Journal of Neuroimmune Pharmacology

, Volume 7, Issue 1, pp 231–242 | Cite as

[11C]DAC-PET for Noninvasively Monitoring Neuroinflammation and Immunosuppressive Therapy Efficacy in Rat Experimental Autoimmune Encephalomyelitis Model

  • Lin Xie
  • Tomoteru Yamasaki
  • Naotsugu Ichimaru
  • Joji Yui
  • Kazunori Kawamura
  • Katsushi Kumata
  • Akiko Hatori
  • Norio Nonomura
  • Ming-Rong Zhang
  • Xiao-Kang Li
  • Shiro Takahara
ORIGINAL ARTICLE

Abstract

Neuroimaging measures have potential for monitoring neuroinflammation to guide treatment before the occurrence of significant functional impairment or irreversible neuronal damage in multiple sclerosis (MS). N-Benzyl-N-methyl-2-(7-[11C]methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl) acetamide ([11C]DAC), a new developed positron emission tomography (PET) probe for translocator protein 18 kDa (TSPO), has been adopted to evaluate the neuroinflammation and treatment effects of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. [11C]DAC-PET enabled visualization of neuroinflammation lesion of EAE by tracing TSPO expression in the spinal cords; the maximal uptake value reached in day 11 and 20 EAE rats with profound inflammatory cell infiltration compared with control, day 0 and 60 EAE rats. Biodistribution studies and in vitro autoradiography confirmed these in vivo imaging results. Doubling immunohistochemical studies showed the infiltration and expansion of CD4+ T cells and CD11b+ microglia; CD68+ macrophages were responsible for the increased TSPO levels visualized by [11C]DAC-PET. Furthermore, mRNA level analysis of the cytokines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) revealed that TSPO+/CD4 T cells, TSPO+ microglia and TSPO+ macrophages in EAE spinal cords were activated and secreted multiple proinflammation cytokines to mediate inflammation lesions of EAE. EAE rats treated with an immunosuppressive agent: 2-amino-2-[2-(4-octylphenyl)ethyl] propane-1,3-diolhydrochloride (FTY720), which exhibited an absence of inflammatory cell infiltrates, displaying a faint radioactive signal compared with the high accumulation of untreated EAE rats. These results indicated that [11C] DAC-PET imaging is a sensitive tool for noninvasively monitoring the neuroinflammation response and evaluating therapeutic interventions in EAE.

Keywords

Neuroinflammation Multiple sclerosis Experimental autoimmune encephalomyelitis Positron emission tomography Translocator protein 18 kDa T cells Microglia Macrophage 

Notes

Acknowledgements

The authors are grateful to Dr. M. Higuchi for the gift of antibody NP155 and Dr. H. Kimura for his critical comments and useful suggestions. We also thank the staff of the National Institute of Radiological Sciences for support with the cyclotron operation, radioisotope production, radiosynthesis, and animal experiments. This study was supported by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants-in-Aid 20390349, 21659310), and in part by the Japan China Medical Association.

Conflicts of interest

The authors declare no competing financial interests.

