Journal of Neuroimmune Pharmacology

, Volume 8, Issue 1, pp 163–179 | Cite as

Adrenergic and Dopaminergic Modulation of Immunity in Multiple Sclerosis: Teaching Old Drugs New Tricks?

INVITED REVIEW

Abstract

Multiple sclerosis (MS) is an autoimmune disorder of the CNS characterized by inflammation, demyelination and axonal loss. Classical evidence in experimental allergic encephalomyelitis, the animal model of MS, support the relevance of sympatoadrenergic as well as of dopaminergic mechanisms. In MS patients, dysregulation of adrenergic and dopaminergic pathways contribute to the disease in immune system cells as well as in glial cells. Available evidence is summarized and discussed also in the light of the novel role of dopamine, noradrenaline and adrenaline as transmitters in immune cells, providing a conceptual frame to exploit the potential of several dopaminergic and adrenergic agents, already in clinical use for non-immune indications and with a usually favourable risk-benefit profile, as add-on drugs to conventional immunomodulating therapies in MS.

Keywords

Multiple sclerosis Dopamine Noradrenaline Adrenaline Adrenoceptors Dopaminergic receptors Lymphocytes Neuroimmunology 

References

  1. Aminoff MJ (1992) Autonomic dysfunction in central nervous system disorders. Curr Opin Neurol Neurosurg 5:482–486PubMedGoogle Scholar
  2. Arnason BG, Brown M, Maselli R, Karaszewski J, Reder A (1988) Blood lymphocyte beta-adrenergic receptors in multiple sclerosis. Ann N Y Acad Sci 540:585–588PubMedCrossRefGoogle Scholar
  3. Audus KL, Gordon MA (1982) Characteristics of tryciclic antidepressant binding sites associated with murine lymphocytes from spleen. J Immunopharmacol 4:1–12PubMedGoogle Scholar
  4. Bałkowiec-Iskra E, Kurkowska-Jastrzebska I, Joniec I, Ciesielska A, Muszynska A, Przybyłkowski A, Członkowska A, Członkowski A (2007a) MPTP-induced central dopamine depletion exacerbates experimental autoimmune encephalomyelitis (EAE) in C57BL mice. Inflamm Res 56:311–317PubMedCrossRefGoogle Scholar
  5. Bałkowiec-Iskra E, Kurkowska-Jastrzebska I, Joniec I, Ciesielska A, Członkowska A, Członkowski A (2007b) Dopamine, serotonin and noradrenaline changes in the striatum of C57BL mice following myelin oligodendrocyte glycoprotein (MOG) 35–55 and complete Freund adjuvant (CFA) administration. Acta Neurobiol Exp (Wars) 67:379–388Google Scholar
  6. Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124PubMedCrossRefGoogle Scholar
  7. Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217PubMedCrossRefGoogle Scholar
  8. Bencsics A, Sershen H, Baranyi M, Hashim A, Lajtha A, Vizi ES (1997) Dopamine, as well as norepinephrine, is a link between noradrenergic nerve terminals and splenocytes. Brain Res 761:236–243PubMedCrossRefGoogle Scholar
  9. Bergquist J, Silberring J (1998) Identification of catecholamines in the immune system by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 12:683–688PubMedCrossRefGoogle Scholar
  10. Berkeley MB, Daussin S, Hernandez MC, Bayer BM (1994) In vitro effects of cocaine, lidocaine and monoamine uptake inhibitors on lymphocyte proliferative responses. Immunopharmacol Immunotoxicol 16:165–178PubMedCrossRefGoogle Scholar
  11. Besser MJ, Ganor Y, Levite M (2005) Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol 169:161–171PubMedCrossRefGoogle Scholar
