Journal of Neuroimmune Pharmacology

, Volume 8, Issue 3, pp 518–534

Central Mechanisms of Pain Revealed Through Functional and Structural MRI

INVITED REVIEW

Abstract

MR-based brain imaging technologies provide a suite of functional and structural metrics that can be used to test hypotheses about the CNS mechanisms underlying pain perception and chronification, from a cellular level to a systems level. Two types of functional MRI discussed in this review provide insight into pain mechanisms: stimulus-evoked fMRI and task-free (“resting state”) fMRI. The former can assess how the brain responds to noxious or non-noxious stimuli normally or in a chronic pain state as a window into understanding pain, hyperalgesia and allodynia. The latter can assess functional connectivity reflecting synchronous ultra-slow frequency oscillation between brain areas. This provides insight into how brain areas work together as networks to produce pain and how these networks may be modified due to chronic pain. Perfusion MR (e.g., arterial spin labeling) can also provide task-free information pertaining to ongoing brain activity that may reflect spontaneous (ongoing) chronic pain. Structural MR techniques can be used to delineate gray and white matter abnormalities and markers of neuroinflammation associated with chronic pains. Functional and structural MRI findings point to brain and peripheral nerve abnormalities in patients with chronic pain, some of which are pre-existing and others that develop with prolonged pain (and related neuroinflammation) over time. Recent studies indicate that some structural brain abnormalities associated with chronic pain are reversible following effective pain treatment. These data together with findings from studies of individual differences suggest that some chronic pains arise from a combination of pre-existing vulnerabilities and sustained abnormal input.

Keywords

Pain MRI Gray matter White matter 

References

  1. Albe-Fessard D, Berkley KJ, Kruger L, Ralston HJ III, Willis WD Jr (1985) Diencephalic mechanisms of pain sensation. Brain Res Rev 9:217–296CrossRefGoogle Scholar
  2. Alsop D (2011) Advances in non-contrast enhanced perfusion assessment. Signapulse: A GE Healthcare MR Publication Spring 51–54Google Scholar
  3. Apkarian AV, Krauss BR, Fredrickson BE, Szeverenyi NM (2001) Imaging the pain of low back pain: functional magnetic resonance imaging in combination with monitoring subjective pain perception allows the study of clinical pain states. Neurosci Lett 299:57–60PubMedCrossRefGoogle Scholar
  4. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484PubMedCrossRefGoogle Scholar
  5. Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods. NeuroImage 11:805–821PubMedCrossRefGoogle Scholar
  6. Augustine JR (1985) The insular lobe in primates including humans. Neurol Res 7:2–10PubMedGoogle Scholar
  7. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 22:229–244PubMedCrossRefGoogle Scholar
  8. Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28:1398–1403PubMedCrossRefGoogle Scholar
  9. Baliki MN, Baria AT, Apkarian AV (2011) The cortical rhythms of chronic back pain. J Neurosci 31:13981–13990PubMedCrossRefGoogle Scholar
  10. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219PubMedCrossRefGoogle Scholar
  11. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455PubMedCrossRefGoogle Scholar
  12. Beaulieu C (2009) The biological basis of diffusion. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI. Elsevier, London, pp 105–126CrossRefGoogle Scholar
  13. Behrens TE, Johansen-Berg H (2005) Relating connectional architecture to grey matter function using diffusion imaging. Philos Trans R Soc Lond B Biol Sci 360:903–911PubMedCrossRefGoogle Scholar
  14. Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003a) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757PubMedCrossRefGoogle Scholar
  15. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003b) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088PubMedCrossRefGoogle Scholar