References

  1. Agnello D, Carvelli L, Muzio V, Villa P, Bottazzi B, Polentarutti N, Mennini T, Mantovani A, Ghezzi P (2000) Increased peripheral benzodiazepine binding sites and pentraxin 3 expression in the spinal cord during EAE: relation to inflammatory cytokines and modulation by dexamethasone and rolipram. J Neuroimmunol 109:105–111PubMedCrossRefGoogle Scholar
  2. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11):2321–2337PubMedCrossRefGoogle Scholar
  3. Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22:1852–1856PubMedCrossRefGoogle Scholar
  4. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467PubMedCrossRefGoogle Scholar
  5. Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B (2008) Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 35:2304–2319PubMedCrossRefGoogle Scholar
  6. Chauveau F, Van Camp N, Dolle F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M, Kassiou M, Tavitian B (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50:468–476PubMedCrossRefGoogle Scholar
  7. Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118:1–17PubMedCrossRefGoogle Scholar
  8. Chen MK, Baidoo K, Verina T, Guilarte TR (2004) Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain 127:1379–1392PubMedCrossRefGoogle Scholar
  9. Chen J, Xie L, Toyama S, Hunig T, Takahara S, Li XK, Zhong L (2011) The effects of Foxp3-expressing regulatory T cells expanded with CD28 superagonist antibody in DSS-induced mice colitis. Int Immunopharmacol 11:610–617PubMedCrossRefGoogle Scholar
  10. Choi HB, Khoo C, Ryu JK, van Breemen E, Kim SU, McLarnon JG (2002) Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195. J Neurochem 83:546–555PubMedCrossRefGoogle Scholar
  11. Chun J, Hartung HP (2010) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33:91–101PubMedCrossRefGoogle Scholar
  12. Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2003) PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur J Neurol 10:257–264PubMedCrossRefGoogle Scholar
  13. Disanto G, Berlanga AJ, Handel AE, Para AE, Burrell AM, Fries A, Handunnetthi L, De Luca GC, Morahan JM (2010) Heterogeneity in multiple sclerosis: scratching the surface of a complex disease. Autoimmune Dis 2011:932351PubMedGoogle Scholar
  14. Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348PubMedCrossRefGoogle Scholar
  15. El-behi M, Rostami A, Ciric B (2010) Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 5:189–197PubMedCrossRefGoogle Scholar
  16. Folkersma H, Boellaard R, Vandertop WP, Kloet RW, Lubberink M, Lammertsma AA, van Berckel BN (2009) Reference tissue models and blood-brain barrier disruption: lessons from (R)-[11C]PK11195 in traumatic brain injury. J Nucl Med 50:1975–1979PubMedCrossRefGoogle Scholar
  17. Fox RJ, Cohen JA (2001) Multiple sclerosis: the importance of early recognition and treatment. Cleve Clin J Med 68:157–171PubMedGoogle Scholar
  18. Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, Nozaki S, Takano A, Kosaka J, Zhang MR, Nakao R, Suzuki K, Kato N, Ito H (2006) Quantitative analyses of 18F-FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. J Nucl Med 47:43–50PubMedGoogle Scholar
  19. Fujino M, Funeshima N, Kitazawa Y, Kimura H, Amemiya H, Suzuki S, Li XK (2003) Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 305:70–77PubMedCrossRefGoogle Scholar
  20. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412PubMedCrossRefGoogle Scholar
  21. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934PubMedCrossRefGoogle Scholar
  22. Goertsches R, Serrano-Fernandez P, Moller S, Koczan D, Zettl UK (2006) Multiple sclerosis therapy monitoring based on gene expression. Curr Pharm Des 12:3761–3779PubMedCrossRefGoogle Scholar
  23. Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971PubMedCrossRefGoogle Scholar
  24. Hartung HP (2005) Early treatment and dose optimisation BENEFIT and BEYOND. J Neurol 252(Suppl 3):iii44–iii50PubMedCrossRefGoogle Scholar
