Journal of Neuroimmune Pharmacology

, Volume 7, Issue 2, pp 363–371

Monocyte Mobilization, Activation Markers, and Unique Macrophage Populations in the Brain: Observations from SIV Infected Monkeys Are Informative with Regard to Pathogenic Mechanisms of HIV Infection in Humans

INVITED REVIEW

Abstract

Non-human primate models of AIDS and neuroAIDS have been useful to study AIDS in humans in general and neuroAIDS in particular. Important information concerning target cells of infection, mechanisms of immune activation and pathology and cell traffic has been made in non-human primate models. To date observations in SIV infected monkey models have predicted or paralleled monocyte/macrophage biology with HIV infection and neuroAIDS. In this brief review we discuss a CD8+ T lymphocyte depletion model of rapid AIDS which results in a high incidence of SIV encephalitis. Specifically we review recent observations we have made using this model concerning monocyte turnover, monocyte/macrophage activation, macrophage derived biomarkers of disease and novel therapeutic approaches to AIDS and CNS pathology. Importantly, all observations made in the rapid model of AIDS discussed here are important and relevant to HIV infection of humans, even in the current era of anti-retroviral therapy that maintains HIV in plasma below the limit of detection.

Keywords

Monocyte Macrophage SIV HIV AIDS neuroAIDS 

References

  1. An P, Bleiber G, Duggal P, Nelson G, May M, Mangeat B, Alobwede I, Trono D, Vlahov D, Donfield S, Goedert JJ, Phair J, Buchbinder S, O’Brien SJ, Telenti A, Winkler CA (2004) APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol 78(20):11070–11076PubMedCrossRefGoogle Scholar
  2. Borda JT, Alvarez X, Mohan M, Hasegawa A, Bernardino A, Jean S, Aye P, Lackner AA (2008) CD163, a marker of perivascular macrophages, is up-regulated by microglia in simian immunodeficiency virus encephalitis after haptoglobin-hemoglobin complex stimulation and is suggestive of breakdown of the blood–brain barrier. Am J Pathol 172(3):725–737. doi:10.2353/ajpath.2008.070848 PubMedCrossRefGoogle Scholar
  3. Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, Alvarez X, Kuroda MJ, Williams KC (2010) Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog 6(4):e1000842PubMedCrossRefGoogle Scholar
  4. Burdo TH, Lentz MR, Autissier P, Krishnan A, Halpern E, Letendre S, Rosenberg ES, Ellis RJ, Williams KC (2011a) Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis 204(1):154–163. doi:10.1093/infdis/jir214 PubMedCrossRefGoogle Scholar
  5. Burdo TH, Lo J, Abbara S, Wei J, Delelys ME, Preffer F, Rosenberg ES, Williams KC, Grinspoon S (2011b) Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J Infect Dis 204(8):1227–1236. doi:10.1093/infdis/jir520 PubMedCrossRefGoogle Scholar
  6. Campbell JH, Burdo TH, Autissier P, Bombardier JP, Westmoreland SV, Soulas C, Gonzalez RG, Ratai EM, Williams KC (2011) Minocycline inhibition of monocyte activation correlates with neuronal protection in SIV neuroAIDS. PLoS One 6(4):e18688. doi:10.1371/journal.pone.0018688 PubMedCrossRefGoogle Scholar
  7. Clements JE, Li M, Gama L, Bullock B, Carruth LM, Mankowski JL, Zink MC (2005) The central nervous system is a viral reservoir in simian immunodeficiency virus-infected macaques on combined antiretroviral therapy: a model for human immunodeficiency virus patients on highly active antiretroviral therapy. J Neurovirol 11(2):180–189. doi:10.1080/13550280590922829 PubMedGoogle Scholar
  8. Dickson DW, Mattiace LA, Kure K, Hutchins K, Lyman WD, Brosnan CF (1991) Microglia in human disease, with an emphasis on acquired immune deficiency syndrome. Lab Invest 64(2):135–156PubMedGoogle Scholar
