Advertisement

Journal of Neuroimmune Pharmacology

, Volume 7, Issue 1, pp 74–94 | Cite as

Mechanisms of Dendritic Cell Trafficking Across the Blood–brain Barrier

  • Divya Sagar
  • Catherine Foss
  • Rasha El Baz
  • Martin G. Pomper
  • Zafar K. Khan
  • Pooja JainEmail author
INVITED REVIEW

Abstract

Although the central nervous system (CNS) is considered to be an immunoprivileged site, it is susceptible to a host of autoimmune as well as neuroinflammatory disorders owing to recruitment of immune cells across the blood–brain barrier into perivascular and parenchymal spaces. Dendritic cells (DCs), which are involved in both primary and secondary immune responses, are the most potent immune cells in terms of antigen uptake and processing as well as presentation to T cells. In light of the emerging importance of DC traficking into the CNS, these cells represent good candidates for targeted immunotherapy against various neuroinflammatory diseases. This review focuses on potential physiological events and receptor interactions between DCs and the microvascular endothelial cells of the brain as they transmigrate into the CNS during degeneration and injury. A clear understanding of the underlying mechanisms involved in DC migration may advance the development of new therapies that manipulate these mechanistic properties via pharmacologic intervention. Furthermore, therapeutic validation should be in concurrence with the molecular imaging techniques that can detect migration of these cells in vivo. Since the use of noninvasive methods to image migration of DCs into CNS has barely been explored, we highlighted potential molecular imaging techniques to achieve this goal. Overall, information provided will bring this important leukocyte population to the forefront as key players in the immune cascade in the light of the emerging contribution of DCs to CNS health and disease.

Keywords

Dendritic cell trafficking Lectins and integrins Blood–brain barrier Molecular imaging Neuroinflammation Microvascular endothelial cells 

Abbreviations

APC

antigen presenting cell

DC

dendritic cell

CNS

central nervous system

CLN

cervical lymph node

CSF

cerebrospinal fluid

BBB

blood-brain barrier

ECM

extracellular matrix

EAE

experimental autoimmune encephalomyelitis

FION

ferrimagnetic iron oxide nanocubes

HEV

high endothelial venule

HIVE

HIV encephalopathy

HSV-1

herpes simplex virus-1

ICAM

intracellular cell adhesion molecule

IFN-γ

interferon-γ

IL-1β

interleukin-1β

JAM

junctional adhesion molecule

LCMV

lymphocytic choriomeningitis virus

LFA

lymphocyte function-associated antigen

MCP

monocyte chemotactic protein

MIP

macrophage inflammatory protein

MVEC

microvascular endothelial cell

MS

multiple sclerosis

MRI

magnetic resonance imaging

NIR

near infrared

PECAM

platelet endothelial cell adhesion molecule

PET

positron emission tomography

PFC

perfluorocarbons

PSGL

P-selectin glycoprotein ligand

RANTES

regulated upon activation, normal T-cell expressed and secreted

SCI

spinal cord injury

SDF-1

stromal-derived factor-1

SGPG

sulfoglucuronosyl paragloboside

SPECT

single photon emission computed tomography

TJ

tight junction

TNF-α

tumor necrosis factor-α

VCAM

vascular cell adhesion molecule

VLA

very late antigen

ZO

zona occludens

Notes

Acknowledgements

Authors wish to acknowledge United States Public Health Service/National Institutes of Health grants R01 AI077414 to PJ and R21 AI 093172–01 to ZKK.