  16. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34:144–155PubMedCrossRefGoogle Scholar
  17. Berkley KJ, Parmer R (1974) Somatosensory cortical involvement in responses to noxious stimulation in the cat. Exp Brain Res 20:363–374PubMedCrossRefGoogle Scholar
  18. Bingel U, Tracey I (2008) Imaging CNS modulation of pain in humans. Physiology (Bethesda) 23:371–380CrossRefGoogle Scholar
  19. Bingel U, Schoell E, Herken W, Buchel C, May A (2007) Habituation to painful stimulation involves the antinociceptive system. Pain 131:21–30PubMedCrossRefGoogle Scholar
  20. Bingel U, Herken W, Teutsch S, May A (2008) Habituation to painful stimulation involves the antinociceptive system–a 1-year follow-up of 10 participants. Pain 140:393–394PubMedCrossRefGoogle Scholar
  21. Blankstein U, Chen J, Diamant NE, Davis KD (2010) Altered brain structure in IBS: potential contributions of pre-existing and disease-driven factors. Gastroenterology 138:1783–1789PubMedCrossRefGoogle Scholar
  22. Brüggemann J, Shi T, Apkarian AV (1997) Viscero-somatic neurons in the primary somatosensory cortex (SI) of the squirrel monkey. Brain Res 756:297–300PubMedCrossRefGoogle Scholar
  23. Burton H, Videen TO, Raichle ME (1993) Tactile-vibration-activated foci in insular and parietal- opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. Somatosens Mot Res 10:297–308PubMedCrossRefGoogle Scholar
  24. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222PubMedCrossRefGoogle Scholar
  25. Casey KL (1982) Neural mechanisms of pain: an overview. Acta Anaesthesiol Scand 74:13–20CrossRefGoogle Scholar
  26. Casey KL, Minoshima S, Morrow TJ, Koeppe RA (1996) Comparison of human cerebral activation patterns during cutaneous warmth, heat pain and deep cold pain. J Neurophysiol 76:571–581PubMedGoogle Scholar
  27. Chen JY, Blankstein U, Diamant NE, Davis KD (2011) White matter abnormalities in irritable bowel syndrome and relation to individual factors. Brain Res 1392:121–131PubMedCrossRefGoogle Scholar
  28. Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ (2011) Role of glia in orofacial pain. Neuroscientist 17:303–320PubMedCrossRefGoogle Scholar
  29. Chudler EH, Dong WK, Kawakami Y (1986) Cortical nociceptive responses and behavioral correlates in the monkey. Brain Res 397:47–60PubMedCrossRefGoogle Scholar
  30. Chudler EH, Anton F, Dubner R, Kenshalo DR Jr (1990) Responses of SI nociceptive neurons in monkeys and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus interval. J Neurophysiol 63:559–569PubMedGoogle Scholar
  31. Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC (1994) Distributed processing of pain and vibration by the human brain. J Neurosci 14:4095–4108PubMedGoogle Scholar
  32. Craig AD (1995) Supraspinal projections of lamina I neurons. In: Besson JM, Guilbaud G, Ollat H (eds) Forebrain areas involved in pain processing. John Libbey Eurotext, Paris, pp 13–25Google Scholar
  33. Craig AD, Dostrovsky JO (1997) Processing of nociceptive information at supraspinal levels. In: Yaksh TL et al (eds) Anesthesia: biologic foundations. Lippincott-Raven Publishers, Philadelphia, pp 625–642Google Scholar
  34. Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773PubMedCrossRefGoogle Scholar
  35. Craig AD, Krout K, Zhang E-T (1995) Cortical projections to VMpo, a specific pain and temperature relay in primate thalamus. Soc Neurosci Abstr 21:1165Google Scholar
  36. Craig AD, Reiman EM, Evans A, Bushnell MC (1996) Functional imaging of an illusion of pain. Nature 384:258–260PubMedCrossRefGoogle Scholar
  37. Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497PubMedCrossRefGoogle Scholar
  38. DaSilva AF, Granziera C, Tuch DS, Snyder J, Vincent M, Hadjikhani N (2007) Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. Neuroreport 18:301–305PubMedCrossRefGoogle Scholar
  39. Davis KD (2003) Neurophysiological and anatomical considerations in functional imaging of pain. Pain 105:1–3PubMedCrossRefGoogle Scholar