  9. Droste A, Sorg C, Hogger P (1999) Shedding of CD163, a novel regulatory mechanism for a member of the scavenger receptor cysteine-rich family. Biochem Biophys Res Commun 256(1):110–113. doi:10.1006/bbrc.1999.0294 PubMedCrossRefGoogle Scholar
  10. Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, Collier AC, Gelman B, McArthur J, Morgello S, McCutchan JA, Grant I (2011) CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 25(14):1747–1751. doi:10.1097/QAD.0b013e32834a40cd PubMedCrossRefGoogle Scholar
  11. Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210(2–4):153–160PubMedCrossRefGoogle Scholar
  12. Fabriek BO, Moller HJ, Vloet RP, van Winsen LM, Hanemaaijer R, Teunissen CE, Uitdehaag BM, van den Berg TK, Dijkstra CD (2007) Proteolytic shedding of the macrophage scavenger receptor CD163 in multiple sclerosis. J Neuroimmunol 187(1–2):179–186. doi:10.1016/j.jneuroim.2007.04.016 PubMedCrossRefGoogle Scholar
  13. Fischer-Smith T, Bell C, Croul S, Lewis M, Rappaport J (2008a) Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: lessons from human and nonhuman primate studies. J Neurovirol 14(4):318–326. doi:10.1080/13550280802132857 PubMedCrossRefGoogle Scholar
  14. Fischer-Smith T, Tedaldi EM, Rappaport J (2008b) CD163/CD16 coexpression by circulating monocytes/macrophages in HIV: potential biomarkers for HIV infection and AIDS progression. AIDS Res Hum Retroviruses 24(3):417–421. doi:10.1089/aid.2007.0193 PubMedCrossRefGoogle Scholar
  15. Gaini S, Pedersen SS, Koldkaer OG, Pedersen C, Moestrup SK, Moller HJ (2008) New immunological serum markers in bacteraemia: anti-inflammatory soluble CD163, but not proinflammatory high mobility group-box 1 protein, is related to prognosis. Clin Exp Immunol 151(3):423–431. doi:10.1111/j.1365-2249.2007.03586.x PubMedCrossRefGoogle Scholar
  16. Hasegawa A, Liu H, Ling B, Borda JT, Alvarez X, Sugimoto C, Vinet-Oliphant H, Kim WK, Williams KC, Ribeiro RM, Lackner AA, Veazey RS, Kuroda MJ (2009) The level of monocyte turnover predicts disease progression in the macaque model of AIDS. Blood 114(14):2917–2925. doi:10.1182/blood-2009-02-204263 PubMedCrossRefGoogle Scholar
  17. Hintz KA, Rassias AJ, Wardwell K, Moss ML, Morganelli PM, Pioli PA, Givan AL, Wallace PK, Yeager MP, Guyre PM (2002) Endotoxin induces rapid metalloproteinase-mediated shedding followed by up-regulation of the monocyte hemoglobin scavenger receptor CD163. J Leukoc Biol 72(4):711–717PubMedGoogle Scholar
  18. Hurtrel B, Chakrabarti L, Hurtrel M, Montagnier L (1993) Target cells during early SIV encephalopathy. Res Virol 144(1):41–46PubMedCrossRefGoogle Scholar
  19. Jernigan TL, Archibald SL, Fennema-Notestine C, Taylor MJ, Theilmann RJ, Julaton MD, Notestine RJ, Wolfson T, Letendre SL, Ellis RJ, Heaton RK, Gamst AC, Franklin DR Jr, Clifford DB, Collier AC, Gelman BB, Marra C, McArthur JC, McCutchan JA, Morgello S, Simpson DM, Grant I (2011) Clinical factors related to brain structure in HIV: the CHARTER study. J Neurovirol 17(3):248–257. doi:10.1007/s13365-011-0032-7 PubMedCrossRefGoogle Scholar
  20. Kim WK, Corey S, Alvarez X, Williams K (2003) Monocyte/macrophage traffic in HIV and SIV encephalitis. J Leukoc Biol 74(5):650–656PubMedCrossRefGoogle Scholar
  21. Kim WK, Corey S, Chesney G, Knight H, Klumpp S, Wuthrich C, Letvin N, Koralnik I, Lackner A, Veasey R, Williams K (2004) Identification of T lymphocytes in simian immunodeficiency virus encephalitis: distribution of CD8+ T cells in association with central nervous system vessels and virus. J Neurovirol 10(5):315–325PubMedCrossRefGoogle Scholar