Authors declare no conflict of interest

References

  1. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638PubMedCrossRefGoogle Scholar
  2. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25PubMedCrossRefGoogle Scholar
  3. Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169:1–11PubMedCrossRefGoogle Scholar
  4. Alt C, Laschinger M, Engelhardt B (2002) Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 32:2133–2144PubMedCrossRefGoogle Scholar
  5. Alvarez JI, Cayrol R, Prat A (2011) Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 1812:252–264PubMedGoogle Scholar
  6. Ambrosini E, Columba-Cabezas S, Serafini B, Muscella A, Aloisi F (2003) Astrocytes are the major intracerebral source of macrophage inflammatory protein-3alpha/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia 41:290–300PubMedCrossRefGoogle Scholar
  7. Ambrosini E, Remoli ME, Giacomini E, Rosicarelli B, Serafini B, Lande R, Aloisi F, Coccia EM (2005) Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J Neuropathol Exp Neurol 64:706–715PubMedCrossRefGoogle Scholar
  8. Anderson SA, Shukaliak-Quandt J, Jordan EK, Arbab AS, Martin R, McFarland H, Frank JA (2004) Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol 55:654–659PubMedCrossRefGoogle Scholar
  9. Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86:4544–4548PubMedCrossRefGoogle Scholar
  10. Arjmandi A, Liu K, Dorovini-Zis K (2009) Dendritic cell adhesion to cerebral endothelium: role of endothelial cell adhesion molecules and their ligands. J Neuropathol Exp Neurol 68:300–313PubMedCrossRefGoogle Scholar
  11. Austyn JM, Kupiec-Weglinski JW, Hankins DF, Morris PJ (1988) Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone. J Exp Med 167:646–651 PubMedCrossRefGoogle Scholar
  12. Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23:7922–7930PubMedGoogle Scholar
  13. Baeten K, Adriaensens P, Hendriks J, Theunissen E, Gelan J, Hellings N, Stinissen P (2010) Tracking of myelin-reactive T cells in experimental autoimmune encephalomyelitis (EAE) animals using small particles of iron oxide and MRI. NMR Biomed 23:601–609PubMedCrossRefGoogle Scholar
  14. Bailey SL, Schreiner B, McMahon EJ, Miller SD (2007) CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol 8:172–180PubMedCrossRefGoogle Scholar
  15. Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 53:637–644PubMedCrossRefGoogle Scholar
  16. Balagopalan L, Sherman E, Barr VA, Samelson LE (2011) Imaging techniques for assaying lymphocyte activation in action. Nat Rev Immunol 11:21–33PubMedCrossRefGoogle Scholar
  17. Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, De Silva S, Allt G (2001) Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol 30:35–44PubMedCrossRefGoogle Scholar
  18. Barkalow FJ, Goodman MJ, Mayadas TN (1996) Cultured murine cerebral microvascular endothelial cells contain von Willebrand factor-positive Weibel-Palade bodies and support rapid cytokine-induced neutrophil adhesion. Microcirculation 3:19–28PubMedCrossRefGoogle Scholar
  19. Barratt-Boyes SM, Zimmer MI, Harshyne LA, Meyer EM, Watkins SC, Capuano S 3rd, Murphey-Corb M, Falo LD Jr, Donnenberg AD (2000) Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. J Immunol 164:2487–2495PubMedGoogle Scholar
  20. Bevilacqua MP, Nelson RM (1993) Selectins. J Clin Invest 91:379–387PubMedCrossRefGoogle Scholar
  21. Bianchi G, D’Amico G, Varone L, Sozzani S, Mantovani A, Allavena P (2000) In vitro studies on the trafficking of dendritic cells through endothelial cells and extra-cellular matrix. Dev Immunol 7:143–153PubMedCrossRefGoogle Scholar
  22. Biber K, Sauter A, Brouwer N, Copray SC, Boddeke HW (2001) Ischemia-induced neuronal expression of the microglia attracting chemokine Secondary Lymphoid-tissue Chemokine (SLC). Glia 34:121–133PubMedCrossRefGoogle Scholar
  23. Bigelow CE, Conover DL, Foster TH (2003) Confocal fluorescence spectroscopy and anisotropy imaging system. Opt Lett 28:695–697PubMedCrossRefGoogle Scholar
  24. Bonfanti R, Furie BC, Furie B, Wagner DD (1989) PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood 73:1109–1112PubMedGoogle Scholar
  25. Boven LA, Montagne L, Nottet HS, De Groot CJ (2000) Macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin Exp Immunol 122:257–263PubMedCrossRefGoogle Scholar
  26. Britschgi MR, Favre S, Luther SA (2010) CCL21 is sufficient to mediate DC migration, maturation and function in the absence of CCL19. Eur J Immunol 40:1266–1271PubMedCrossRefGoogle Scholar
  27. Brown KA, Bedford P, Macey M, McCarthy DA, Leroy F, Vora AJ, Stagg AJ, Dumonde DC, Knight SC (1997) Human blood dendritic cells: binding to vascular endothelium and expression of adhesion molecules. Clin Exp Immunol 107:601–607PubMedCrossRefGoogle Scholar
  28. Brown PD, Davies SL, Speake T, Millar ID (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957–970PubMedCrossRefGoogle Scholar
  29. Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW (2011) Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 267:109–123PubMedCrossRefGoogle Scholar