  12. Bissay V, De Klippel N, Herroelen L, Schmedding E, Buisseret T, Ebinger G, De Keyser J (1994) Bromocriptine therapy in multiple sclerosis: an open label pilot study. Clin Neuropharmacol 17:473–476PubMedCrossRefGoogle Scholar
  13. Carlsson A, Caron M, Civelli O, Kebabian JW, Langer SZ, Scatton B, Schwartz J-C, Sedvall G, Seeman P, Sokoloff P, Spano PF, Van Tol HHM (2012) Dopamine receptors. Last modified on 27/02/2012. Accessed on 02/08/2012. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=20
  14. Chelmicka-Schorr E, Arnason BG (1999) Interactions between the sympathetic nervous system and the immune system. Brain Behav Immun 13:271–278CrossRefGoogle Scholar
  15. Chelmicka-Schorr E, Checinski M, Arnason BG (1988) Chemical sympathectomy augments the severity of experimental allergic encephalomyelitis. J Neuroimmunol 17:347–350PubMedCrossRefGoogle Scholar
  16. Chelmicka-Schorr E, Kwasniewski MN, Thomas BE, Arnason BG (1989) The beta-adrenergic agonist isoproterenol suppresses experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 25:203–207PubMedCrossRefGoogle Scholar
  17. Cosentino M, Marino F (2012) Nerve-driven immunity: noradrenaline and adrenaline. In: Levite M (ed) Nerve-driven-immunity – Neurotransmitters and neuropeptides in the immune system. Springer-Verlag, Wien, pp 47–96, 2012CrossRefGoogle Scholar
  18. Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism, storage and uptake in human neutrophils. Life Sci 64:975–981PubMedCrossRefGoogle Scholar
  19. Cosentino M, Bombelli R, Ferrari M, Marino F, Rasini E, Maestroni GJM, Conti A, Boveri M, Lecchini S, Frigo G (2000) HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci 68:283–295PubMedCrossRefGoogle Scholar
  20. Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo GM (2002a) Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients:effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 133:233–240CrossRefGoogle Scholar
  21. Cosentino M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Frigo G (2002b) Stimulation with phytohaemagglutinin induces the synthesis of catecholamines in human peripheral blood mononuclear cells: role of protein kinase C and contribution of intracellular calcium. J Neuroimmunol 125:125–133CrossRefGoogle Scholar
  22. Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (2003) Unravelling dopamine (and catecholamine) physiopharmacology in lymphocytes:open questions. Trends Immunol 24:581–582PubMedCrossRefGoogle Scholar
  23. Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S (2005) Interferon-γ and interferon-β affect endogenous catecholamines in human peripheral blood mononuclear cells:implications for multiple sclerosis. J Neuroimmunol 162:112–121PubMedCrossRefGoogle Scholar
  24. Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4 + CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642PubMedCrossRefGoogle Scholar
  25. Cosentino M, Zaffaroni M, Trojano M, Giorelli M, Pica C, Rasini E, Bombelli R, Ferrari M, Ghezzi A, Comi G, Livrea P, Lecchini S, Marino F (2012) Dopaminergic modulation of CD4 + CD25 regulatory T lymphocytes in multiple sclerosis patients during interferon-β therapy. Neuroimmunomodulation 19:283–292PubMedCrossRefGoogle Scholar
  26. Davids E, Hartwig U, Gastpar M (2004) Antipsychotic treatment of psychosis associated with multiple sclerosis. Prog Neuropsychopharmacol Biol Psychiatry 28:743–744PubMedCrossRefGoogle Scholar
  27. De Keyser J, Wilczak N, Leta R, Streetland C (1999) Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology 53:1628–1633PubMedCrossRefGoogle Scholar
