508PubMedCrossRefGoogle Scholar
  43. Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler LA, Schwartz M (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A 98(6):3398–3403PubMedCrossRefGoogle Scholar
  44. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269PubMedCrossRefGoogle Scholar
  45. Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stüve O, Sobel RA, Steinman L, Zamvil SS (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13:935–943PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Antonietta Gentile
    • 1
    • 2
  • Silvia Rossi
    • 1
    • 2
  • Valeria Studer
    • 1
    • 2
  • Caterina Motta
    • 1
    • 2
  • Valentina De Chiara
    • 1
    • 2
  • Alessandra Musella
    • 1
    • 2
  • Helena Sepman
    • 1
  • Diego Fresegna
    • 1
    • 2
  • Gabriele Musumeci
    • 1
  • Giorgio Grasselli
    • 1
    • 4
  • Nabila Haji
    • 1
    • 3
  • Sagit Weiss
    • 5
  • Liat Hayardeny
    • 5
  • Georgia Mandolesi
    • 1
  • Diego Centonze
    • 1
    • 2
  1. 1.Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC)RomeItaly
  2. 2.Clinica Neurologica, Dipartimento di NeuroscienzeUniversità Tor VergataRomeItaly
  3. 3.National Institute of NeuroscienceUniversity of TurinTurinItaly
  4. 4.Department of NeurobiologyUniversity of ChicagoChicagoUSA
  5. 5.Teva PharmaceuticalsNetanyaIsrael

Personalised recommendations