  30. Burns S, Hardy SJ, Buddle J, Yong KL, Jones GE, Thrasher AJ (2004) Maturation of DC is associated with changes in motile characteristics and adherence. Cell Motil Cytoskeleton 57:118–132PubMedCrossRefGoogle Scholar
  31. Caminschi I, Lahoud MH, Shortman K (2009) Enhancing immune responses by targeting antigen to DC. Eur J Immunol 39:931–938PubMedCrossRefGoogle Scholar
  32. Cannella B, Cross AH, Raine CS (1991) Relapsing autoimmune demyelination: a role for vascular addressins. J Neuroimmunol 35:295–300PubMedCrossRefGoogle Scholar
  33. Carrithers MD, Visintin I, Kang SJ, Janeway CA Jr (2000) Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123(Pt 6):1092–1101PubMedCrossRefGoogle Scholar
  34. Castro O, Nesbitt AE, Lyles D (1984) Effect of a perfluorocarbon emulsion (Fluosol-DA) on reticuloendothelial system clearance function. Am J Hematol 16:15–21PubMedCrossRefGoogle Scholar
  35. Cavanagh LL, Weninger W (2008) Dendritic cell behaviour in vivo: lessons learned from intravital two-photon microscopy. Immunol Cell Biol 86:428–438PubMedCrossRefGoogle Scholar
  36. Celli S, Breart B, Bousso P (2008) Intravital two-photon imaging of natural killer cells and dendritic cells in lymph nodes. Methods Mol Biol 415:119–126PubMedCrossRefGoogle Scholar
  37. Cera MR, Del Prete A, Vecchi A, Corada M, Martin-Padura I, Motoike T, Tonetti P, Bazzoni G, Vermi W, Gentili F, Bernasconi S, Sato TN, Mantovani A, Dejana E (2004) Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J Clin Invest 114:729–738PubMedGoogle Scholar
  38. Chen CJ, Ou YC, Chang CY, Pan HC, Liao SL, Raung SL, Chen SY (2011) TNF-alpha and IL-1beta mediate Japanese encephalitis virus-induced RANTES gene expression in astrocytes. Neurochem Int 58:234–242PubMedCrossRefGoogle Scholar
  39. Chui R, Dorovini-Zis K (2010) Regulation of CCL2 and CCL3 expression in human brain endothelial cells by cytokines and lipopolysaccharide. J Neuroinflammation 7:1PubMedCrossRefGoogle Scholar
  40. Ciavarra RP, Stephens A, Nagy S, Sekellick M, Steel C (2006) Evaluation of immunological paradigms in a virus model: are dendritic cells critical for antiviral immunity and viral clearance? J Immunol 177:492–500PubMedGoogle Scholar
  41. Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F (2003) Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 13:38–51PubMedCrossRefGoogle Scholar
  42. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95:3117–3121PubMedCrossRefGoogle Scholar
  43. Corot C, Petry KG, Trivedi R, Saleh A, Jonkmanns C, Le Bas JF, Blezer E, Rausch M, Brochet B, Foster-Gareau P, Baleriaux D, Gaillard S, Dousset V (2004) Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 39:619–625PubMedCrossRefGoogle Scholar
  44. Crone C, Christensen O (1981) Electrical resistance of a capillary endothelium. J Gen Physiol 77:349–371PubMedCrossRefGoogle Scholar
  45. Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P, Wright M, McCandless EE, Patel JR, Luker GD, Littman DR, Russell JH, Klein RS (2011) CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med 208:327–339PubMedCrossRefGoogle Scholar
  46. Cummings RJ, Mitra S, Lord EM, Foster TH (2008) Antibody-labeled fluorescence imaging of dendritic cell populations in vivo. J Biomed Opt 13:044041PubMedCrossRefGoogle Scholar
  47. D’Amico G, Bianchi G, Bernasconi S, Bersani L, Piemonti L, Sozzani S, Mantovani A, Allavena P (1998) Adhesion, transendothelial migration, and reverse transmigration of in vitro cultured dendritic cells. Blood 92:207–214PubMedGoogle Scholar
  48. Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 17:346–349PubMedCrossRefGoogle Scholar
  49. Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, Achim CL (1999) Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol 155:1915–1927PubMedCrossRefGoogle Scholar
  50. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566PubMedCrossRefGoogle Scholar
  51. Diab A, Abdalla H, Li HL, Shi FD, Zhu J, Hojberg B, Lindquist L, Wretlind B, Bakhiet M, Link H (1999) Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect Immun 67:2590–2601PubMedGoogle Scholar
  52. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C (1998) Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188:373–386PubMedCrossRefGoogle Scholar
  53. Dore-Duffy P, Balabanov R, Washington R, Swanborg RH (1994) Transforming growth factor beta 1 inhibits cytokine-induced CNS endothelial cell activation. Mol Chem Neuropathol 22:161–175PubMedCrossRefGoogle Scholar
  54. Doring A, Wild M, Vestweber D, Deutsch U, Engelhardt B (2007) E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice. J Immunol 179:8470–8479PubMedGoogle Scholar
  55. dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J (2005) CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis–an intravital microscopy study. J Neuroimmunol 162:122–129PubMedCrossRefGoogle Scholar
  56. Dos Santos AC, Roffe E, Arantes RM, Juliano L, Pesquero JL, Pesquero JB, Bader M, Teixeira MM, Carvalho-Tavares J (2008) Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice. J Neuroinflammation 5:49PubMedCrossRefGoogle Scholar