  28. De Keyser J, Zeinstra E, Frohman E (2003) Are astrocytes central players in the pathophysiology of multiple sclerosis? Arch. Neurol 60:132–136CrossRefGoogle Scholar
  29. De Keyser J, Zeinstra E, Wilczak N (2004) Astrocytic beta2-adrenergic receptors and multiple sclerosis. Neurobiol Dis 15:331–339PubMedCrossRefGoogle Scholar
  30. De Keyser J, Steen C, Mostert JP, Koch MW (2008) Hypoperfusion of the cerebral white matter in multiple sclerosis: possible mechanisms and pathophysiological significance. J Cereb Blood Flow Metab 28:1645–1651PubMedCrossRefGoogle Scholar
  31. De Keyser J, Laureys G, Demol F, Wilczak N, Mostert J, Clinckers R (2010) Astrocytes as potential targets to suppress inflammatory demyelinating lesions in multiple sclerosis. Neurochem Int 57:446–450Google Scholar
  32. Del Rio MJ, Velez-Pardo C (2002) Monoamine neurotoxins-induced apoptosis in lymphocytes by a common oxidative stress mechanism: involvement of hydrogen peroxide (H(2)O(2)), caspase-3, and nuclear factor kappa-B (NF-kappaB), p53, c-Jun transcription factors. Biochem Pharmacol 63:677–688PubMedCrossRefGoogle Scholar
  33. Dijkstra CD, van der Voort ER, De Groot CJ, Huitinga I, Uitdehaag BM, Polman CH, Berkenbosch F (1994) Therapeutic effect of the D2-dopamine agonist bromocriptine on acute and relapsing experimental allergic encephalomyelitis. Psychoneuroendocrinology 19:135–142PubMedCrossRefGoogle Scholar
  34. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638PubMedGoogle Scholar
  35. Ferrari M, Cosentino M, Marino F, Bombelli R, Rasini E, Lecchini S, Frigo G (2004) Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem Pharmacol 67:865–873PubMedCrossRefGoogle Scholar
  36. Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS, McGuire SR, List RP, Day DE, Hoesel LM, Gao H, Van Rooijen N, Huber-Lang MS, Neubig RR, Ward PA (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721–725PubMedCrossRefGoogle Scholar
  37. Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA (2008) Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora's box? Mol Med 14:195–204PubMedGoogle Scholar
  38. Foster HD, Hoffer A (2004) The two faces of L-DOPA: benefits and adverse side effects in the treatment of Encephalitis lethargica, Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Med Hypotheses 62:177–181PubMedCrossRefGoogle Scholar
  39. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis - the plaque and its pathogenesis. N Engl J Med 354:942–955PubMedCrossRefGoogle Scholar
  40. Gade-Andavolu R, MacMurray JP, Blake H, Muhleman D, Tourtellotte W, Comings DE (1998) Association between the gamma-aminobutyric acid A3 receptor gene and multiple sclerosis. Arch Neurol 55:513–516PubMedCrossRefGoogle Scholar
  41. Gallai V, Sarchielli P, Firenze C, Trequattrini A, Paciaroni M, Usai F, Franceschini M, Palumbo R (1994) Neuropeptide Y plasma levels and serum dopamine-beta-hydroxylase activity in MS patients with and without abnormal cardiovascular reflexes. Acta Neurol Belg 94:44–52PubMedGoogle Scholar
  42. Giorelli M, Livrea P, Trojano M (2004) Post-receptorial mechanisms underlie functional disregulation of beta2-adrenergic receptors in lymphocytes from Multiple Sclerosis patients. J Neuroimmunol 155:143–149PubMedCrossRefGoogle Scholar
  43. Giorelli M, Livrea P, Trojano M (2005) Dopamine fails to regulate activation of peripheral blood lymphocytes from multiple sclerosis patients: effects of IFN-beta. J Interferon Cytokine Res 25:395–406PubMedCrossRefGoogle Scholar