  22. Kim WK, Alvarez X, Fisher J, Bronfin B, Westmoreland S, McLaurin J, Williams K (2006) CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol 168(3):822–834PubMedCrossRefGoogle Scholar
  23. Kim WK, Sun Y, Do H, Autissier P, Halpern EF, Piatak M Jr, Lifson JD, Burdo TH, McGrath MS, Williams K (2009) Monocyte heterogeneity underlying phenotypic changes in monocytes according to SIV disease stage. J Leukoc Biol. doi:10.1189/jlb.0209082
  24. Knudsen TB, Gustafson P, Kronborg G, Kristiansen TB, Moestrup SK, Nielsen JO, Gomes V, Aaby P, Lisse I, Moller HJ, Eugen-Olsen J (2005) Predictive value of soluble haemoglobin scavenger receptor CD163 serum levels for survival in verified tuberculosis patients. Clin Microbiol Infect 11(9):730–735. doi:10.1111/j.1469-0691.2005.01229.x PubMedCrossRefGoogle Scholar
  25. Mankowski JL, Clements JE, Zink MC (2002) Searching for clues: tracking the pathogenesis of human immunodeficiency virus central nervous system disease by use of an accelerated, consistent simian immunodeficiency virus macaque model. J Infect Dis 186(Suppl 2):S199–S208. doi:10.1086/344938 PubMedCrossRefGoogle Scholar
  26. Moller HJ, Peterslund NA, Graversen JH, Moestrup SK (2002) Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. Blood 99(1):378–380PubMedCrossRefGoogle Scholar
  27. Moller HJ, de Fost M, Aerts H, Hollak C, Moestrup SK (2004) Plasma level of the macrophage-derived soluble CD163 is increased and positively correlates with severity in Gaucher’s disease. Eur J Haematol 72(2):135–139. doi:10.1046/j.0902-4441.2003.00193.x PubMedCrossRefGoogle Scholar
  28. Moller HJ, Moestrup SK, Weis N, Wejse C, Nielsen H, Pedersen SS, Attermann J, Nexo E, Kronborg G (2006) Macrophage serum markers in pneumococcal bacteremia: Prediction of survival by soluble CD163. Crit Care Med 34(10):2561–2566. doi:10.1097/01.CCM.0000239120.32490.AB PubMedCrossRefGoogle Scholar
  29. Peng G, Greenwell-Wild T, Nares S, Jin W, Lei KJ, Rangel ZG, Munson PJ, Wahl SM (2007) Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110(1):393–400PubMedCrossRefGoogle Scholar
  30. Ratai EM, Annamalai L, Burdo T, Joo CG, Bombardier JP, Fell R, Hakimelahi R, He J, Lentz MR, Campbell J, Curran E, Halpern EF, Masliah E, Westmoreland SV, Williams KC, Gonzalez RG (2011a) Brain creatine elevation and N-acetylaspartate reduction indicates neuronal dysfunction in the setting of enhanced glial energy metabolism in a macaque model of NeuroAIDS. Magn Reson Med. doi:10.1002/mrm.22821
  31. Ratai EM, Bombardier JP, Joo CG, Annamalai L, Burdo TH, Campbell J, Fell R, Hakimelahi R, He J, Autissier P, Lentz MR, Halpern EF, Masliah E, Williams KC, Westmoreland SV, Gonzalez RG (2011b) Proton magnetic resonance spectroscopy reveals neuroprotection by oral minocycline in a nonhuman primate model of accelerated NeuroAIDS. PLoS One 5(5):e10523. doi:10.1371/journal.pone.0010523 CrossRefGoogle Scholar
  32. Ratai EM, Pilkenton S, He J, Fell R, Bombardier JP, Joo CG, Lentz MR, Kim WK, Burdo TH, Autissier P, Annamalai L, Curran E, O’Neil SP, Westmoreland SV, Williams KC, Masliah E, Gilberto Gonzalez R (2011c) CD8(+) lymphocyte depletion without SIV infection does not produce metabolic changes or pathological abnormalities in the rhesus macaque brain. J Med Primatol. doi:10.1111/j.1600-0684.2011.00475.x
  33. Roberts ES, Masliah E, Fox HS (2004) CD163 identifies a unique population of ramified microglia in HIV encephalitis (HIVE). J Neuropathol Exp Neurol 63(12):1255–1264PubMedGoogle Scholar