  57. Duijvestijn AM, Horst E, Pals ST, Rouse BN, Steere AC, Picker LJ, Meijer CJ, Butcher EC (1988) High endothelial differentiation in human lymphoid and inflammatory tissues defined by monoclonal antibody HECA-452. Am J Pathol 130:147–155PubMedGoogle Scholar
  58. Engelhardt B, Vestweber D, Hallmann R, Schulz M (1997) E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90:4459–4472PubMedGoogle Scholar
  59. Engelhardt B, Kempe B, Merfeld-Clauss S, Laschinger M, Furie B, Wild MK, Vestweber D (2005) P-selectin glycoprotein ligand 1 is not required for the development of experimental autoimmune encephalomyelitis in SJL and C57BL/6 mice. J Immunol 175:1267–1275PubMedGoogle Scholar
  60. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26:1098–1106PubMedCrossRefGoogle Scholar
  61. Fabry Z, Fitzsimmons KM, Herlein JA, Moninger TO, Dobbs MB, Hart MN (1993a) Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J Neuroimmunol 47:23–34PubMedCrossRefGoogle Scholar
  62. Fabry Z, Sandor M, Gajewski TF, Herlein JA, Waldschmidt MM, Lynch RG, Hart MN (1993b) Differential activation of Th1 and Th2 CD4+ cells by murine brain microvessel endothelial cells and smooth muscle/pericytes. J Immunol 151:38–47PubMedGoogle Scholar
  63. Figdor CG (2003) Molecular characterization of dendritic cells operating at the interface of innate or acquired immunity. Pathol Biol (Paris) 51:61–63CrossRefGoogle Scholar
  64. Filippi M, Grossman RI (2002) MRI techniques to monitor MS evolution: the present and the future. Neurology 58:1147–1153PubMedGoogle Scholar
  65. Flacher V, Sparber F, Tripp CH, Romani N, Stoitzner P (2009) Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy. Cancer Immunol Immunother 58:1137–1147PubMedCrossRefGoogle Scholar
  66. Flugel A, Odoardi F, Nosov M, Kawakami N (2007) Autoaggressive effector T cells in the course of experimental autoimmune encephalomyelitis visualized in the light of two-photon microscopy. J Neuroimmunol 191:86–97PubMedCrossRefGoogle Scholar
  67. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597PubMedCrossRefGoogle Scholar
  68. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–585PubMedCrossRefGoogle Scholar
  69. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661PubMedCrossRefGoogle Scholar
  70. Giovannoni G, Thorpe JW, Kidd D, Kendall BE, Moseley IF, Thompson AJ, Keir G, Miller DH, Feldmann M, Thompson EJ (1996) Soluble E-selectin in multiple sclerosis: raised concentrations in patients with primary progressive disease. J Neurol Neurosurg Psychiatry 60:20–26PubMedCrossRefGoogle Scholar
  71. Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM (1996) Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 156:4363–4368PubMedGoogle Scholar
  72. Gourmala NG, Limonta S, Bochelen D, Sauter A, Boddeke HW (1999) Localization of macrophage inflammatory protein: macrophage inflammatory protein-1 expression in rat brain after peripheral administration of lipopolysaccharide and focal cerebral ischemia. Neuroscience 88:1255–1266PubMedCrossRefGoogle Scholar
  73. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334PubMedCrossRefGoogle Scholar
  74. Hashimoto K, Kataoka N, Nakamura E, Hagihara K, Hatano M, Okamoto T, Kanouchi H, Minatogawa Y, Mohri S, Tsujioka K, Kajiya F (2011) Monocyte trans-endothelial migration augments subsequent transmigratory activity with increased PECAM-1 and decreased VE-cadherin at endothelial junctions. Int J CardiolGoogle Scholar
  75. Hatterer E, Touret M, Belin MF, Honnorat J, Nataf S (2008) Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PLoS One 3:e3321PubMedCrossRefGoogle Scholar
  76. Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, de Vries IJ, Ahrens ET, Mailliard RB (2010) Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 12:238–250PubMedCrossRefGoogle Scholar
  77. Hess DC, Thompson Y, Sprinkle A, Carroll J, Smith J (1996) E-selectin expression on human brain microvascular endothelial cells. Neurosci Lett 213:37–40PubMedCrossRefGoogle Scholar
  78. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, Maeda M, Fagan SC, Carroll JE, Conway SJ (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96PubMedGoogle Scholar
  79. Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, Luhmann HJ, Waisman A, Kuhlmann CR (2010) Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 24:1023–1034PubMedCrossRefGoogle Scholar
  80. Ifergan I, Kebir H, Bernard M, Wosik K, Dodelet-Devillers A, Cayrol R, Arbour N, Prat A (2008) The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131:785–799PubMedCrossRefGoogle Scholar
  81. Ireland DD, Reiss CS (2006) Gene expression contributing to recruitment of circulating cells in response to vesicular stomatitis virus infection of the CNS. Viral Immunol 19:536–545PubMedCrossRefGoogle Scholar
  82. Ishii T, Ishii M (2011) Intravital two-photon imaging: a versatile tool for dissecting the immune system. Ann Rheum Dis 70(Suppl 1):i113–115PubMedCrossRefGoogle Scholar
  83. Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA, Shah GN, Price TO, Fleegal-Demotta MA, Butterfiled DA, Banks WA (2009) Lipopolysaccharide alters the blood-brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav Immun 23:507–517PubMedCrossRefGoogle Scholar
