Journal of Neuroimmune Pharmacology

, Volume 8, Issue 1, pp 42–50 | Cite as

Amygdaloid Signature of Peripheral Immune Activation by Bacterial Lipopolysaccharide or Staphylococcal Enterotoxin B

  • Geraldine Prager
  • Martin Hadamitzky
  • Andrea Engler
  • Raphael Doenlen
  • Timo Wirth
  • Gustavo Pacheco-López
  • Ute Krügel
  • Manfred Schedlowski
  • Harald Engler
BRIEF REPORT

Abstract

Activated immune cells produce soluble mediators that not only coordinate local and systemic immune responses but also act on the brain to initiate behavioral, neuroendocrine and metabolic adaptations. Earlier studies have shown that the amygdala, a group of nuclei located in the medial temporal lobe, is engaged in the central processing of afferent signals from the peripheral immune system. Here, we compared amygdaloid responses to lipopolysaccharide (LPS) and staphylococcal enterotoxin B (SEB), two prototypic bacterial products that elicit distinct immune responses. Intraperitoneal administration of LPS (0.1 mg/kg) or SEB (1 mg/kg) in adult rats induced substantial increases in amygdaloid neuronal activity as measured by intracerebral electroencephalography and c-fos gene expression. Amygdaloid neuronal activation was accompanied by an increase in anxiety-related behavior in the elevated plus-maze test. However, only treatment with LPS, but not SEB, enhanced amygdaloid IL-1β and TNF-α mRNA expression. This supports the view of the immune system as a sensory organ that recognizes invading pathogens and rapidly relays this information to the brain, independent of the nature of the immune response induced. The observation that neuronal and behavioral responses to peripheral immune challenges are not necessarily accompanied by increased brain cytokine expression suggests that cytokines are not the only factors driving sickness-related responses in the CNS.

Keywords

Amygdala Lipopolysaccharide Staphylococcal enterotoxin B EEG c-fos Cytokine Anxiety 