  25. Heesen C, Solari A, Giordano A, Kasper J, Kopke S (2010) Decisions on multiple sclerosis immunotherapy: New treatment complexities urge patient engagement. J Neurol Sci: [Epub ahead of print]Google Scholar
  26. James ML, Selleri S, Kassiou M (2006) Development of ligands for the peripheral benzodiazepine receptor. Curr Med Chem 13:1991–2001PubMedCrossRefGoogle Scholar
  27. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, Zhang MR, Suzuki K, Ando K, Staufenbiel M, Trojanowski JQ, Lee VM, Higuchi M, Suhara T (2008) Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer’s and other CNS pathologies. J Neurosci 28:12255–12267PubMedCrossRefGoogle Scholar
  28. Kalkers NF, Vrenken H, Uitdehaag BM, Polman CH, Barkhof F (2002) Brain atrophy in multiple sclerosis: impact of lesions and of damage of whole brain tissue. Mult Scler 8:410–414PubMedCrossRefGoogle Scholar
  29. Martin R, Sturzebecher CS, McFarland HF (2001) Immunotherapy of multiple sclerosis: where are we? Where should we go? Nat Immunol 2:785–788PubMedCrossRefGoogle Scholar
  30. McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919PubMedCrossRefGoogle Scholar
  31. Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28:454–467PubMedCrossRefGoogle Scholar
  32. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409PubMedCrossRefGoogle Scholar
  33. Papadopoulos D, Rundle J, Patel R, Marshall I, Stretton J, Eaton R, Richardson JC, Gonzalez MI, Philpott KL, Reynolds R (2010) FTY720 ameliorates MOG-induced experimental autoimmune encephalomyelitis by suppressing both cellular and humoral immune responses. J Neurosci Res 88:346–359PubMedCrossRefGoogle Scholar
  34. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643PubMedCrossRefGoogle Scholar
  35. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71PubMedCrossRefGoogle Scholar
  36. Rey C, Mauduit C, Naureils O, Benahmed M, Louisot P, Gasnier F (2000) Up-regulation of mitochondrial peripheral benzodiazepine receptor expression by tumor necrosis factor alpha in testicular leydig cells. Possible involvement in cell survival. Biochem Pharmacol 60:1639–1646PubMedCrossRefGoogle Scholar
  37. Rivera VM (2001) Pharmacologic treatment of multiple sclerosis. Rev Neurol 32:285–288PubMedGoogle Scholar
  38. Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764PubMedCrossRefGoogle Scholar
  39. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14:337–342PubMedCrossRefGoogle Scholar
  40. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766PubMedCrossRefGoogle Scholar
  41. Thiel A, Radlinska BA, Paquette C, Sidel M, Soucy JP, Schirrmacher R, Minuk J (2010) The temporal dynamics of poststroke neuroinflammation: a longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke. J Nucl Med 51:1404–1412PubMedCrossRefGoogle Scholar
  42. Toyama H, Hatano K, Suzuki H, Ichise M, Momosaki S, Kudo G, Ito F, Kato T, Yamaguchi H, Katada K, Sawada M, Ito K (2008) In vivo imaging of microglial activation using a peripheral benzodiazepine receptor ligand: [11C]PK-11195 and animal PET following ethanol injury in rat striatum. Ann Nucl Med 22:417–424PubMedCrossRefGoogle Scholar
  43. Trincavelli ML, Marselli L, Falleni A, Gremigni V, Ragge E, Dotta F, Santangelo C, Marchetti P, Lucacchini A, Martini C (2002) Upregulation of mitochondrial peripheral benzodiazepine receptor expression by cytokine-induced damage of human pancreatic islets. J Cell Biochem 84:636–644PubMedCrossRefGoogle Scholar
  44. van der Laken CJ, Elzinga EH, Kropholler MA, Molthoff CF, van der Heijden JW, Maruyama K, Boellaard R, Dijkmans BA, Lammertsma AA, Voskuyl AE (2008) Noninvasive imaging of macrophages in rheumatoid synovitis using 11C-(R)-PK11195 and positron emission tomography. Arthritis Rheum 58:3350–3355PubMedCrossRefGoogle Scholar
