Journal of Neuroimmune Pharmacology

, Volume 8, Issue 1, pp 262–273 | Cite as

Nanoprobing of the Effect of Cu2+ Cations on Misfolding, Interaction and Aggregation of Amyloid β Peptide

  • Zhengjian Lv
  • Margaret M. Condron
  • David B. Teplow
  • Yuri L. Lyubchenko
ORIGINAL ARTICLE

Abstract

Misfolding and aggregation of the amyloid β-protein (Aβ) are hallmarks of Alzheimer’s disease. Both processes are dependent on the environmental conditions, including the presence of divalent cations, such as Cu2+. Cu2+ cations regulate early stages of Aβ aggregation, but the molecular mechanism of Cu2+ regulation is unknown. In this study we applied single molecule AFM force spectroscopy to elucidate the role of Cu2+ cations on interpeptide interactions. By immobilizing one of two interacting Aβ42 molecules on a mica surface and tethering the counterpart molecule onto the tip, we were able to probe the interpeptide interactions in the presence and absence of Cu2+ cations at pH 7.4, 6.8, 6.0, 5.0, and 4.0. The results show that the presence of Cu2+ cations change the pattern of Aβ interactions for pH values between pH 7.4 and pH 5.0. Under these conditions, Cu2+ cations induce Aβ42 peptide structural changes resulting in N-termini interactions within the dimers. Cu2+ cations also stabilize the dimers. No effects of Cu2+ cations on Aβ-Aβ interactions were observed at pH 4.0, suggesting that peptide protonation changes the peptide-cation interaction. The effect of Cu2+ cations on later stages of Aβ aggregation was studied by AFM topographic images. The results demonstrate that substoichiometric Cu2+ cations accelerate the formation of fibrils at pH 7.4 and 5.0, whereas no effect of Cu2+ cations was observed at pH 4.0. Taken together, the combined AFM force spectroscopy and imaging analyses demonstrate that Cu2+ cations promote both the initial and the elongation stages of Aβ aggregation, but protein protonation diminishes the effect of Cu2+.

Keywords

Amyloid β-protein, Aβ42 Alzheimer’s disease Cu2+ cations Single molecule force spectroscopy Atomic force microscopy imaging 

Supplementary material

11481_2012_9416_MOESM1_ESM.doc (4.5 mb)
ESM 1The estimation of contour length of all tethers; the force spectroscopy results in the presence and absence of Cu2+ cations at pH 6.8 and 6.0. This material is available free of charge via the Internet. (DOC 4609 kb)