References

  1. Banks WA (2005) Blood–brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des 11(8):973–984PubMedCrossRefGoogle Scholar
  2. Besedovsky H, Sorkin E, Felix D, Haas H (1977) Hypothalamic changes during the immune response. Eur J Immunol 7(5):323–325. doi:10.1002/eji.1830070516 PubMedCrossRefGoogle Scholar
  3. Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol 74(4):479–485. doi:10.1189/jlb.0203082 PubMedCrossRefGoogle Scholar
  4. Borgerding RA, Murphy S (1995) Expression of inducible nitric oxide synthase in cerebral endothelial cells is regulated by cytokine-activated astrocytes. J Neurochem 65(3):1342–1347. doi:10.1046/j.1471-4159.1995.65031342.x PubMedCrossRefGoogle Scholar
  5. Connor TJ, Song C, Leonard BE, Merali Z, Anisman H (1998) An assessment of the effects of central interleukin-1β, -2, -6, and tumor necrosis factor-α administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience 84(3):923–933. doi:10.1016/S0306-4522(97)00533-2 PubMedCrossRefGoogle Scholar
  6. Cuello AC, Carson S (1983) Microdissection of fresh rat brain tissue slices. In: Cuello AC (ed) Brain Microdissection Techniques. Wiley, New York, pp. 37–125.Google Scholar
  7. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. doi:10.1038/nrn2297 PubMedCrossRefGoogle Scholar
  8. Del Rey A, Randolf A, Pitossi F, Rogausch H, Besedovsky HO (2000) Not all peripheral immune stimuli that activate the HPA axis induce proinflammatory cytokine gene expression in the hypothalamus. Ann N Y Acad Sci 917:169–174. doi:10.1111/j.1749-6632.2000.tb05381.x PubMedCrossRefGoogle Scholar
  9. Doenlen R, Krügel U, Wirth T, Riether C, Engler A, Prager G, Engler H, Schedlowski M, Pacheco-Lopez G (2011) Electrical activity in rat cortico-limbic structures after single or repeated administration of lipopolysaccharide or staphylococcal enterotoxin B. Proc R Soc B 278:1864–1872. doi:10.1098/rspb.2010.2040 PubMedCrossRefGoogle Scholar
  10. Engler H, Doenlen R, Engler A, Riether C, Prager G, Niemi MB, Pacheco-Lopez G, Krügel U, Schedlowski M (2011) Acute amygdaloid response to systemic inflammation. Brain Behav Immun 25(7):1384–1392. doi:10.1016/j.bbi.2011.04.005 PubMedCrossRefGoogle Scholar
  11. Ericsson A, Arias C, Sawchenko PE (1997) Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J Neurosci 17(18):7166–7179PubMedGoogle Scholar
  12. Fraser JD, Proft T (2008) The bacterial superantigen and superantigen-like proteins. Immunol Rev 225:226–243. doi:10.1111/j.1600-065X.2008.00681.x PubMedCrossRefGoogle Scholar
  13. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, Kelley KW, Dantzer R, Castanon N (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32(5):516–531. doi:10.1016/j.psyneuen.2007.03.005 PubMedCrossRefGoogle Scholar
  14. Gaykema RP, Chen CC, Goehler LE (2007) Organization of immune-responsive medullary projections to the bed nucleus of the stria terminalis, central amygdala, and paraventricular nucleus of the hypothalamus: evidence for parallel viscerosensory pathways in the rat brain. Brain Res 1130(1):130–145. doi:10.1016/j.brainres.2006.10.084 PubMedCrossRefGoogle Scholar
  15. Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR (2000) Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci 85(1–3):49–59. doi:10.1016/S1566-0702(00)00219-8 PubMedCrossRefGoogle Scholar
  16. Goehler LE, Lyte M, Gaykema RP (2007) Infection-induced viscerosensory signals from the gut enhance anxiety: implications for psychoneuroimmunology. Brain Behav Immun 21(6):721–726. doi:10.1016/j.bbi.2007.02.005 PubMedCrossRefGoogle Scholar
  17. Grigoleit JS, Kullmann JS, Wolf OT, Hammes F, Wegner A, Jablonowski S, Engler H, Gizewski E, Oberbeck R, Schedlowski M (2011) Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One 6(12):e28330. doi:10.1371/journal.pone.0028330 PubMedCrossRefGoogle Scholar
  18. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD (2009a) Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 66(5):407–414. doi:10.1016/j.biopsych.2009.03.015 PubMedCrossRefGoogle Scholar
  19. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Dolan RJ, Critchley HD (2009b) Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry 66(5):415–422. doi:10.1016/j.biopsych.2009.03.007 PubMedCrossRefGoogle Scholar
  20. Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12(2):123–137PubMedCrossRefGoogle Scholar
  21. Kabiersch A, del Rey A, Honegger CG, Besedovsky HO (1988) Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behav Immun 2(3):267–274PubMedCrossRefGoogle Scholar
  22. Kakizaki Y, Watanobe H, Kohsaka A, Suda T (1999) Temporal profiles of interleukin-1β, interleukin-6, and tumor necrosis factor-α in the plasma and hypothalamic paraventricular nucleus after intravenous or intraperitoneal administration of lipopolysaccharide in the rat: estimation by push-pull perfusion. Endocr J 46(4):487–496. doi:10.1507/endocrj.46.487 PubMedCrossRefGoogle Scholar