  40. Davis KD (2006) Recent advances and future prospects in neuroimaging of actue and chronic pain. Futur Neurol 1:203–213CrossRefGoogle Scholar
  41. Davis KD (2011) Neuroimaging of pain: what does it tell us? Curr Opin Support Palliat Care 5:116–121PubMedCrossRefGoogle Scholar
  42. Davis KD, Pope GE (2002) Noxious cold evokes multiple sensations with distinct time courses. Pain 98:179–185PubMedCrossRefGoogle Scholar
  43. Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold and tactile stimuli. J Neurophysiology 80:1533–1546Google Scholar
  44. Davis KD, Hutchison WD, Lozano AM, Tasker RR, Dostrovsky JO (2000) Human anterior cingulate cortex neurons modulated by attention- demanding tasks. J Neurophysiol 83:3575–3577PubMedGoogle Scholar
  45. Davis KD, Pope GE, Crawley AP, Mikulis DJ (2002) Neural correlates of prickle sensation: a percept-related fMRI study. Nat Neurosci 5:1121–1122PubMedCrossRefGoogle Scholar
  46. Davis KD, Pope GE, Crawley AP, Mikulis DJ (2004) Perceptual illusion of "paradoxical heat" engages the insular cortex. J Neurophysiol 92:1248–1251PubMedCrossRefGoogle Scholar
  47. Davis KD, Taylor KS, Hutchison WD, Dostrovsky JO, McAndrews MP, Richter EO, Lozano AM (2005) Human anterior cingulate cortex neurons encode cognitive and emotional demands. J Neurosci 25:8402–8406PubMedCrossRefGoogle Scholar
  48. Davis KD, Pope G, Chen J, Kwan CL, Crawley AP, Diamant NE (2008) Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 70:153–154PubMedCrossRefGoogle Scholar
  49. Davis KD, Taylor KS, Anastakis DJ (2011) Nerve injury triggers changes in the brain. Neuroscientist 17:407–422PubMedCrossRefGoogle Scholar
  50. Davis KD, Racine E, Collett B (2012) Neuroethical issues related to the use of brain imaging: Can we and should we use brain imaging as a biomarker to diagnose chronic pain? Pain 153:1555–1559Google Scholar
  51. De Luca M, Beckmann CF, De SN, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage 29:1359–1367PubMedCrossRefGoogle Scholar
  52. DeLeo JA, Tanga FY, Tawfik VL (2004) Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10:40–52PubMedCrossRefGoogle Scholar
  53. Derbyshire SWG (2003) A systematic review of neuroimaging data during visceral stimulation. Am J Gastroenterol 98:12–20PubMedCrossRefGoogle Scholar
  54. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behavior. Brain 118:279–306PubMedCrossRefGoogle Scholar
  55. Diamant NE (1995) Overview of functional gut disorders: a challenge. Scand J Gastroenterol 213:1–6Google Scholar
  56. Dick B, Eccleston C, Crombez G (2002) Attentional functioning in fibromyalgia, rheumatoid arthritis, and musculoskeletal pain patients. Arthritis Rheum Arthritis Care Res 47:639–644CrossRefGoogle Scholar
  57. Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T (1994) Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72:542–564PubMedGoogle Scholar
  58. Dostrovsky JO, Craig AD (1996) Nociceptive neurons in primate insular cortex. Soc Neurosci Abstr 22:111Google Scholar
  59. Downar J, Crawley AP, Mikulis DJ, Davis KD (2002) A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiology 87:615–620Google Scholar
  60. Downar J, Mikulis DJ, Davis KD (2003) Neural correlates of the prolonged salience of painful stimulation. NeuroImage 20:1540–1551PubMedCrossRefGoogle Scholar
  61. Duerden EG, Albanese MC (2011) Hum. Brain Mapp.. doi:10.1002/hbm.21416, Dec. 1. [Epub ahead of print]
  62. Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30:7507–7515PubMedCrossRefGoogle Scholar
  63. Dyrby TB, Sogaard LV, Parker GJ, Alexander DC, Lind NM, Baare WF, Hay-Schmidt A, Eriksen N, Pakkenberg B, Paulson OB, Jelsing J (2007) Validation of in vitro probabilistic tractography. NeuroImage 37:1267–1277PubMedCrossRefGoogle Scholar
  64. Eccleston C (1995) The attentional control of pain: methodological and theoretical concerns. Pain 63:3–10PubMedCrossRefGoogle Scholar
  65. Eccleston C, Crombez G, Aldrich S, Stannard C (1997) Attention and somatic awareness in chronic pain. Pain 72:209–215PubMedCrossRefGoogle Scholar