  44. Grisanti LA, Woster AP, Dahlman J, Sauter ER, Combs CK, Porter JE (2011) {alpha}1-Adrenergic receptors positively regulate toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther 338:648–657PubMedCrossRefGoogle Scholar
  45. Haensch CA, Jörg J (2006) Autonomic dysfunction in multiple sclerosis. J Neurol 253(Suppl 1):I3–I9PubMedCrossRefGoogle Scholar
  46. Hartung HP, Bar-Or A, Zoukos Y (2004) What do we know about the mechanism of action of disease-modifying treatments in MS? J Neurol 251(Suppl 5):v12–v29PubMedCrossRefGoogle Scholar
  47. Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52:61–76PubMedCrossRefGoogle Scholar
  48. Hemmer B, Nessler S, Zhou D, Kieseier B, Hartung HP (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2:201–211PubMedCrossRefGoogle Scholar
  49. Huber TJ, Dietrich DE, Emrich HM (1999) Possible use of amantadine in depression. Pharmacopsychiatry 32:47–55PubMedCrossRefGoogle Scholar
  50. Javed A, Reder AT (2006) Therapeutic role of beta-interferons in multiple sclerosis. Pharmacol Ther 110:35–56PubMedCrossRefGoogle Scholar
  51. Karaszewski JW, Reder AT, Maselli R, Brown M, Arnason BG (1990) Sympathetic skin responses are decreased and lymphocyte beta-adrenergic receptors are increased in progressive multiple sclerosis. Ann Neurol 27:366–372PubMedCrossRefGoogle Scholar
  52. Karaszewski JW, Reder AT, Anlar B, Kim WC, Arnason BG (1991) Increased lymphocyte beta-adrenergic receptor density in progressive multiple sclerosis is specific for the CD8+, CD28- suppressor cell. Ann Neurol 30:42–47PubMedCrossRefGoogle Scholar
  53. Karaszewski JW, Reder AT, Anlar B, Arnason GW (1993) Increased high affinity beta-adrenergic receptor densities and cyclic AMP responses of CD8 cells in multiple sclerosis. J Neuroimmunol 43:1–7PubMedCrossRefGoogle Scholar
  54. Karpus WJ, Konkol RJ, Killen JA (1988) Central catecholamine neurotoxin administration. 1. Immunological changes associated with the suppression of experimental autoimmune encephalomyelitis. J Neuroimmunol 18:61–73PubMedCrossRefGoogle Scholar
  55. Kasper LH, Shoemaker J (2010) Multiple sclerosis immunology: The healthy immune system vs the MS immune system. Neurology 74(suppl 1):S2–S8PubMedCrossRefGoogle Scholar
  56. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175PubMedCrossRefGoogle Scholar
  57. Keegan BM, Noseworthy JH (2002) Multiple sclerosis. Annu Rev Med 53:285–302PubMedCrossRefGoogle Scholar
  58. Khoury SJ, Healy BC, Kivisäkk P, Viglietta V, Egorova S, Guttmann CR, Wedgwood JF, Hafler DA, Weiner HL, Buckle G, Cook S, Reddy S (2010) A randomized controlled double-masked trial of albuterol add-on therapy in patients with multiple sclerosis. Arch Neurol 67:1055–1061PubMedCrossRefGoogle Scholar
  59. Kieseier BC (2011) The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs 25:491–502PubMedCrossRefGoogle Scholar
  60. Kim DH, Muthyala S, Soliven B, Wiegmann K, Wollmann R, Chelmicka-Schorr E (1994) The beta 2-adrenergic agonist terbutaline suppresses experimental allergic neuritis in Lewis rats. J Neuroimmunol 51:177–183PubMedCrossRefGoogle Scholar
  61. Kira J, Harada M, Yamaguchi Y, Shida N, Goto I (1991) Hyperprolactinemia in multiple sclerosis. J Neurol Sci 102:61–66PubMedCrossRefGoogle Scholar
  62. Knudsen JH, Christensen NJ, Bratholm P (1996) Lymphocyte norepinephrine and epinephrine, but not plasma catecholamines predict lymphocyte cAMP production. Life Sci 59:639–647Google Scholar