  84. Jain P, Coisne C, Enzmann G, Rottapel R, Engelhardt B (2010) Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. J Immunol 184:7196–7206PubMedCrossRefGoogle Scholar
  85. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257PubMedCrossRefGoogle Scholar
  86. Johnston GI, Bliss GA, Newman PJ, McEver RP (1990) Structure of the human gene encoding granule membrane protein-140, a member of the selectin family of adhesion receptors for leukocytes. J Biol Chem 265:21381–21385PubMedGoogle Scholar
  87. Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB (2008) Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57:123–131PubMedCrossRefGoogle Scholar
  88. Kanda T, Yamawaki M, Ariga T, Yu RK (1995) Interleukin 1 beta up-regulates the expression of sulfoglucuronosyl paragloboside, a ligand for L-selectin, in brain microvascular endothelial cells. Proc Natl Acad Sci USA 92:7897–7901PubMedCrossRefGoogle Scholar
  89. Kawakami N, Flugel A (2010) Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin Immunopathol 32:275–287PubMedCrossRefGoogle Scholar
  90. Kennedy KJ, Strieter RM, Kunkel SL, Lukacs NW, Karpus WJ (1998) Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1alpha and monocyte chemotactic protein-1. J Neuroimmunol 92:98–108PubMedCrossRefGoogle Scholar
  91. Kenwrick S, Watkins A, De Angelis E (2000) Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum Mol Genet 9:879–886PubMedCrossRefGoogle Scholar
  92. Kieffer JD, Fuhlbrigge RC, Armerding D, Robert C, Ferenczi K, Camphausen RT, Kupper TS (2001) Neutrophils, monocytes, and dendritic cells express the same specialized form of PSGL-1 as do skin-homing memory T cells: cutaneous lymphocyte antigen. Biochem Biophys Res Commun 285:577–587PubMedCrossRefGoogle Scholar
  93. Kielian T, van Rooijen N, Hickey WF (2002) MCP-1 expression in CNS-1 astrocytoma cells: implications for macrophage infiltration into tumors in vivo. J Neurooncol 56:1–12PubMedCrossRefGoogle Scholar
  94. Kim JS, Gautam SC, Chopp M, Zaloga C, Jones ML, Ward PA, Welch KM (1995) Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. J Neuroimmunol 56:127–134PubMedCrossRefGoogle Scholar
  95. Kobukai S, Baheza R, Cobb JG, Virostko J, Xie J, Gillman A, Koktysh D, Kerns D, Does M, Gore JC, Pham W (2010) Magnetic nanoparticles for imaging dendritic cells. Magn Reson Med 63:1383–1390PubMedCrossRefGoogle Scholar
  96. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, Segars WP, Chen HH, Fritzges D, Izbudak I, Young RG, Marcelino M, Pittenger MF, Solaiyappan M, Boston RC, Tsui BM, Wahl RL, Bulte JW (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461PubMedCrossRefGoogle Scholar
  97. Krumbholz M, Theil D, Steinmeyer F, Cepok S, Hemmer B, Hofbauer M, Farina C, Derfuss T, Junker A, Arzberger T, Sinicina I, Hartle C, Newcombe J, Hohlfeld R, Meinl E (2007) CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J Neuroimmunol 190:72–79PubMedCrossRefGoogle Scholar
  98. Kuwabara T, Ishikawa F, Yasuda T, Aritomi K, Nakano H, Tanaka Y, Okada Y, Lipp M, Kakiuchi T (2009) CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells. J Immunol 183:2513–2521PubMedCrossRefGoogle Scholar
  99. Lange C, Togel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, Westenfelder C (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68:1613–1617PubMedCrossRefGoogle Scholar
  100. Lee N, Kim H, Choi SH, Park M, Kim D, Kim HC, Choi Y, Lin S, Kim BH, Jung HS, Park KS, Moon WK, Hyeon T (2011) Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci USA 108:2662–2667PubMedCrossRefGoogle Scholar
  101. Li M, Ransohoff RM (2009) The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis. Semin Cancer Biol 19:111–115PubMedCrossRefGoogle Scholar
  102. Lim YT, Noh YW, Kwon JN, Chung BH (2009) Multifunctional perfluorocarbon nanoemulsions for (19)F-based magnetic resonance and near-infrared optical imaging of dendritic cells. Chem Commun (Camb) 6952–6954Google Scholar
  103. Lin MS, Sun YY, Chiu WT, Chang CY, Hung CC, Shie FS, Tsai SH, Lin JW, Hung KS, Lee YH (2011) Curcumin attenuates the expression and secretion of RANTES following spinal cord injury in vivo and lipopolysaccharide-induced astrocyte reactivation in vitro. J NeurotraumaGoogle Scholar
  104. Liu KK, Dorovini-Zis K (2009) Regulation of CXCL12 and CXCR4 expression by human brain endothelial cells and their role in CD4+ and CD8+ T cell adhesion and transendothelial migration. J Neuroimmunol 215:49–64PubMedCrossRefGoogle Scholar
  105. Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF (2011) Stabilized imaging of immune surveillance in the mouse lung. Nat Methods 8:91–96PubMedCrossRefGoogle Scholar
  106. Maddaluno L, Verbrugge SE, Martinoli C, Matteoli G, Chiavelli A, Zeng Y, Williams ED, Rescigno M, Cavallaro U (2009) The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J Exp Med 206:623–635PubMedCrossRefGoogle Scholar
  107. Manfredi AA, Capobianco A, Esposito A, De Cobelli F, Canu T, Monno A, Raucci A, Sanvito F, Doglioni C, Nawroth PP, Bierhaus A, Bianchi ME, Rovere-Querini P, Del Maschio A (2008) Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes. J Immunol 180:2270–2275PubMedGoogle Scholar