  66. Edwards RR, Bingham CO III, Bathon J, Haythornthwaite JA (2006) Catastrophizing and pain in arthritis, fibromyalgia, and other rheumatic diseases. Arthritis Rheum 55:325–332PubMedCrossRefGoogle Scholar
  67. Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30:6409–6421PubMedCrossRefGoogle Scholar
  68. Erpelding N, Moayedi M, Seminowicz D, Crawley A, Davis K (2010) Cortical grey matter reflects fMRI pain responses and cognitive modulation strategies during pain. Neuroimage SupplementGoogle Scholar
  69. Erpelding N, Moayedi M, Davis KD (2012a) Brain gray matter reflects pain response strategies during a cognitive interference task. 14th World Congress on Pain, conference proceedingsGoogle Scholar
  70. Erpelding N, Moayedi M, Davis KD (2012b) Cortical thickness correlates of pain and temperature sensitivity. Pain 153:1602–1609Google Scholar
  71. Forsythe ME, Dunbar MJ, Hennigar AW, Sullivan MJ, Gross M (2008) Prospective relation between catastrophizing and residual pain following knee arthroplasty: two-year follow-up. Pain Res Manag 13:335–341PubMedGoogle Scholar
  72. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van E, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678PubMedCrossRefGoogle Scholar
  73. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29PubMedCrossRefGoogle Scholar
  74. Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78CrossRefGoogle Scholar
  75. Fujiwara S, Sasaki M, Wada T, Kudo K, Hirooka R, Ishigaki D, Nishikawa Y, Ono A, Yamaguchi M, Ogasawara K (2011) High-resolution diffusion tensor imaging for the detection of diffusion abnormalities in the trigeminal nerves of patients with trigeminal neuralgia caused by neurovascular compression. J Neuroimaging 21:e102–e108PubMedCrossRefGoogle Scholar
  76. Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV (2008) The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 60:570–581PubMedCrossRefGoogle Scholar
  77. Greicius MD, Menon V (2004) Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci 16:1484–1492PubMedCrossRefGoogle Scholar
  78. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258PubMedCrossRefGoogle Scholar
  79. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642PubMedCrossRefGoogle Scholar
  80. Guo LH, Schluesener HJ (2007) The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell Mol Life Sci 64:1128–1136PubMedCrossRefGoogle Scholar
  81. Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694PubMedCrossRefGoogle Scholar
  82. Gwilym SE, Fillipini N, Douaud G, Carr AJ, Tracey I (2010) Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty; a longitudinal voxel-based-morphometric study. Arthritis Rheum 62:2930–2940PubMedCrossRefGoogle Scholar
  83. Hashmi JA, Davis KD (2008) Effect of static and dynamic heat pain stimulus profiles on the temporal dynamics and interdependence of pain qualities, intensity, and affect. J Neurophysiol 100:1706–1715PubMedCrossRefGoogle Scholar
  84. Hashmi JA, Davis KD (2009) Women experience greater heat pain adaptation and habituation than men. Pain 145:350–357PubMedCrossRefGoogle Scholar
  85. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 106:2035–2040PubMedCrossRefGoogle Scholar
  86. Howard MA, Krause K, Khawaja N, Massat N, Zelaya F, Schumann G, Huggins JP, Vennart W, Williams SC, Renton TF (2011) Beyond patient reported pain: perfusion magnetic resonance imaging demonstrates reproducible cerebral representation of ongoing post-surgical pain. PLoS One 6:e17096PubMedCrossRefGoogle Scholar
  87. Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63:225–236PubMedCrossRefGoogle Scholar
  88. Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2:403–405PubMedCrossRefGoogle Scholar
  89. Ichesco E, Quintero A, Clauw DJ, Peltier S, Sundgren PM, Gerstner GE, Schmidt-Wilcke T (2012) Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: A pilot study. Headache 52:441–454PubMedCrossRefGoogle Scholar