  63. Koch-Henriksen N, Sørensen PS (2010) The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 9:520–532PubMedCrossRefGoogle Scholar
  64. Konkol RJ, Wesselmann U, Karpus WJ, Leo GL, Killen JA, Roerig DL (1990) Suppression of clinical weakness in experimental autoimmune encephalomyelitis associated with weight changes, and post-decapitation convulsions after intracisternal-ventricular administration of 6-hydroxydopamine. J Neuroimmunol 26:25–34PubMedCrossRefGoogle Scholar
  65. Kremenchutzky M, Morrow S, Rush C (2007) The safety and efficacy of IFN-beta products for the treatment of multiple sclerosis. Expert Opin Drug Saf 6:279–288PubMedCrossRefGoogle Scholar
  66. Lassmann H, Ransohoff RM (2004) The CD4-Th1 model for multiple sclerosis: a crucial re-appraisal. Trends Immunol 25:132–137PubMedCrossRefGoogle Scholar
  67. Lechin F, van der Dijs B, Lechin A, Orozco B, Lechin M, Báez S, Rada I, León G, Acosta E (1994) Plasma neurotransmitters and cortisol in chronic illness: role of stress. J Med 25:181–192PubMedGoogle Scholar
  68. Levite M (2012) Dopamine in the immune system: dopamine receptors in immune cells, potent effects, endogenous production and involvement in immune and neuropsychiatric diseases. In: Levite M (ed) Nerve-driven-immunity – Neurotransmitters and neuropeptides in the immune system. Springer-Verlag, Wien, pp 1–45, 2012CrossRefGoogle Scholar
  69. Levite M, Chowers Y, Ganor Y, Besser M, Hershkovits R, Cahalon L (2001) Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates β-integrin function. Eur J Immunol 31:3504–3512PubMedCrossRefGoogle Scholar
  70. Macchi B, Matteucci C, Nocentini U, Caltagirone C, Mastino A (1999) Impaired apoptosis in mitogen stimulated lymphocytes of patients with multiple sclerosis. NeuroReport 10:399–402PubMedCrossRefGoogle Scholar
  71. Makhlouf K, Weiner HL, Khoury SJ (2002) Potential of beta2-adrenoceptor agonists as add-on therapy for multiple sclerosis: focus on salbutamol (albuterol). CNS Drugs 16:1–8PubMedCrossRefGoogle Scholar
  72. Marazziti D, Catena Dell’osso M, Baroni S, Masala I, Dell’Osso B, Consoli G, Giannaccini G, Betti L, Lucacchini A (2010) Alterations of the dopamine transporter in resting lymphocytes of patients with different psychotic disorders. Psychiatry Res 175:54–57Google Scholar
  73. Marino F, Cosentino M (2011) Adrenergic modulation of immune cells: an update. Amino Acids. 2011 Dec 8. [Epub ahead of print] PMID: 22160285Google Scholar
  74. Marino F, Cosentino M, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism storage, and uptake in human peripheral blood mononuclear cells. Exp Hematol 27:489–495PubMedCrossRefGoogle Scholar
  75. Markianos M, Sfagos C, Bistolaki E (1991) Platelet monoamine oxidase and plasma dopamine-beta-hydroxylase activities in patients with multiple sclerosis. Acta Neurol Scand 84:531–533PubMedCrossRefGoogle Scholar
  76. Markowitz CE (2007) Interferon-beta: mechanism of action and dosing issues. Neurology 68:S8–S11PubMedCrossRefGoogle Scholar
  77. McCarty MF (2001) Upregulation of lymphocyte apoptosis as a strategy for preventing and treating autoimmune disorders: a role for whole-food vegan diets, fish oil and dopamine agonists. Med Hypotheses 57:258–275PubMedCrossRefGoogle Scholar
  78. Merkelbach S, Haensch CA, Hemmer B, Koehler J, König NH, Ziemssen T (2006) Multiple sclerosis and the autonomic nervous system. J Neurol 253(Suppl 1):I21–I25PubMedCrossRefGoogle Scholar