  108. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127PubMedCrossRefGoogle Scholar
  109. Matsuno K, Ueta H, Shu Z, Xue-Dong X, Sawanobori Y, Kitazawa Y, Bin Y, Yamashita M, Shi C (2010) The microstructure of secondary lymphoid organs that support immune cell trafficking. Arch Histol Cytol 73:1–21PubMedCrossRefGoogle Scholar
  110. McDonnell GV, McMillan SA, Douglas JP, Droogan AG, Hawkins SA (1999) Serum soluble adhesion molecules in multiple sclerosis: raised sVCAM-1, sICAM-1 and sE-selectin in primary progressive disease. J Neurol 246:87–92PubMedCrossRefGoogle Scholar
  111. McEver RP (1990) Properties of GMP-140, an inducible granule membrane protein of platelets and endothelium. Blood Cells 16:73–80, discussion 80–73PubMedGoogle Scholar
  112. McKimmie CS, Graham GJ (2010) Astrocytes modulate the chemokine network in a pathogen-specific manner. Biochem Biophys Res Commun 394:1006–1011PubMedCrossRefGoogle Scholar
  113. Megens RT, Kemmerich K, Pyta J, Weber C, Soehnlein O (2011) Intravital imaging of phagocyte recruitment. Thromb Haemost 105Google Scholar
  114. Mossner R, Fassbender K, Kuhnen J, Schwartz A, Hennerici M (1996) Circulating L-selectin in multiple sclerosis patients with active, gadolinium-enhancing brain plaques. J Neuroimmunol 65:61–65PubMedCrossRefGoogle Scholar
  115. Muller WA, Randolph GJ (1999) Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J Leukoc Biol 66:698–704PubMedGoogle Scholar
  116. Muratori C, Mangino G, Affabris E, Federico M (2010) Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNFalpha in macrophages. Glia 58:1893–1904PubMedCrossRefGoogle Scholar
  117. Noh YW, Lim YT, Chung BH (2008) Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J 22:3908–3918PubMedCrossRefGoogle Scholar
  118. Nonaka H, Akima M, Hatori T, Nagayama T, Zhang Z, Ihara F (2002) The microvasculature of the human cerebellar meninges. Acta Neuropathol 104:608–614PubMedGoogle Scholar
  119. Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE (1996) Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 156:1284–1295PubMedGoogle Scholar
  120. Ogasawara N, Kojima T, Go M, Fuchimoto J, Kamekura R, Koizumi J, Ohkuni T, Masaki T, Murata M, Tanaka S, Ichimiya S, Himi T, Sawada N (2009) Induction of JAM-A during differentiation of human THP-1 dendritic cells. Biochem Biophys Res Commun 389:543–549PubMedCrossRefGoogle Scholar
  121. Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, del Zoppo GJ (1994) P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 25:202–211PubMedCrossRefGoogle Scholar
  122. Olasz EB, Lang L, Seidel J, Green MV, Eckelman WC, Katz SI (2002) Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods 260:137–148PubMedCrossRefGoogle Scholar
  123. Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3:151–158PubMedCrossRefGoogle Scholar
  124. Ovanesov MV, Ayhan Y, Wolbert C, Moldovan K, Sauder C, Pletnikov MV (2008) Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection. J Neuroinflammation 5:50PubMedCrossRefGoogle Scholar
  125. Paemeleire K (2002) The cellular basis of neurovascular metabolic coupling. Acta Neurol Belg 102:153–157PubMedGoogle Scholar
  126. Palucka K, Ueno H, Banchereau J (2011) Recent developments in cancer vaccines. J Immunol 186:1325–1331PubMedCrossRefGoogle Scholar
  127. Pancook JD, Reisfeld RA, Varki N, Vitiello A, Fox RI, Montgomery AM (1997) Expression and regulation of the neural cell adhesion molecule L1 on human cells of myelomonocytic and lymphoid origin. J Immunol 158:4413–4421PubMedGoogle Scholar
  128. Pashenkov M, Huang YM, Kostulas V, Haglund M, Soderstrom M, Link H (2001) Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124:480–492PubMedCrossRefGoogle Scholar
  129. Pashenkov M, Teleshova N, Kouwenhoven M, Smirnova T, Jin YP, Kostulas V, Huang YM, Pinegin B, Boiko A, Link H (2002) Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections. J Neuroimmunol 122:106–116PubMedCrossRefGoogle Scholar
  130. Patel N, Kirmi O (2009) Anatomy and imaging of the normal meninges. Semin Ultrasound CT MR 30:559–564PubMedCrossRefGoogle Scholar
  131. Pendl GG, Robert C, Steinert M, Thanos R, Eytner R, Borges E, Wild MK, Lowe JB, Fuhlbrigge RC, Kupper TS, Vestweber D, Grabbe S (2002) Immature mouse dendritic cells enter inflamed tissue, a process that requires E- and P-selectin, but not P-selectin glycoprotein ligand 1. Blood 99:946–956PubMedCrossRefGoogle Scholar
  132. Pham W, Xie J, Gore JC (2007) Tracking the migration of dendritic cells by in vivo optical imaging. Neoplasia 9:1130–1137PubMedCrossRefGoogle Scholar
  133. Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood-brain barrier. Glia 36:145–155PubMedCrossRefGoogle Scholar
  134. Prodinger C, Bunse J, Kruger M, Schiefenhovel F, Brandt C, Laman JD, Greter M, Immig K, Heppner F, Becher B, Bechmann I (2011) CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta NeuropatholGoogle Scholar
  135. Raine CS, Lee SC, Scheinberg LC, Duijvestin AM, Cross AH (1990) Adhesion molecules on endothelial cells in the central nervous system: an emerging area in the neuroimmunology of multiple sclerosis. Clin Immunol Immunopathol 57:173–187PubMedCrossRefGoogle Scholar