  90. Kalliomäki J, Weng H-R, Nilsson H-J, Schouenborg J (1993) Nociceptive C fibre input to the primary somatosensory cortex (SI). A field potential study in the rat. Brain Res 622:262–270PubMedCrossRefGoogle Scholar
  91. Kato Y, Araki N, Matsuda H, Ito Y, Suzuki C (2010) Arterial spin-labeled MRI study of migraine attacks treated with rizatriptan. J Headache Pain 11:255–258PubMedCrossRefGoogle Scholar
  92. Keefe FJ, Brown GK, Wallston KA, Caldwell DS (1989) Coping with rheumatoid arthritis pain: catastrophizing as a maladaptive strategy. Pain 37:51–56PubMedCrossRefGoogle Scholar
  93. Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50:1479–1496PubMedGoogle Scholar
  94. Kenshalo DR, Iwata K, Sholas M, Thomas DA (2000) Response properties and organization of nociceptive neurons in area 1 of monkey primary somatosensory cortex. J Neurophysiol 84:719–729PubMedGoogle Scholar
  95. Kewman DG, Vaishampayan N, Zald D, Han B (1991) Cognitive impairment in musculoskeletal pain patients. Int J Psychiatr Med 21:253–262CrossRefGoogle Scholar
  96. Kucyi A, Moayedi M, Weissman-Fogel I, Hodaie M, Davis KD (2012) Hemispheric asymmetry in white matter connectivity of the temporoparietal junction with the insula and prefrontal cortex. PLoS One. in pressGoogle Scholar
  97. Kwan CL, Diamant NE, Mikula K, Davis KD (2005a) Characteristics of rectal perception are altered in irritable bowel syndrome. Pain 113:160–171PubMedCrossRefGoogle Scholar
  98. Kwan CL, Diamant NE, Pope G, Mikula K, Mikulis DJ, Davis KD (2005b) Abnormal forebrain activity in functional bowel disorder patients with chronic pain. Neurology 65:1268–1277PubMedCrossRefGoogle Scholar
  99. Le BD, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. NeuroImage 61:324–341CrossRefGoogle Scholar
  100. Leal PR, Roch JA, Hermier M, Souza MA, Cristino-Filho G, Sindou M (2011) Structural abnormalities of the trigeminal root revealed by diffusion tensor imaging in patients with trigeminal neuralgia caused by neurovascular compression: a prospective, double-blind, controlled study. Pain 152:2357–2364PubMedCrossRefGoogle Scholar
  101. Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, Crombez G (2009) A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain 144:230–232PubMedCrossRefGoogle Scholar
  102. Legrain V, Iannetti GD, Plaghki L, Mouraux A (2010) The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 93:111–124PubMedCrossRefGoogle Scholar
  103. Lerch JP, Yiu AP, Martinez-Canabal A, Pekar T, Bohbot VD, Frankland PW, Henkelman RM, Josselyn SA, Sled JG (2011) Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. NeuroImage 54:2086–2095PubMedCrossRefGoogle Scholar
  104. Liang M, Mouraux A, Iannetti GD (2012) Bypassing Primary Sensory Cortices—A Direct Thalamocortical Pathway for Transmitting Salient Sensory Information. Cereb Cortex Jan 23. [Epub ahead of print]Google Scholar
  105. Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2007) Mapping the functional connectivity of anterior cingulate cortex. NeuroImage 37:579–588PubMedCrossRefGoogle Scholar
  106. Mars RB, Jbabdi S, Sallet J, O'Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100PubMedCrossRefGoogle Scholar
  107. May A (2008) Chronic pain may change the structure of the brain. Pain 137:7–15PubMedCrossRefGoogle Scholar
  108. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298PubMedCrossRefGoogle Scholar
  109. Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M (2009) Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci U S A 106:2423–2428PubMedCrossRefGoogle Scholar
  110. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36PubMedCrossRefGoogle Scholar
  111. Moayedi M, Weissman-Fogel I, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD (2011) Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. NeuroImage 55:277–286PubMedCrossRefGoogle Scholar
  112. Moayedi M, Weissman-Fogel I, Salomons TV, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD (2012) White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain 153:1467–1477PubMedCrossRefGoogle Scholar