  79. Miller AE, Rhoades RW (2012) Treatment of relapsing-remitting multiple sclerosis: current approaches and unmet needs. Curr Opin Neurol 25:S4–S10PubMedCrossRefGoogle Scholar
  80. Miyara M, Sakaguchi S (2011) Human FoxP3 + CD4+ regulatory T cells: their knowns and unknowns. Immunol Cell Biol 89:346–351PubMedCrossRefGoogle Scholar
  81. Muller BD, Bell C (1986) Vesicular storage of 3,4-dihydroxyphenylethylamine and noradrenaline in terminal sympathetic nerves of dog spleen and kidney. J Neurochem 47:1370–1375PubMedCrossRefGoogle Scholar
  82. Musso NR, Brenci S, Setti M, Indiveri F, Lotti G (1996) Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes. J Clin Endocrinol Metab 81:3553–3557PubMedCrossRefGoogle Scholar
  83. Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S (2008) Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 373:286–291PubMedCrossRefGoogle Scholar
  84. Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186:3745–3752PubMedCrossRefGoogle Scholar
  85. Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun 21:736–745PubMedCrossRefGoogle Scholar
  86. Neuhaus O, Archelos JJ, Hartung HP (2003) Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci 24:131–138PubMedCrossRefGoogle Scholar
  87. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952PubMedCrossRefGoogle Scholar
  88. Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122:1180–1188PubMedCrossRefGoogle Scholar
  89. Orbach H, Shoenfeld Y (2007) Hyperprolactinemia and autoimmune diseases. Autoimmun Rev 6:537–542PubMedCrossRefGoogle Scholar
  90. Pacheco R, Prado CE, Barrientos MJ, Bernales S (2009) Role of dopamine in the physiology of T-cells and dendritic cells. J Neuroimmunol 216:8–19PubMedCrossRefGoogle Scholar
  91. Pender MP (1998) Genetically determined failure of activation induced apoptosis of autoreactive T cells as a cause of multiple sclerosis. Lancet 351:978–981PubMedGoogle Scholar
  92. Perez D, Hébert T, Cotecchia S, Doze VA, Graham RM, Altosaar K, Devost D, Gora S, Goupil E, Kan S, Machkalyan G, Sleno R, Zylbergold P, Bond RA, Bylund DB, Eikenburg DC, Hieble JP, Hills R, Minneman KP, Parra S (2012) Adrenoceptors. Last modified on 17/02/2012. Accessed on 02/08/2012. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=4
  93. Pucci E, Branãs P, D'Amico R, Giuliani G, Solari A, Taus C (2007) Amantadine for fatigue in multiple sclerosis. Cochrane Database Syst Rev Jan 24;(1):CD002818Google Scholar
  94. Rajda C, Bencsik K, Vécsei LL, Bergquist J (2002) Catecholamine levels in peripheral blood lymphocytes from multiple sclerosis patients. J Neuroimmunol 124:93–100PubMedCrossRefGoogle Scholar
  95. Reguzzoni M, Cosentino M, Rasini E, Marino F, Ferrari M, Bombelli R, Congiu T, Protasoni M, Quacci D, Lecchini S, Raspanti M, Frigo G (2002) Ultrastructural localization of tyrosine hydroxylase in human peripheral blood mononuclear cells:effect of stimulation with phytohaemagglutinin. Cell Tissue Res 310:297–304PubMedCrossRefGoogle Scholar
  96. Riskind PN, Massacesi L, Doolittle TH, Hauser SL (1991) The role of prolactin in autoimmune demyelination: suppression of experimental allergic encephalomyelitis by bromocriptine. Ann Neurol 29:542–547PubMedCrossRefGoogle Scholar
  97. Rudick RA, Goelz SE (2011) Beta-interferon for multiple sclerosis. Exp Cell Res 317:1301–1311PubMedCrossRefGoogle Scholar
  98. Saha B, Mondal AC, Basu S, Dasgupta PS (2001) Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int Immunopharmacol 1:1363–1374PubMedCrossRefGoogle Scholar