References

  1. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17(5):561–567. doi:10.1038/nsmb.1799 PubMedCrossRefGoogle Scholar
  2. Ali-Torres J, Rodriguez-Santiago L, Sodupe M (2011) Computational calculations of pKa values of imidazole in Cu(II) complexes of biological relevance. Phys Chem Chem Phys 13(17):7852–7861. doi:10.1039/c0cp02319a PubMedCrossRefGoogle Scholar
  3. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273(21):12817–12826. doi:10.1074/jbc.273.21.12817 PubMedCrossRefGoogle Scholar
  4. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214. doi:10.1038/nrd1330 PubMedCrossRefGoogle Scholar
  5. Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105(8):2921–2948. doi:10.1021/cr030697h PubMedCrossRefGoogle Scholar
  6. Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 100(1):330–335. doi:10.1073/pnas.222681699 PubMedCrossRefGoogle Scholar
  7. Bush AI, Tanzi RE (2008) Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics 5(3):421–432. doi:10.1016/j.nurt.2008.05.001 PubMedCrossRefGoogle Scholar
  8. Chen WT, Liao YH, Yu HM, Cheng IH, Chen YR (2011) Distinct effects of Zn2+, Cu2+, Fe3+, and Al3+ on amyloid-beta stability, oligomerization, and aggregation: amyloid-beta destabilization promotes annular protofibril formation. J Biol Chem 286(11):9646–9656. doi:10.1074/jbc.M110.177246 PubMedCrossRefGoogle Scholar
  9. Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890. doi:10.1038/nature02261 PubMedCrossRefGoogle Scholar
  10. Dong J, Canfield JM, Mehta AK, Shokes JE, Tian B, Childers WS, Simmons JA, Mao Z, Scott RA, Warncke K, Lynn DG (2007) Engineering metal ion coordination to regulate amyloid fibril assembly and toxicity. Proc Natl Acad Sci U S A 104(33):13313–13318. doi:10.1073/pnas.0702669104 PubMedCrossRefGoogle Scholar
  11. Drew SC, Masters CL, Barnham KJ (2009) Alanine-2 carbonyl is an oxygen ligand in Cu2+ coordination of Alzheimer’s disease amyloid-beta peptide–relevance to N-terminally truncated forms. J Am Chem Soc 131(25):8760–8761. doi:10.1021/ja903669a PubMedCrossRefGoogle Scholar
  12. Faller P (2009) Copper and zinc binding to amyloid-beta: coordination, dynamics, aggregation, reactivity and metal-ion transfer. ChemBioChem 10(18):2837–2845. doi:10.1002/cbic.200900321 PubMedCrossRefGoogle Scholar
  13. Faller EM, Brown DL (2009) Modulation of microtubule dynamics by the microtubule-associated protein 1a. J Neurosci Res 87(5):1080–1089. doi:10.1002/jnr.21920 PubMedCrossRefGoogle Scholar
  14. Fezoui Y, Teplow DB (2002) Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J Biol Chem 277(40):36948–36954. doi:10.1074/jbc.M204168200 PubMedCrossRefGoogle Scholar
  15. Gomez-Casado A, Dam HH, Yilmaz MD, Florea D, Jonkheijm P, Huskens J (2011) Probing multivalent interactions in a synthetic host-guest complex by dynamic force spectroscopy. J Am Chem Soc 133(28):10849–10857. doi:10.1021/ja2016125 PubMedCrossRefGoogle Scholar
  16. Haupt C, Leppert J, Ronicke R, Meinhardt J, Yadav JK, Ramachandran R, Ohlenschlager O, Reymann KG, Gorlach M, Fandrich M (2012) Structural basis of beta-amyloid-dependent synaptic dysfunctions. Angew Chem Int Ed Engl 51(7):1576–1579. doi:10.1002/anie.201105638 PubMedCrossRefGoogle Scholar
  17. Hong L, Simon JD (2011) Insights into the thermodynamics of copper association with amyloid-beta, alpha-synuclein and prion proteins. Metallomics 3(3):262–266. doi:10.1039/c0mt00052c PubMedCrossRefGoogle Scholar