  23. Kent S, Bluthe RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13(1):24–28. doi:10.1016/0165-6147(92)90012-U PubMedCrossRefGoogle Scholar
  24. Konat GW, Borysiewicz E, Fil D, James I (2009) Peripheral challenge with double-stranded RNA elicits global up-regulation of cytokine gene expression in the brain. J Neurosci Res 87(6):1381–1388. doi:10.1002/jnr.21958 PubMedCrossRefGoogle Scholar
  25. Koo JW, Duman RS (2009) Interleukin-1 receptor null mutant mice show decreased anxiety-like behavior and enhanced fear memory. Neurosci Lett 456(1):39–43. doi:10.1016/j.neulet.2009.03.068 PubMedCrossRefGoogle Scholar
  26. Krügel U, Kittner H, Franke H, Illes P (2003) Purinergic modulation of neuronal activity in the mesolimbic dopaminergic system in vivo. Synapse 47(2):134–142. doi:10.1002/syn.10162 PubMedCrossRefGoogle Scholar
  27. Kusnecov AW, Liang R, Shurin G (1999) T-lymphocyte activation increases hypothalamic and amygdaloid expression of CRH mRNA and emotional reactivity to novelty. J Neurosci 19(11):4533–4543PubMedGoogle Scholar
  28. Larson SJ, Dunn AJ (2001) Behavioral effects of cytokines. Brain Behav Immun 15(4):371–387. doi:10.1006/brbi.2001.0643 PubMedCrossRefGoogle Scholar
  29. Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451. doi:10.1146/annurev.ne.14.030191.002225 PubMedCrossRefGoogle Scholar
  30. Morrison MF, Petitto JM, Ten Have T, Gettes DR, Chiappini MS, Weber AL, Brinker-Spence P, Bauer RM, Douglas SD, Evans DL (2002) Depressive and anxiety disorders in women with HIV infection. Am J Psychiatry 159(5):789–796. doi:10.1176/appi.ajp.159.5.789 PubMedCrossRefGoogle Scholar
  31. Paxinos G, Watson S (1998) The rat brain in stereotactic coordinates. Academic Press, San DiegoGoogle Scholar
  32. Quan N, Banks WA (2007) Brain-immune communication pathways. Brain Behav Immun 21(6):727–735. doi:10.1016/j.bbi.2007.05.005 PubMedCrossRefGoogle Scholar
  33. Quan N, Whiteside M, Herkenham M (1998) Time course and localization patterns of interleukin-1beta messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 83(1):281–293PubMedCrossRefGoogle Scholar
  34. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmacher T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58(5):445–452PubMedCrossRefGoogle Scholar
  35. Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10(6):423–433. doi:10.1038/nrn2651 PubMedCrossRefGoogle Scholar
  36. Saphier D (1989) Neurophysiological and endocrine consequences of immune activity. Psychoneuroendocrinology 14(1–2):63–87PubMedCrossRefGoogle Scholar
  37. Serrats J, Sawchenko PE (2006) CNS activational responses to staphylococcal enterotoxin B: T-lymphocyte-dependent immune challenge effects on stress-related circuitry. J Comp Neurol 495(2):236–254. doi:10.1002/cne.20872 PubMedCrossRefGoogle Scholar
  38. Serrats J, Sawchenko PE (2009) How T-cell-dependent and -independent challenges access the brain: vascular and neural responses to bacterial lipopolysaccharide and staphylococcal enterotoxin B. Brain Behav Immun 23(7):1038–1052. doi:10.1016/j.bbi.2009.06.004[doi] PubMedCrossRefGoogle Scholar
  39. Tkacs NC, Li J, Strack AM (1997) Central amygdala Fos expression during hypotensive or febrile, nonhypotensive endotoxemia in conscious rats. J Comp Neurol 379(4):592–602. doi:10.1002/(SICI)1096-9861(19970324)379:4<592::AID-CNE9>3.0.CO;2-YPubMedCrossRefGoogle Scholar
  40. Valles A, Marti O, Armario A (2005) Mapping the areas sensitive to long-term endotoxin tolerance in the rat brain: a c-fos mRNA study. J Neurochem 93(5):1177–1188. doi:10.1111/j.1471-4159.2005.03100.x PubMedCrossRefGoogle Scholar
  41. Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V, Jacque C (2000) Cytokine signals propagate through the brain. Mol Psychiatry 5(6):604–615PubMedCrossRefGoogle Scholar
  42. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328. doi:10.1038/nprot.2007.44 PubMedCrossRefGoogle Scholar
  43. Wang X, Wang BR, Zhang XJ, Duan XL, Guo X, Ju G (2004) Fos expression in the rat brain after intraperitoneal injection of Staphylococcus enterotoxin B and the effect of vagotomy. Neurochem Res 29(9):1667–1674. doi:10.1023/B:NERE.0000035801.81825.2a PubMedCrossRefGoogle Scholar
  44. Wright CE, Strike PC, Brydon L, Steptoe A (2005) Acute inflammation and negative mood: mediation by cytokine activation. Brain Behav Immun 19(4):345–350. doi:10.1016/j.bbi.2004.10.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Geraldine Prager
    • 1
  • Martin Hadamitzky
    • 1
  • Andrea Engler
    • 1
  • Raphael Doenlen
    • 2
  • Timo Wirth
    • 1
  • Gustavo Pacheco-López
    • 2
  • Ute Krügel
    • 3
  • Manfred Schedlowski
    • 1
  • Harald Engler
    • 1
  1. 1.Institute of Medical Psychology and Behavioral ImmunobiologyUniversity Hospital Essen, University of Duisburg-EssenEssenGermany
  2. 2.Laboratory of Psychology and Behavioral ImmunobiologyInstitute for Behavioral SciencesZurichSwitzerland
  3. 3.Rudolf-Boehm-Institute of Pharmacology and ToxicologyUniversity of LeipzigLeipzigGermany

Personalised recommendations