  113. Mori S, Zhang J (2006) Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research. Neuron 51:527–539PubMedCrossRefGoogle Scholar
  114. Moseley M, Bammer R, Illes J (2002) Diffusion-tensor imaging of cognitive performance. Brain Cogn 50:396–413PubMedCrossRefGoogle Scholar
  115. Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE (2010) Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62:2545–2555PubMedCrossRefGoogle Scholar
  116. Napadow V, Kim J, Clauw DJ, Harris RE (2012) Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis RheumGoogle Scholar
  117. Obermann M, Nebel K, Schumann C, Holle D, Gizewski ER, Maschke M, Goadsby PJ, Diener HC, Katsarava Z (2009) Gray matter changes related to chronic posttraumatic headache. Neurology 73:978–983PubMedCrossRefGoogle Scholar
  118. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  119. Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O'Neill E (1997) Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J Behav Med 20:589–605PubMedCrossRefGoogle Scholar
  120. Osman A, Barrios FX, Gutierrez PM, Kopper BA, Merrifield T, Grittmann L (2000) The Pain Catastrophizing Scale: further psychometric evaluation with adult samples. J Behav Med 23:351–365PubMedCrossRefGoogle Scholar
  121. Owen DG, Bureau Y, Thomas AW, Prato FS, St Lawrence KS (2008) Quantification of pain-induced changes in cerebral blood flow by perfusion MRI. Pain 136:85–96PubMedCrossRefGoogle Scholar
  122. Owen DG, Clarke CF, Ganapathy S, Prato FS, St Lawrence KS (2010) Using perfusion MRI to measure the dynamic changes in neural activation associated with tonic muscular pain. Pain 148:375–386PubMedCrossRefGoogle Scholar
  123. Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320PubMedCrossRefGoogle Scholar
  124. Pan H, Epstein J, Silbersweig DA, Stern E (2011) New and emerging imaging techniques for mapping brain circuitry. Brain Res Rev 67:226–251PubMedCrossRefGoogle Scholar
  125. Papaioannou M, Skapinakis P, Damigos D, Mavreas V, Broumas G, Palgimesi A (2009) The role of catastrophizing in the prediction of postoperative pain. Pain Med 10:1452–1459PubMedCrossRefGoogle Scholar
  126. Park DC, Glass JM, Minear M, Crofford LJ (2001) Cognitive function in fibromyalgia patients. Arthritis Rheum 44:2125–2133PubMedCrossRefGoogle Scholar
  127. Pavlin DJ, Sullivan MJ, Freund PR, Roesen K (2005) Catastrophizing: a risk factor for postsurgical pain. Clin J Pain 21:83–90PubMedCrossRefGoogle Scholar
  128. Peters A, Morrison JH, Rosene DL, Hyman BT (1998) Feature article: are neurons lost from the primate cerebral cortex during normal aging? Cereb. Cortex 8:295–300CrossRefGoogle Scholar
  129. Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122(Pt 9):1765–1780PubMedCrossRefGoogle Scholar
  130. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta–analysis. Neurophysiol Clin 30:263–288PubMedCrossRefGoogle Scholar
  131. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di CG (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648PubMedGoogle Scholar
  132. Pincus T, Morley S (2001) Cognitive-processing bias in chronic pain: a review and integration. Psychol Bull 127:599–617PubMedCrossRefGoogle Scholar
  133. Ploner M, Lee MC, Wiech K, Bingel U, Tracey I (2010) Prestimulus functional connectivity determines pain perception in humans. Proc Natl Acad Sci U S A 107:355–360PubMedCrossRefGoogle Scholar
  134. Porro CA, Lui F, Facchin P, Maieron M, Baraldi P (2004) Percept-related activity in the human somatosensory system: functional magnetic resonance imaging studies. Magn Reson Imag 22:1539–1548CrossRefGoogle Scholar
  135. Price DD, Barrell JJ, Gracely RH (1980) A psychophysical analysis of experiential factors that selectively influence the affective dimension of pain. Pain 8:137–149PubMedCrossRefGoogle Scholar
  136. Price DD, McHaffie JG, Larson MA (1989) Spatial summation of heat-induced pain: influence of stimulus area and spatial separation of stimuli on perceived pain sensation intensity and unpleasantness. J Neurophysiol 89:1270–1279Google Scholar