  18. Hong L, Carducci TM, Bush WD, Dudzik CG, Millhauser GL, Simon JD (2010) Quantification of the binding properties of Cu2+ to the amyloid beta peptide: coordination spheres for human and rat peptides and implication on Cu2 + -induced aggregation. J Phys Chem B 114(34):11261–11271. doi:10.1021/jp103272v PubMedCrossRefGoogle Scholar
  19. Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AI (2004) Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Abeta peptides. J Biol Inorg Chem 9(8):954–960. doi:10.1007/s00775-004-0602-8 PubMedCrossRefGoogle Scholar
  20. Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15(1):61–76. doi:10.1007/s00775-009-0600-y PubMedCrossRefGoogle Scholar
  21. Innocenti M, Salvietti E, Guidotti M, Casini A, Bellandi S, Foresti ML, Gabbiani C, Pozzi A, Zatta P, Messori L (2010) Trace copper(II) or zinc(II) ions drastically modify the aggregation behavior of amyloid-beta1-42: an AFM study. J Alzheimers Dis 19(4):1323–1329. doi:10.3233/JAD-2010-1338 PubMedGoogle Scholar
  22. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104. doi:10.1007/s11010-010-0563-x PubMedCrossRefGoogle Scholar
  23. Jones OG, Mezzenga R (2012) Inhibiting, promoting, and preserving stability of functional protein fibrils. Soft Matter 8(4):876–895. doi:10.1039/C1SM06643A CrossRefGoogle Scholar
  24. Kenche VB, Barnham KJ (2011) Alzheimer’s disease & metals: therapeutic opportunities. Br J Pharmacol 163(2):211–219. doi:10.1111/j.1476-5381.2011.01221.x PubMedCrossRefGoogle Scholar
  25. Kim BH, Palermo NY, Lovas S, Zaikova T, Keana JF, Lyubchenko YL (2011) Single-molecule atomic force microscopy force spectroscopy study of Abeta-40 interactions. Biochemistry 50(23):5154–5162. doi:10.1021/bi200147a PubMedCrossRefGoogle Scholar
  26. Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 312(5):1103–1119. doi:10.1006/jmbi.2001.4970 PubMedCrossRefGoogle Scholar
  27. Klug GM, Losic D, Subasinghe SS, Aguilar MI, Martin LL, Small DH (2003) Beta-amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH. Eur J Biochem 270(21):4282–4293. doi:10.1046/j.1432-1033.2003.03815.x PubMedCrossRefGoogle Scholar
  28. Krasnoslobodtsev AV, Shlyakhtenko LS, Lyubchenko YL (2007) Probing Interactions within the synaptic DNA-SfiI complex by AFM force spectroscopy. J Mol Biol 365(5):1407–1416. doi:10.1016/j.jmb.2006.10.041 PubMedCrossRefGoogle Scholar
  29. Lazo ND, Grant MA, Condron MC, Rigby AC, Teplow DB (2005) On the nucleation of amyloid beta-protein monomer folding. Protein Sci 14(6):1581–1596. doi:10.1110/ps.041292205 PubMedCrossRefGoogle Scholar
  30. Lin CJ, Huang HC, Jiang ZF (2010) Cu(II) interaction with amyloid-beta peptide: a review of neuroactive mechanisms in AD brains. Brain Res Bull 82(5–6):235–242. doi:10.1016/j.brainresbull.2010.06.003 PubMedCrossRefGoogle Scholar
  31. Lyubchenko YL, Kim BH, Krasnoslobodtsev AV, Yu J (2010) Nanoimaging for protein misfolding diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):526–543. doi:10.1002/wnan.102 PubMedCrossRefGoogle Scholar
  32. Masters CL, Selkoe DJ (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a006262
  33. Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry 39(23):7024–7031. doi:10.1021/bi0002479 PubMedCrossRefGoogle Scholar
  34. Miura T, Mitani S, Takanashi C, Mochizuki N (2004) Copper selectively triggers beta-sheet assembly of an N-terminally truncated amyloid beta-peptide beginning with Glu3. J Inorg Biochem 98(1):10–14. doi:10.1016/j.jinorgbio.2003.10.008 PubMedCrossRefGoogle Scholar
  35. Murakami K, Irie K, Ohigashi H, Hara H, Nagao M, Shimizu T, Shirasawa T (2005) Formation and stabilization model of the 42-mer Abeta radical: implications for the long-lasting oxidative stress in Alzheimer’s disease. J Am Chem Soc 127(43):15168–15174. doi:10.1021/ja054041c PubMedCrossRefGoogle Scholar