  34. Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, Lifton MA, Racz P, Tenner-Racz K, Dalesandro M, Scallon BJ, Ghrayeb J, Forman MA, Montefiori DC, Rieber EP, Letvin NL, Reimann KA (1999a) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283(5403):857–860PubMedCrossRefGoogle Scholar
  35. Schmitz JE, Simon MA, Kuroda MJ, Lifton MA, Ollert MW, Vogel CW, Racz P, Tenner-Racz K, Scallon BJ, Dalesandro M, Ghrayeb J, Rieber EP, Sasseville VG, Reimann KA (1999b) A nonhuman primate model for the selective elimination of CD8+ lymphocytes using a mouse-human chimeric monoclonal antibody. Am J Pathol 154(6):1923–1932PubMedCrossRefGoogle Scholar
  36. Schmitz JE, Johnson RP, McClure HM, Manson KH, Wyand MS, Kuroda MJ, Lifton MA, Khunkhun RS, McEvers KJ, Gillis J, Piatak M, Lifson JD, Grosschupff G, Racz P, Tenner-Racz K, Rieber EP, Kuus-Reichel K, Gelman RS, Letvin NL, Montefiori DC, Ruprecht RM, Desrosiers RC, Reimann KA (2005) Effect of CD8+ lymphocyte depletion on virus containment after simian immunodeficiency virus SIVmac251 challenge of live attenuated SIVmac239delta3-vaccinated rhesus macaques. J Virol 79(13):8131–8141PubMedCrossRefGoogle Scholar
  37. Soulas C, Donahue RE, Dunbar CE, Persons DA, Alvarez X, Williams KC (2009) Genetically modified CD34+ hematopoietic stem cells contribute to turnover of brain perivascular macrophages in long-term repopulated primates. Am J Pathol 174(5):1808–1817. doi:10.2353/ajpath.2009.081010 PubMedCrossRefGoogle Scholar
  38. Soulas C, Conerly C, Kim WK, Burdo TH, Alvarez X, Lackner AA, Williams KC (2011) Recently infiltrating MAC387(+) monocytes/macrophages a third macrophage population involved in SIV and HIV encephalitic lesion formation. Am J Pathol 178(5):2121–2135. doi:10.1016/j.ajpath.2011.01.023 PubMedCrossRefGoogle Scholar
  39. Strickland SL, Gray RR, Lamers SL, Burdo TH, Huenink E, Nolan DJ, Nowlin B, Alvarez X, Midkiff CC, Goodenow MM, Williams K, Salemi M (2011) Significant genetic heterogeneity of the SIVmac251 viral swarm derived from different sources. AIDS Res Hum Retroviruses. doi:10.1089/AID.2011.0100
  40. Weaver LK, Hintz-Goldstein KA, Pioli PA, Wardwell K, Qureshi N, Vogel SN, Guyre PM (2006) Pivotal advance: activation of cell surface Toll-like receptors causes shedding of the hemoglobin scavenger receptor CD163. J Leukoc Biol 80(1):26–35. doi:10.1189/jlb.1205756 PubMedCrossRefGoogle Scholar
  41. Weaver LK, Pioli PA, Wardwell K, Vogel SN, Guyre PM (2007) Up-regulation of human monocyte CD163 upon activation of cell-surface Toll-like receptors. J Leukoc Biol 81(3):663–671. doi:10.1189/jlb.0706428 PubMedCrossRefGoogle Scholar
  42. Westmoreland SV, Halpern E, Lackner AA (1998) Simian immunodeficiency virus encephalitis in rhesus macaques is associated with rapid disease progression. J Neurovirol 4(3):260–268PubMedCrossRefGoogle Scholar
  43. Williams KC, Hickey WF (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25:537–562PubMedCrossRefGoogle Scholar
  44. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193(8):905–915PubMedCrossRefGoogle Scholar
  45. Williams K, Westmoreland S, Greco J, Ratai E, Lentz M, Kim WK, Fuller RA, Kim JP, Autissier P, Sehgal PK, Schinazi RF, Bischofberger N, Piatak M, Lifson JD, Masliah E, Gonzalez RG (2005) Magnetic resonance spectroscopy reveals that activated monocytes contribute to neuronal injury in SIV neuroAIDS. J Clin Invest 115(9):2534–2545PubMedCrossRefGoogle Scholar
  46. Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak M Jr, Spelman JP, Carter DL, Adams RJ, Lifson JD, Clements JE (1999) High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol 73(12):10480–10488PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiologyBoston CollegeChestnut HillUSA

Personalised recommendations