  137. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682PubMedCrossRefGoogle Scholar
  138. Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A (2009) Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci 29:13746–13750PubMedCrossRefGoogle Scholar
  139. Salomons TV, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD (2012) Perceived Helplessness is Associated with Individual Differences in the Central Motor Output System. Eur J Neurosci. 35:1481–1487Google Scholar
  140. Schneider RJ, Friedman DP, Mishkin M (1993) A modality-specific somatosensory area within the insula of the rhesus monkey. Brain Res 621:116–120PubMedCrossRefGoogle Scholar
  141. Schweinhardt P, Kuchinad A, Pukall CF, Bushnell MC (2008) Increased gray matter density in young women with chronic vulvar pain. Pain 140:411–419PubMedCrossRefGoogle Scholar
  142. Seehaus AK, Roebroeck A, Chiry O, Kim DS, Ronen I, Bratzke H, Goebel R, Galuske RA (2012) Histological Validation of DW-MRI Tractography in Human Postmortem Tissue. Cereb CortexGoogle Scholar
  143. Seminowicz DA, Davis KD (2006) Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain 120:297–306PubMedCrossRefGoogle Scholar
  144. Seminowicz DA, Davis KD (2007a) A re-examination of pain-cognition interactions: implications for neuroimaging. Pain 130:8–13PubMedCrossRefGoogle Scholar
  145. Seminowicz DA, Davis KD (2007b) Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task. J Neurophysiol 97:3651–3659PubMedCrossRefGoogle Scholar
  146. Seminowicz DA, Mikulis DJ, Davis KD (2004) Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 112:48–58PubMedCrossRefGoogle Scholar
  147. Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, Jarzem P, Bushnell MC, Shir Y, Ouellet JA, Stone LS (2011) Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci 31:7540–7550PubMedCrossRefGoogle Scholar
  148. Severeijns R, Vlaeyen JW, van den Hout MA, Weber WE (2001) Pain catastrophizing predicts pain intensity, disability, and psychological distress independent of the level of physical impairment. Clin J Pain 17:165–172PubMedCrossRefGoogle Scholar
  149. Sikes RW, Vogt BA (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol 68:1720–1732PubMedGoogle Scholar
  150. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505PubMedCrossRefGoogle Scholar
  151. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106:13040–13045PubMedCrossRefGoogle Scholar
  152. Strigo IA, Duncan GH, Boivin M, Bushnell MC (2003) Differentiation of visceral and cutaneous pain in the human brain. J Neurophysiol 89:3294–3303PubMedCrossRefGoogle Scholar
  153. Sullivan MJ, Bishop SR, Pivik J (1995) The pain catastrophizing scale: development and validation. Psychol Assess 7:524–532CrossRefGoogle Scholar
  154. Sullivan MJ, Thorn B, Haythornthwaite JA, Keefe F, Martin M, Bradley LA, Lefebvre JC (2001) Theoretical perspectives on the relation between catastrophizing and pain. Clin J Pain 17:52–64PubMedCrossRefGoogle Scholar
  155. Sullivan M, Tanzer M, Stanish W, Fallaha M, Keefe FJ, Simmonds M, Dunbar M (2009) Psychological determinants of problematic outcomes following Total Knee Arthroplasty. Pain 143:123–129PubMedCrossRefGoogle Scholar
  156. Svensson P, Minoshima S, Beydoun A, Morrow TJ, Casey KL (1997) Cerebral processing of acute skin and muscle pain in humans. J Neurophysiol 78:450–460PubMedGoogle Scholar
  157. Szabo N, Kincses ZT, Pardutz A, Tajti J, Szok D, Tuka B, Kiraly A, Babos M, Voros E, Bomboi G, Orzi F, Vecsei L (2012) White matter microstructural alterations in migraine: a diffusion-weighted MRI study. Pain 153:651–656PubMedCrossRefGoogle Scholar
  158. Taylor KS, Seminowicz DA, Davis KD (2009) Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 30:2731–2745PubMedCrossRefGoogle Scholar
  159. Taylor KS, Anastakis DJ, Davis KD (2010) Chronic Pain and Sensorimotor Deficits Following Peripheral Nerve Injury. Pain 151:582–591PubMedCrossRefGoogle Scholar