  36. Murariu M, Dragan ES, Drochioiu G (2007) Synthesis and mass spectrometric characterization of a metal-affinity decapeptide: copper-induced conformational changes. Biomacromolecules 8(12):3836–3841. doi:10.1021/bm700793g PubMedCrossRefGoogle Scholar
  37. Olofsson A, Lindhagen-Persson M, Vestling M, Sauer-Eriksson AE, Öhman A (2009) Quenched hydrogen/deuterium exchange NMR characterization of amyloid-β peptide aggregates formed in the presence of Cu2+ or Zn2+. FEBS J 276(15):4051–4060. doi:10.1111/j.1742-4658.2009.07113.x PubMedCrossRefGoogle Scholar
  38. Olubiyi OO, Strodel B (2012) Structures of the amyloid beta-peptides Abeta1-40 and Abeta1-42 as influenced by pH and a D-peptide. J Phys Chem B 116(10):3280–3291. doi:10.1021/jp2076337 PubMedCrossRefGoogle Scholar
  39. Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 106(35):14745–14750. doi:10.1073/pnas.0905127106 PubMedCrossRefGoogle Scholar
  40. Parthasarathy S, Long F, Miller Y, Xiao Y, McElheny D, Thurber K, Ma B, Nussinov R, Ishii Y (2011) Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer’s beta by solid-state NMR spectroscopy. J Am Chem Soc 133(10):3390–3400. doi:10.1021/ja1072178 PubMedCrossRefGoogle Scholar
  41. Portillo AM, Krasnoslobodtsev AV, Lyubchenko YL (2012) Effect of electrostatics on aggregation of prion protein Sup35 peptide. J Phys Condens Matter 24(16):164205. doi:10.1088/0953-8984/24/16/164205 PubMedCrossRefGoogle Scholar
  42. Rauk A (2009) The chemistry of Alzheimer’s disease. Chem Soc Rev 38(9):2698–2715. doi:10.1039/b807980n PubMedCrossRefGoogle Scholar
  43. Rivera-Mancia S, Perez-Neri I, Rios C, Tristan-Lopez L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186(2):184–199. doi:10.1016/j.cbi.2010.04.010 PubMedCrossRefGoogle Scholar
  44. Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA (2012) The role of metallobiology and amyloid-beta peptides in Alzheimer’s disease. J Neurochem 120(Suppl 1):149–166. doi:10.1111/j.1471-4159.2011.07500.x PubMedCrossRefGoogle Scholar
  45. Sarell CJ, Syme CD, Rigby SE, Viles JH (2009) Copper(II) binding to amyloid-beta fibrils of Alzheimer’s disease reveals a picomolar affinity: stoichiometry and coordination geometry are independent of Abeta oligomeric form. Biochemistry 48(20):4388–4402. doi:10.1021/bi900254n PubMedCrossRefGoogle Scholar
  46. Sarell CJ, Wilkinson SR, Viles JH (2010) Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-{beta} from Alzheimer disease. J Biol Chem 285(53):41533–41540. doi:10.1074/jbc.M110.171355 PubMedCrossRefGoogle Scholar
  47. Schmitt L, Ludwig M, Gaub HE, Tampe R (2000) A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy. Biophys J 78(6):3275–3285. doi:10.1016/S0006-3495(00)76863-9 PubMedCrossRefGoogle Scholar
  48. Shin BK, Saxena S (2008) Direct evidence that all three histidine residues coordinate to Cu(II) in amyloid-beta1-16. Biochemistry 47(35):9117–9123. doi:10.1021/bi801014x PubMedCrossRefGoogle Scholar
  49. Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, Lau TL, Tew DJ, Perez K, Wade JD, Bush AI, Drew SC, Separovic F, Masters CL, Cappai R, Barnham KJ (2006) Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. J Biol Chem 281(22):15145–15154. doi:10.1074/jbc.M600417200 PubMedCrossRefGoogle Scholar
  50. Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, Barnham KJ, Cappai R (2007) Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-beta peptide. Biochemistry 46(10):2881–2891. doi:10.1021/bi0620961 PubMedCrossRefGoogle Scholar