  136. Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:480–483PubMedCrossRefGoogle Scholar
  137. Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M (2009) Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 23:55–63PubMedCrossRefGoogle Scholar
  138. Ricart BG, John B, Lee D, Hunter CA, Hammer DA (2011) Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4. J Immunol 186:53–61PubMedCrossRefGoogle Scholar
  139. Robert C, Fuhlbrigge RC, Kieffer JD, Ayehunie S, Hynes RO, Cheng G, Grabbe S, von Andrian UH, Kupper TS (1999) Interaction of dendritic cells with skin endothelium: A new perspective on immunosurveillance. J Exp Med 189:627–636PubMedCrossRefGoogle Scholar
  140. Roberts TK, Buckner CM, Berman JW (2010) Leukocyte transmigration across the blood-brain barrier: perspectives on neuroAIDS. Front Biosci 15:478–536PubMedCrossRefGoogle Scholar
  141. Rollins BJ (1996) Monocyte chemoattractant protein 1: a potential regulator of monocyte recruitment in inflammatory disease. Mol Med Today 2:198–204PubMedCrossRefGoogle Scholar
  142. Rosen SD (1993) Cell surface lectins in the immune system. Semin Immunol 5:237–247PubMedCrossRefGoogle Scholar
  143. Schakel K, Kannagi R, Kniep B, Goto Y, Mitsuoka C, Zwirner J, Soruri A, von Kietzell M, Rieber E (2002) 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity 17:289–301PubMedCrossRefGoogle Scholar
  144. Schimmelpfennig CH, Schulz S, Arber C, Baker J, Tarner I, McBride J, Contag CH, Negrin RS (2005) Ex vivo expanded dendritic cells home to T-cell zones of lymphoid organs and survive in vivo after allogeneic bone marrow transplantation. Am J Pathol 167:1321–1331PubMedCrossRefGoogle Scholar
  145. Schlosshauer B (1993) The blood-brain barrier: morphology, molecules, and neurothelin. Bioessays 15:341–346PubMedCrossRefGoogle Scholar
  146. Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Piontek J, Blasig IE, Dijkstra CD, Ronken E, de Vries HE (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676PubMedCrossRefGoogle Scholar
  147. Schulz M, Engelhardt B (2005) The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis. Cerebrospinal Fluid Res 2:8PubMedCrossRefGoogle Scholar
  148. Seo J, Kim YO, Jo I (2009) Differential expression of stromal cell-derived factor 1 in human brain microvascular endothelial cells and pericytes involves histone modifications. Biochem Biophys Res Commun 382:519–524PubMedCrossRefGoogle Scholar
  149. Shukaliak JA, Dorovini-Zis K (2000) Expression of the beta-chemokines RANTES and MIP-1 beta by human brain microvessel endothelial cells in primary culture. J Neuropathol Exp Neurol 59:339–352PubMedGoogle Scholar
  150. Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (1998) Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84:238–249PubMedCrossRefGoogle Scholar
  151. Smits HA, Rijsmus A, van Loon JH, Wat JW, Verhoef J, Boven LA, Nottet HS (2002) Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J Neuroimmunol 127:160–168PubMedCrossRefGoogle Scholar
  152. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314PubMedCrossRefGoogle Scholar
  153. Steel CD, Hahto SM, Ciavarra RP (2009) Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system. Virology 387:117–126PubMedCrossRefGoogle Scholar
  154. Steiner O, Coisne C, Cecchelli R, Boscacci R, Deutsch U, Engelhardt B, Lyck R (2010) Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood-brain barrier endothelium. J Immunol 185:4846–4855PubMedCrossRefGoogle Scholar
  155. Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296:1873–1876PubMedCrossRefGoogle Scholar
  156. Terao Y, Ohta H, Oda A, Nakagaito Y, Kiyota Y, Shintani Y (2009) Macrophage inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neurosci Res 64:75–82PubMedCrossRefGoogle Scholar
  157. Thanabalasundaram G, El-Gindi J, Lischper M, Galla HJ (2011) Methods to assess pericyte-endothelial cell interactions in a coculture model. Methods Mol Biol 686:379–399PubMedCrossRefGoogle Scholar
  158. Tripathy D, Thirumangalakudi L, Grammas P (2010) RANTES upregulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiol Aging 31:8–16PubMedCrossRefGoogle Scholar
  159. Tsukada N, Miyagi K, Matsuda M, Yanagisawa N (1995) Soluble E-selectin in the serum and cerebrospinal fluid of patients with multiple sclerosis and human T-lymphotropic virus type 1-associated myelopathy. Neurology 45:1914–1918PubMedGoogle Scholar
  160. Ueno H, Klechevsky E, Schmitt N, Ni L, Flamar AL, Zurawski S, Zurawski G, Palucka K, Banchereau J, Oh S (2011) Targeting human dendritic cell subsets for improved vaccines. Semin Immunol 23:21–27PubMedCrossRefGoogle Scholar
  161. Vago L, Nebuloni M, Bonetto S, Pellegrinelli A, Zerbi P, Ferri A, Lavri E, Capra M, Grassi MP, Costanzi G (2001) Rantes distribution and cellular localization in the brain of HIV-infected patients. Clin Neuropathol 20:139–145PubMedGoogle Scholar
  162. Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108:557–565PubMedGoogle Scholar
  163. van Kooyk Y, Geijtenbeek TB (2002) A novel adhesion pathway that regulates dendritic cell trafficking and T cell interactions. Immunol Rev 186:47–56PubMedCrossRefGoogle Scholar
  164. Venetz D, Ponzoni M, Schiraldi M, Ferreri AJ, Bertoni F, Doglioni C, Uguccioni M (2010) Perivascular expression of CXCL9 and CXCL12 in primary central nervous system lymphoma: T-cell infiltration and positioning of malignant B cells. Int J Cancer 127:2300–2312PubMedCrossRefGoogle Scholar
  165. Vilekar P, Awasthi V, Lagisetty P, King C, Shankar N, Awasthi S (2010) In vivo trafficking and immunostimulatory potential of an intranasally-administered primary dendritic cell-based vaccine. BMC Immunol 11:60PubMedCrossRefGoogle Scholar
  166. Vilela MC, Mansur DS, Lacerda-Queiroz N, Rodrigues DH, Lima GK, Arantes RM, Kroon EG, da Silva Campos MA, Teixeira MM, Teixeira AL (2009) The chemokine CCL5 is essential for leukocyte recruitment in a model of severe Herpes simplex encephalitis. Ann N Y Acad Sci 1153:256–263PubMedCrossRefGoogle Scholar
  167. Villablanca EJ, Russo V, Mora JR (2008) Dendritic cell migration and lymphocyte homing imprinting. Histol Histopathol 23:897–910PubMedGoogle Scholar
  168. Wang X, Feuerstein GZ (1995) Induced expression of adhesion molecules following focal brain ischemia. J Neurotrauma 12:825–832PubMedCrossRefGoogle Scholar
  169. Weiss JM, Downie SA, Lyman WD, Berman JW (1998) Astrocyte-derived monocyte-chemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier. J Immunol 161:6896–6903PubMedGoogle Scholar
  170. Wekerle H (1993) Experimental autoimmune encephalomyelitis as a model of immune-mediated CNS disease. Curr Opin Neurobiol 3:779–784PubMedCrossRefGoogle Scholar
  171. Wojcikiewicz EP, Koenen RR, Fraemohs L, Minkiewicz J, Azad H, Weber C, Moy VT (2009) LFA-1 binding destabilizes the JAM-A homophilic interaction during leukocyte transmigration. Biophys J 96:285–293PubMedCrossRefGoogle Scholar
  172. Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592PubMedGoogle Scholar
  173. Wong D, Dorovini-Zis K (1992) Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J Neuroimmunol 39:11–21PubMedCrossRefGoogle Scholar
  174. Wong D, Dorovini-Zis K (1995) Expression of vascular cell adhesion molecule-1 (VCAM-1) by human brain microvessel endothelial cells in primary culture. Microvasc Res 49:325–339PubMedCrossRefGoogle Scholar
  175. Wong D, Dorovini-Zis K (1996) Regualtion by cytokines and lipopolysaccharide of E-selectin expression by human brain microvessel endothelial cells in primary culture. J Neuropathol Exp Neurol 55:225–235PubMedCrossRefGoogle Scholar
  176. Wong D, Prameya R, Dorovini-Zis K (1999) In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1. J Neuropathol Exp Neurol 58:138–152PubMedCrossRefGoogle Scholar
  177. Wu GF, Shindler KS, Allenspach EJ, Stephen TL, Thomas HL, Mikesell RJ, Cross AH, Laufer TM (2011) Limited sufficiency of antigen presentation by dendritic cells in models of central nervous system autoimmunity. J Autoimmun 36:56–64PubMedCrossRefGoogle Scholar
  178. Xia MQ, Qin SX, Wu LJ, Mackay CR, Hyman BT (1998) Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. Am J Pathol 153:31–37PubMedCrossRefGoogle Scholar
  179. Yoshizaki K, Wakita H, Takeda K, Takahashi K (2008) Conditional expression of microRNA against E-selectin inhibits leukocyte-endothelial adhesive interaction under inflammatory condition. Biochem Biophys Res Commun 371:747–751PubMedCrossRefGoogle Scholar
  180. Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ (2002) Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev 22:146–167PubMedCrossRefGoogle Scholar
  181. Zhang H (2004) Perfluoro-15-crown-5 ether-labeled dendriic cells. In: Molecular Imaging and Contrast Agent Database (MICAD) [database online]. Bethesda (MD): National Library of Medicine (US), NCBI; 2004-2009. Available from: http://micad.nih.gov
  182. Zhang RL, Chopp M, Zhang ZG, Phillips ML, Rosenbloom CL, Cruz R, Manning A (1996) E-selectin in focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 16:1126–1136PubMedCrossRefGoogle Scholar
  183. Zhou S, Halle A, Kurt-Jones EA, Cerny AM, Porpiglia E, Rogers M, Golenbock DT, Finberg RW (2008) Lymphocytic choriomeningitis virus (LCMV) infection of CNS glial cells results in TLR2-MyD88/Mal-dependent inflammatory responses. J Neuroimmunol 194:70–82PubMedCrossRefGoogle Scholar
  184. Zozulya AL, Reinke E, Baiu DC, Karman J, Sandor M, Fabry Z (2007) Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP-1alpha chemokine and matrix metalloproteinases. J Immunol 178:520–529PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Divya Sagar
    • 1
  • Catherine Foss
    • 2
  • Rasha El Baz
    • 1
  • Martin G. Pomper
    • 2
  • Zafar K. Khan
    • 1
  • Pooja Jain
    • 1
    • 3
    Email author
  1. 1.Drexel Institute for Biotechnology and Virology Research, and Department of Microbiology and ImmunologyDrexel University College of MedicinePhiladelphiaUSA
  2. 2.Department of Radiology and Radiological SciencesJohns Hopkins Medical InstitutionsBaltimoreUSA
  3. 3.Department of Microbiology & Immunology, Drexel Institute for Biotechnology & Virology ResearchDrexel University College of MedicineDoylestownUSA

Personalised recommendations