  160. Teutsch S, Herken W, Bingel U, Schoell E, May A (2008) Changes in brain gray matter due to repetitive painful stimulation. NeuroImage 42:845–849PubMedCrossRefGoogle Scholar
  161. Torta DM, Cauda F (2011) Different functions in the cingulate cortex, a meta-analytic connectivity modeling study. NeuroImage 56:2157–2172PubMedCrossRefGoogle Scholar
  162. Tracey I, Johns E (2010) The pain matrix: reloaded or reborn as we image tonic pain using arterial spin labelling. Pain 148:359–360PubMedCrossRefGoogle Scholar
  163. Treede RD, Kenshalo DR, Gracely RH, Jones AKP (1999) The cortical representation of pain. Pain 79:105–111PubMedCrossRefGoogle Scholar
  164. Turk DC (2002) A diathesis-stress model of chronic pain and disability following traumatic injury. Pain Res Manag 7:9–19PubMedGoogle Scholar
  165. Vierck CJ Jr, Cannon RL, Fry G, Maixner W, Whitsel BL (1997) Characteristics of temporal summation of second pain sensations elicited by brief contact of glabrous skin by a preheated thermode. J Neurophysiol 78:992–1002PubMedGoogle Scholar
  166. Vogt BA, Sikes RW, Vogt LT (1993) Anterior cingulate cortex and the medial pain system. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus: a comprehensive handbook. Birkhauser, Boston, pp 313–344Google Scholar
  167. Walther K, Bendlin BB, Glisky EL, Trouard TP, Lisse JR, Posever JO, Ryan L (2011) Anti-inflammatory drugs reduce age-related decreases in brain volume in cognitively normal older adults. Neurobiol Aging 32:497–505PubMedCrossRefGoogle Scholar
  168. Wasan AD, Loggia ML, Chen LQ, Napadow V, Kong J, Gollub RL (2011) Neural Correlates of Chronic Low Back Pain Measured by Arterial Spin Labeling. Anesthesiology 115:364–374PubMedCrossRefGoogle Scholar
  169. Watkins LR, Maier SF, Goehler LE (1995) Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63:289–302PubMedCrossRefGoogle Scholar
  170. Watkins LR, Milligan ED, Maier SF (2001) Spinal cord glia: new players in pain. Pain 93:201–205PubMedCrossRefGoogle Scholar
  171. Weissman-Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD (2010) Cognitive and default-mode resting state networks: do male and female brains "rest" differently? Hum Brain Mapp 31:1713–1726PubMedGoogle Scholar
  172. Weissman-Fogel I, Moayedi M, Tenenbaum HC, Goldberg MB, Freeman BV, Davis KD (2011) Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. Pain 152:384–396PubMedCrossRefGoogle Scholar
  173. Willis WD Jr (1997) Nociceptive functions of thalamic neurons. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus. Elsevier Science, Oxford, pp 373–424Google Scholar
  174. Wu WC, St Lawrence KS, Licht DJ, Wang DJ (2010) Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imag 21:65–73CrossRefGoogle Scholar
  175. Xu G, Rowley HA, Wu G, Alsop DC, Shankaranarayanan A, Dowling M, Christian BT, Oakes TR, Johnson SC (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease. NMR Biomed 23:286–293PubMedCrossRefGoogle Scholar
  176. Yan H, Zuo XN, Wang D, Wang J, Zhu C, Milham MP, Zhang D, Zang Y (2009) Hemispheric asymmetry in cognitive division of anterior cingulate cortex: a resting-state functional connectivity study. NeuroImage 47:1579–1589PubMedCrossRefGoogle Scholar
  177. Younger JW, Shen YF, Goddard G, Mackey SC (2010) Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems. Pain 149:222–228PubMedCrossRefGoogle Scholar
  178. Yu C, Zhou Y, Liu Y, Jiang T, Dong H, Zhang Y, Walter M (2011) Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. NeuroImage 54:2571–2581PubMedCrossRefGoogle Scholar
  179. Zeidan F, Martucci KT, Kraft RA, Gordon NS, McHaffie JG, Coghill RC (2011) Brain mechanisms supporting the modulation of pain by mindfulness meditation. J Neurosci 31:5540–5548PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Brain, Imaging and Behaviour–Systems Neuroscience, Toronto Western Research InstituteUniversity Health NetworkTorontoCanada
  2. 2.Department of SurgeryUniversity of TorontoTorontoCanada
  3. 3.Institute of Medical ScienceUniversity of TorontoTorontoCanada

Personalised recommendations