  45. Venneti S, Lopresti BJ, Wiley CA (2006) The peripheral benzodiazepine receptor (Translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol 80:308–322PubMedCrossRefGoogle Scholar
  46. Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, Fischer ML, Larsen NJ, Mortimer AD, Hastings TG, Smith AD, Zigmond MJ, Suhara T, Higuchi M, Wiley CA (2007) A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 102:2118–2131PubMedCrossRefGoogle Scholar
  47. Wilms H, Claasen J, Rohl C, Sievers J, Deuschl G, Lucius R (2003) Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: evidence from activated microglial cells in vitro. Neurobiol Dis 14:417–424PubMedCrossRefGoogle Scholar
  48. Xie L, Li XK, Funeshima-Fuji N, Kimura H, Matsumoto Y, Isaka Y, Takahara S (2009) Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 9:575–581PubMedCrossRefGoogle Scholar
  49. Yamasaki T, Koike S, Hatori A, Yanamoto K, Kawamura K, Yui J, Kumata K, Ando K, Zhang MR (2010) Imaging of peripheral-type benzodiazepine receptor in tumor: carbon ion irradiation reduced the uptake of a positron emission tomography ligand [11C]DAC in tumor. J Radiat Res (Tokyo) 51:57–65CrossRefGoogle Scholar
  50. Yanamoto K, Yamasaki T, Kumata K, Yui J, Odawara C, Kawamura K, Hatori A, Inoue O, Yamaguchi M, Suzuki K, Zhang MR (2009) Evaluation of N-benzyl-N-[11C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([11C]DAC) as a novel translocator protein (18 kDa) radioligand in kainic acid-lesioned rat. Synapse 63:961–971PubMedCrossRefGoogle Scholar
  51. Yanamoto K, Kumata K, Fujinaga M, Nengaki N, Takei M, Wakizaka H, Hosoi R, Momosaki S, Yamasaki T, Yui J, Kawamura K, Hatori A, Inoue O, Zhang MR (2010) In vivo imaging and quantitative analysis of TSPO in rat peripheral tissues using small-animal PET with [18F]FEDAC. Nucl Med Biol 37:853–860PubMedCrossRefGoogle Scholar
  52. Yui J, Hatori A, Yanamoto K, Takei M, Nengaki N, Kumata K, Kawamura K, Yamasaki T, Suzuki K, Zhang MR (2010) Imaging of the translocator protein (18 kDa) in rat brain after ischemia using [11C]DAC with ultra-high specific activity. Synapse 64:488–493PubMedCrossRefGoogle Scholar
  53. Yui J, Hatori A, Kawamura K, Yanamoto K, Yamasaki T, Ogawa M, Yoshida Y, Kumata K, Fujinaga M, Nengaki N, Fukumura T, Suzuki K, Zhang MR (2011) Visualization of early infarction in rat brain after ischemia using a translocator protein (18 kDa) PET ligand [11C]DAC with ultra-high specific activity. Neuroimage 54:123–130PubMedCrossRefGoogle Scholar
  54. Zhang MR, Kumata K, Maeda J, Haradahira T, Noguchi J, Suhara T, Halldin C, Suzuki K (2007a) N-(5-Fluoro-2-phenoxyphenyl)-N-(2-[(131)I]iodo-5-me thoxybenzyl)acetamide: a potent iodinated radioligand for the peripheral-type benzodiazepine receptor in brain. J Med Chem 50:848–855PubMedCrossRefGoogle Scholar
  55. Zhang MR, Kumata K, Maeda J, Yanamoto K, Hatori A, Okada M, Higuchi M, Obayashi S, Suhara T, Suzuki K (2007b) 11C-AC-5216: a novel PET ligand for peripheral benzodiazepine receptors in the primate brain. J Nucl Med 48:1853–1861PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lin Xie
    • 1
    • 2
  • Tomoteru Yamasaki
    • 3
    • 4
  • Naotsugu Ichimaru
    • 5
  • Joji Yui
    • 3
  • Kazunori Kawamura
    • 3
  • Katsushi Kumata
    • 3
  • Akiko Hatori
    • 3
  • Norio Nonomura
    • 5
  • Ming-Rong Zhang
    • 3
  • Xiao-Kang Li
    • 1
  • Shiro Takahara
    • 2
  1. 1.Division of Radiation Safety and Immune ToleranceNational Research Institute for Child Health and DevelopmentTokyoJapan
  2. 2.Department of Advanced Technology for TransplantationOsaka University Graduate School of MedicineOsakaJapan
  3. 3.Department of Molecular Probes, Molecular Imaging CenterNational Institute of Radiological SciencesChibaJapan
  4. 4.Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  5. 5.Department of UrologyOsaka University Graduate School of MedicineOsakaJapan

Personalised recommendations