  99. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500PubMedCrossRefGoogle Scholar
  100. Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24:525–528PubMedCrossRefGoogle Scholar
  101. Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, Ebers GC (2010) The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain 133:1914–1929PubMedCrossRefGoogle Scholar
  102. Simonini MV, Polak PE, Sharp A, McGuire S, Galea E, Feinstein DL (2010) Increasing CNS noradrenaline reduces EAE severity. J Neuroimmune Pharmacol 5:252–259PubMedCrossRefGoogle Scholar
  103. Swanson MA, Lee WT, Sanders VM (2001) IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. J Immunol 166:232–240PubMedGoogle Scholar
  104. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155PubMedCrossRefGoogle Scholar
  105. Venken K, Hellings N, Liblau R, Stinissen P (2010) Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 16:58–68PubMedCrossRefGoogle Scholar
  106. Voskuhl RR, Gold SM (2012) Sex-related factors in multiple sclerosis susceptibility and progression. Nat Rev Neurol 8:255–263PubMedCrossRefGoogle Scholar
  107. Wesselmann U, Konkol RJ, Leo GL, Roerig DL, Harder DR (1987) Altered splenic catecholamine concentrations during experimental allergic encephalomyelitis. Pharmacol Biochem Behav 26:851–854PubMedCrossRefGoogle Scholar
  108. White SR, Bhatnagar RK, Bardo MT (1983) Norepinephrine depletion in the spinal cord gray matter of rats with experimental allergic encephalomyelitis. J Neurochem 40:1771–1773PubMedCrossRefGoogle Scholar
  109. Wiegmann K, Muthyala S, Kim DH, Arnason BG, Chelmicka-Schorr E (1995) Beta-adrenergic agonists suppress chronic/relapsing experimental allergic encephalomyelitis (CREAE) in Lewis rats. J Neuroimmunol 56:201–206PubMedCrossRefGoogle Scholar
  110. Yong VW, Marks S (2010) The interplay between the immune and central nervous systems in neuronal injury. Neurology 74:S9–S16PubMedCrossRefGoogle Scholar
  111. Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M, Ghezzi A, Comi G, Lecchini S, Cosentino M (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214:315–321PubMedCrossRefGoogle Scholar
  112. Zeinstra E, Wilczak N, De Keyser J (2000) [3 H]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain. Neurosci Lett 289:75–77PubMedCrossRefGoogle Scholar
  113. Zoukos Y, Leonard JP, Thomaides T, Thompson AJ, Cuzner ML (1992) Beta-Adrenergic receptor density and function of peripheral blood mononuclear cells are increased in multiple sclerosis: a regulatory role for cortisol and interleukin-1. Ann Neurol 31:657–662PubMedCrossRefGoogle Scholar
  114. Zoukos Y, Kidd D, Woodroofe MN, Kendall BE, Thompson AJ, Cuzner ML (1994) Increased expression of high affinity IL-2 receptors and beta-adrenoceptors on peripheral blood mononuclear cells is associated with clinical and MRI activity in multiple sclerosis. Brain 117(Pt 2):307–315PubMedCrossRefGoogle Scholar
  115. Zoukos Y, Thomaides TN, Kidd D, Cuzner ML, Thompson A (2003) Expression of beta2 adrenoreceptors on peripheral blood mononuclear cells in patients with primary and secondary progressive multiple sclerosis: a longitudinal six month study. J Neurol Neurosurg Psychiatry 74:197–202PubMedCrossRefGoogle Scholar
  116. Zozulya AL, Wiendl H (2008) The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 4:384–398PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly

Personalised recommendations