  51. Snyder SW, Ladror US, Wade WS, Wang GT, Barrett LW, Matayoshi ED, Huffaker HJ, Krafft GA, Holzman TF (1994) Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths. Biophys J 67(3):1216–1228. doi:10.1016/S0006-3495(94)80591-0 PubMedCrossRefGoogle Scholar
  52. Sparks DL, Schreurs BG (2003) Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci U S A 100(19):11065–11069. doi:10.1073/pnas.1832769100 PubMedCrossRefGoogle Scholar
  53. Stellato F, Menestrina G, Serra MD, Potrich C, Tomazzolli R, Meyer-Klaucke W, Morante S (2006) Metal binding in amyloid beta-peptides shows intra- and inter-peptide coordination modes. Eur Biophys J 35(4):340–351. doi:10.1007/s00249-005-0041-7 PubMedCrossRefGoogle Scholar
  54. Streltsov VA, Titmuss SJ, Epa VC, Barnham KJ, Masters CL, Varghese JN (2008) The structure of the amyloid-beta peptide high-affinity copper II binding site in Alzheimer disease. Biophys J 95(7):3447–3456. doi:10.1529/biophysj.108.134429 PubMedCrossRefGoogle Scholar
  55. Stroud JC, Liu C, Teng PK, Eisenberg D (2012) Toxic fibrillar oligomers of amyloid-beta have cross-beta structure. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1203193109
  56. Sulchek TA, Friddle RW, Langry K, Lau EY, Albrecht H, Ratto TV, DeNardo SJ, Colvin ME, Noy A (2005) Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds. Proc Natl Acad Sci U S A 102(46):16638–16643. doi:10.1073/pnas.0505208102 PubMedCrossRefGoogle Scholar
  57. Syme CD, Nadal RC, Rigby SE, Viles JH (2004) Copper binding to the amyloid-beta (Abeta) peptide associated with Alzheimer’s disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Abeta-(1-28): insights from a range of complementary spectroscopic techniques. J Biol Chem 279(18):18169–18177. doi:10.1074/jbc.M313572200 PubMedCrossRefGoogle Scholar
  58. Tougu V, Tiiman A, Palumaa P (2011) Interactions of Zn(II) and Cu(II) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 3(3):250–261. doi:10.1039/c0mt00073f PubMedCrossRefGoogle Scholar
  59. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272(35):22364–22372. doi:10.1074/jbc.272.35.22364 PubMedCrossRefGoogle Scholar
  60. Yang H, Pritzker M, Fung SY, Sheng Y, Wang W, Chen P (2006) Anion effect on the nanostructure of a metal ion binding self-assembling peptide. Langmuir 22(20):8553–8562. doi:10.1021/la061238p PubMedCrossRefGoogle Scholar
  61. Yu J, Lyubchenko YL (2009) Early stages for Parkinson’s development: alpha-synuclein misfolding and aggregation. J Neuroimmune Pharm 4(1):10–16. doi:10.1007/s11481-008-9115-5 CrossRefGoogle Scholar
  62. Yu J, Malkova S, Lyubchenko YL (2008) alpha-Synuclein misfolding: single molecule AFM force spectroscopy study. J Mol Biol 384(4):992–1001. doi:10.1016/j.jmb.2008.10.006 PubMedCrossRefGoogle Scholar
  63. Yu J, Warnke J, Lyubchenko YL (2011) Nanoprobing of alpha-synuclein misfolding and aggregation with atomic force microscopy. Nanomedicine 7(2):146–152. doi:10.1016/j.nano.2010.08.001 PubMedCrossRefGoogle Scholar
  64. Zou J, Kajita K, Sugimoto N (2001) Cu(2+) inhibits the aggregation of amyloid beta-peptide(1-42) in vitro. Angew Chem Int Ed Engl 40(12):2274–2277. doi:10.1002/1521-3773(20010618)40:12<2274::AID-ANIE2274>3.0.CO;2-5PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Zhengjian Lv
    • 1
  • Margaret M. Condron
    • 2
  • David B. Teplow
    • 2
    • 3
  • Yuri L. Lyubchenko
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesUSA
  3. 3.Molecular Biology and Brain Research Institutes, and Mary S. Easton Center for Alzheimer’s Disease Research at UCLADavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations