Journal of Neuroimmune Pharmacology

, Volume 6, Issue 2, pp 230–246

Mechanisms of HIV-1 Nef Function and Intracellular Signaling

  • John L. Foster
  • Sarah J. Denial
  • Brenda R. S. Temple
  • J. Victor Garcia
INVITED REVIEW

Abstract

Advances in the last several years have enhanced mechanistic understanding of Nef-induced CD4 and MHCI downregulation and have suggested a new paradigm for analyzing Nef function. In both of these cases, Nef acts by forming ternary complexes with significant contributions to stability imparted by non-canonical interactions. The mutational analyses and binding assays that have led to these conclusions are discussed. The recent progress has been dependent on conservative mutations and multi-protein binding assays. The poorly understood Nef functions of p21 activated protein kinase (PAK2) activation, enhancement of virion infectivity, and inhibition of immunoglobulin class switching are also likely to involve ternary complexes and non-canonical interactions. Hence, investigation of these latter Nef functions should benefit from a similar approach. Six historically used alanine substitutions for determining structure–function relationships of Nef are discussed. These are M20A, E62A/E63A/E64A/E65A (AAAA), P72A/P75A (AXXA), R106A, L164A/L165A, and D174A/D175A. Investigations of less-disruptive mutations in place of AAAA and AXXA have led to different interpretations of mechanism. Two recent examples of this alternate approach, F191I for studying PAK2 activation and D123E for the critical residue D123 are discussed. The implications of the new findings and the resulting new paradigm for Nef structure–function are discussed with respect to creating a map of Nef functions on the protein surface. We report the results of a PPI-Pred analysis for protein–protein interfaces. There are three predicted patches produced by the analysis which describe regions consistent with the currently known mutational analyses of Nef function.

Keywords

HIV-1 Nef Non-canonical CD4 MHCI PAK2 Infectivity Immunoglobulin class switching 

References

  1. Agopian K, Wei BL, Garcia JV, Gabuzda D (2006) A hydrophobic binding surface on the human immunodeficiency virus type 1 Nef core is critical for association with p21-activated kinase 2. J Virol 80:3050–3061PubMedCrossRefGoogle Scholar
  2. Agopian K, Wei BL, Garcia JV, Gabuzda D (2007) CD4 and MHC-I downregulation are conserved in primary HIV-1 Nef alleles from brain and lymphoid tissues, but Pak2 activation is highly variable. Virology 358:119–135PubMedCrossRefGoogle Scholar
  3. Aiken C, Krause L, Chen YL, Trono D (1996) Mutational analysis of HIV-1 Nef: identification of two mutants that are temperature-sensitive for CD4 downregulation. Virology 217:293–300PubMedCrossRefGoogle Scholar
  4. Akari H, Arold S, Fukumori T, Okazaki T, Strebel K, Adachi A (2000) Nef-induced major histocompatibility complex class I down-regulation is functionally dissociated from its virion incorporation, enhancement of viral infectivity, and CD4 down-regulation. J Virol 74:2907–2912PubMedCrossRefGoogle Scholar
  5. Anderson SJ, Lenburg M, Landau NR, Garcia JV (1994) The cytoplasmic domain of CD4 is sufficient for its down-regulation from the cell surface by human immunodeficiency virus type 1 Nef. J Virol 68:3092–3101PubMedGoogle Scholar
  6. Arold ST, Baur AS (2001) Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein. Trends Biochem Sci 26:356–363PubMedCrossRefGoogle Scholar
  7. Arold S, Franken P, Strub MP, Hoh F, Benichou S, Benarous R, Dumas C (1997) The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Structure 5:1361–1372PubMedCrossRefGoogle Scholar
  8. Arold S, Hoh F, Domergue S, Birck C, Delsuc MA, Jullien M, Dumas C (2000) Characterization and molecular basis of the oligomeric structure of HIV-1 nef protein. Protein Sci 9:1137–1148PubMedCrossRefGoogle Scholar
  9. Arora VK, Molina RP, Foster JL, Blakemore JL, Chernoff J, Fredericksen BL, Garcia JV (2000) Lentivirus Nef specifically activates Pak2. J Virol 74:11081–11087PubMedCrossRefGoogle Scholar
  10. Atkins KM, Thomas L, Youker RT, Harriff MJ, Pissani F, You H, Thomas G (2008) HIV-1 Nef binds PACS-2 to assemble a multikinase cascade that triggers major histocompatibility complex class I (MHC-I) down-regulation: analysis using short interfering rna and knock-out mice. J Biol Chem 283:11772–11784PubMedCrossRefGoogle Scholar
  11. Bailey JR, O’Connell K, Yang HC, Han Y, Xu J, Jilek B, Williams TM, Ray SC, Siliciano RF, Blankson JN (2008) Transmission of human immunodeficiency virus type 1 from a patient who developed AIDS to an elite suppressor. J Virol 82:7395–7410PubMedCrossRefGoogle Scholar
  12. Bailey JR, Brennan TP, O’Connell KA, Siliciano RF, Blankson JN (2009) Evidence of CD8+ T-cell-mediated selective pressure on human immunodeficiency virus type 1 nef in HLA-B*57+ elite suppressors. J Virol 83:88–97PubMedCrossRefGoogle Scholar
  13. Baugh LL, Garcia JV, Foster JL (2008) Functional characterization of the human immunodeficiency virus type 1 Nef acidic domain. J Virol 82:9657–9667PubMedCrossRefGoogle Scholar
  14. Baur AS, Sass G, Laffert B, Willbold D, Cheng-Mayer C, Peterlin BM (1997) The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase. Immunity 6:283–291PubMedCrossRefGoogle Scholar
  15. Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas G (2002) HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111:853–866PubMedCrossRefGoogle Scholar
  16. Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447PubMedCrossRefGoogle Scholar
  17. Boursier JP, Alcover A, Herve F, Laisney I, Acuto O (1993) Evidence for an extended structure of the T-cell co-receptor CD8 alpha as deduced from the hydrodynamic properties of soluble forms of the extracellular region. J Biol Chem 268:2013–2020PubMedGoogle Scholar
  18. Bresnahan PA, Yonemoto W, Ferrell S, Williams-Herman D, Geleziunas R, Greene WC (1998) A dileucine motif in HIV-1 Nef acts as an internalization signal for CD4 downregulation and binds the AP-1 clathrin adaptor. Curr Biol 8:1235–1238PubMedCrossRefGoogle Scholar
  19. Bresnahan PA, Yonemoto W, Greene WC (1999) Cutting edge: SIV Nef protein utilizes both leucine- and tyrosine-based protein sorting pathways for down-regulation of CD4. J Immunol 163:2977–2981PubMedGoogle Scholar
  20. Briggs SD, Sharkey M, Stevenson M, Smithgall TE (1997) SH3-mediated Hck tyrosine kinase activation and fibroblast transformation by the Nef protein of HIV-1. J Biol Chem 272:17899–17902PubMedCrossRefGoogle Scholar
  21. Briggs SD, Scholtz B, Jacque JM, Swingler S, Stevenson M, Smithgall TE (2001) HIV-1 Nef promotes survival of myeloid cells by a Stat3-dependent pathway. J Biol Chem 276:25605–25611PubMedCrossRefGoogle Scholar
  22. Carl S, Iafrate AJ, Lang SM, Stolte N, Stahl-Hennig C, Matz-Rensing K, Fuchs D, Skowronski J, Kirchhoff F (2000) Simian immunodeficiency virus containing mutations in N-terminal tyrosine residues and in the PxxP motif in Nef replicates efficiently in rhesus macaques. J Virol 74:4155–4164PubMedCrossRefGoogle Scholar
  23. Casartelli N, Giolo G, Neri F, Haller C, Potesta M, Rossi P, Fackler OT, Doria M (2006) The Pro78 residue regulates the capacity of the human immunodeficiency virus type 1 Nef protein to inhibit recycling of major histocompatibility complex class I molecules in an SH3-independent manner. J Gen Virol 87:2291–2296PubMedCrossRefGoogle Scholar
  24. Chaudhuri R, Lindwasser OW, Smith WJ, Hurley JH, Bonifacino JS (2007) Downregulation of CD4 by human immunodeficiency virus type 1 Nef is dependent on clathrin and involves direct interaction of Nef with the AP2 clathrin adaptor. J Virol 81:3877–3890PubMedCrossRefGoogle Scholar
  25. Chaudhuri R, Mattera R, Lindwasser OW, Robinson MS, Bonifacino JS (2009) A basic patch on alpha-adaptin is required for binding of human immunodeficiency virus type 1 Nef and cooperative assembly of a CD4-Nef-AP-2 complex. J Virol 83:2518–2530PubMedCrossRefGoogle Scholar
  26. Cohen GB, Rangan VS, Chen BK, Smith S, Baltimore D (2000) The human thioesterase II protein binds to a site on HIV-1 Nef critical for CD4 down-regulation. J Biol Chem 275:23097–23105PubMedCrossRefGoogle Scholar
  27. Coleman SH, Madrid R, Van Damme N, Mitchell RS, Bouchet J, Servant C, Pillai S, Benichou S, Guatelli JC (2006) Modulation of cellular protein trafficking by human immunodeficiency virus type 1 Nef: role of the acidic residue in the ExxxLL motif. J Virol 80:1837–1849PubMedCrossRefGoogle Scholar
  28. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401PubMedCrossRefGoogle Scholar
  29. Costa LJ, Chen N, Lopes A, Aguiar RS, Tanuri A, Plemenitas A, Peterlin BM (2006) Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1. Retrovirology 3:33PubMedCrossRefGoogle Scholar
  30. Craig HM, Pandori MW, Guatelli JC (1998) Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Proc Natl Acad Sci USA 95:11229–11234PubMedCrossRefGoogle Scholar
  31. daSilva LL, Sougrat R, Burgos PV, Janvier K, Mattera R, Bonifacino JS (2009) Human immunodeficiency virus type 1 Nef protein targets CD4 to the multivesicular body pathway. J Virol 83:6578–6590PubMedCrossRefGoogle Scholar
  32. Dikeakos JD, Atkins KM, Thomas L, Emert-Sedlak L, Byeon IJ, Jung J, Ahn J, Wortman MD, Kukull B, Saito M, Koizumi H, Williamson DM, Hiyoshi M, Barklis E, Takiguchi M, Suzu S, Gronenborn AM, Smithgall TE, Thomas G (2010) Small molecule inhibition of HIV-1-induced MHC-I down-regulation identifies a temporally regulated switch in Nef action. Mol Biol Cell 21:3279–3292PubMedCrossRefGoogle Scholar
  33. Erdtmann L, Janvier K, Raposo G, Craig HM, Benaroch P, Berlioz-Torrent C, Guatelli JC, Benarous R, Benichou S (2000) Two independent regions of HIV-1 Nef are required for connection with the endocytic pathway through binding to the mu 1 chain of AP1 complex. Traffic 1:871–883PubMedCrossRefGoogle Scholar
  34. Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM (1999) Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 3:729–739PubMedCrossRefGoogle Scholar
  35. Fackler OT, Alcover A, Schwartz O (2007) Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 7:310–317PubMedCrossRefGoogle Scholar
  36. Fleis R, Filzen T, Collins KL (2002) Species-specific effects of HIV-1 Nef-mediated MHC-I downmodulation. Virology 303:120–129PubMedCrossRefGoogle Scholar
  37. Foster JL, Garcia JV (2007) Role of Nef in HIV-1 replication and pathogenesis. Adv Pharmacol 55:389–409PubMedCrossRefGoogle Scholar
  38. Foster JL, Molina RP, Luo T, Arora VK, Huang Y, Ho DD, Garcia JV (2001) Genetic and functional diversity of human immunodeficiency virus type 1 subtype B Nef primary isolates. J Virol 75:1672–1680PubMedCrossRefGoogle Scholar
  39. Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG (2002) Evidence that SHIP-1 contributes to phosphatidylinositol 3, 4, 5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol 169:5441–5450PubMedGoogle Scholar
  40. Goldsmith MA, Warmerdam MT, Atchison RE, Miller MD, Greene WC (1995) Dissociation of the CD4 downregulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef. J Virol 69:4112–4121PubMedGoogle Scholar
  41. Gorry PR, McPhee DA, Verity E, Dyer WB, Wesselingh SL, Learmont J, Sullivan JS, Roche M, Zaunders JJ, Gabuzda D, Crowe SM, Mills J, Lewin SR, Brew BJ, Cunningham AL, Churchill MJ (2007) Pathogenicity and immunogenicity of attenuated, nef-deleted HIV-1 strains in vivo. Retrovirology 4:66PubMedCrossRefGoogle Scholar
  42. Gruenberg J, Maxfield FR (1995) Membrane transport in the endocytic pathway. Curr Opin Cell Biol 7:552–563PubMedCrossRefGoogle Scholar
  43. Greenberg M, DeTulleo L, Rapoport I, Skowronski J, Kirchhausen T (1998a) A dileucine motif in HIV-1 Nef is essential for sorting into clathrin-coated pits and for downregulation of CD4. Curr Biol 8:1239–1242PubMedCrossRefGoogle Scholar
  44. Greenberg ME, Iafrate AJ, Skowronski J (1998b) The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J 17:2777–2789PubMedCrossRefGoogle Scholar
  45. Grzesiek S, Stahl SJ, Wingfield PT, Bax A (1996a) The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 35:10256–10261PubMedCrossRefGoogle Scholar
  46. Grzesiek S, Bax A, Clore GM, Gronenborn AM, Hu JS, Kaufman J, Palmer I, Stahl SJ, Wingfield PT (1996b) The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Nat Struct Biol 3:340–345PubMedCrossRefGoogle Scholar
  47. Grzesiek S, Bax A, Hu JS, Kaufman J, Palmer I, Stahl SJ, Tjandra N, Wingfield PT (1997) Refined solution structure and backbone dynamics of HIV-1 Nef. Protein Sci 6:1248–1263PubMedCrossRefGoogle Scholar
  48. Haller C, Rauch S, Fackler OT (2007) HIV-1 Nef employs two distinct mechanisms to modulate Lck subcellular localization and TCR induced actin remodeling. PLoS ONE 2:e1212PubMedCrossRefGoogle Scholar
  49. Hanna Z, Kay DG, Cool M, Jothy S, Rebai N, Jolicoeur P (1998a) Transgenic mice expressing human immunodeficiency virus type 1 in immune cells develop a severe AIDS-like disease. J Virol 72:121–132PubMedGoogle Scholar
  50. Hanna Z, Kay DG, Rebai N, Guimond A, Jothy S, Jolicoeur P (1998b) Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95:163–175PubMedCrossRefGoogle Scholar
  51. Hanna Z, Weng X, Kay DG, Poudrier J, Lowell C, Jolicoeur P (2001) The pathogenicity of human immunodeficiency virus (HIV) type 1 Nef in CD4C/HIV transgenic mice is abolished by mutation of its SH3-binding domain, and disease development is delayed in the absence of Hck. J Virol 75:9378–9392PubMedCrossRefGoogle Scholar
  52. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919PubMedCrossRefGoogle Scholar
  53. Hung CH, Thomas L, Ruby CE, Atkins KM, Morris NP, Knight ZA, Scholz I, Barklis E, Weinberg AD, Shokat KM, Thomas G (2007) HIV-1 Nef assembles a Src family kinase-ZAP-70/Syk-PI3K cascade to downregulate cell-surface MHC-I. Cell Host Microbe 1:121–133PubMedCrossRefGoogle Scholar
  54. Iafrate AJ, Bronson S, Skowronski J (1997) Separable functions of Nef disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 signaling. EMBO J 16:673–684PubMedCrossRefGoogle Scholar
  55. Iafrate AJ, Carl S, Bronson S, Stahl-Hennig C, Swigut T, Skowronski J, Kirchhoff F (2000) Disrupting surfaces of nef required for downregulation of CD4 and for enhancement of virion infectivity attenuates simian immunodeficiency virus replication in vivo. J Virol 74:9836–9844PubMedCrossRefGoogle Scholar
  56. Karkkainen S, Hiipakka M, Wang JH, Kleino I, Vaha-Jaakkola M, Renkema GH, Liss M, Wagner R, Saksela K (2006) Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep 7:186–191PubMedCrossRefGoogle Scholar
  57. Kestler HW 3rd, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC (1991) Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65:651–662PubMedCrossRefGoogle Scholar
  58. Kienzle N, Freund J, Kalbitzer HR, Mueller-Lantzsch N (1993) Oligomerization of the Nef protein from human immunodeficiency virus (HIV) type 1. Eur J Biochem 214:451–457PubMedCrossRefGoogle Scholar
  59. Kim MO, Suh HS, Si Q, Terman BI, Lee SC (2006) Anti-CD45RO suppresses human immunodeficiency virus type 1 replication in microglia: role of Hck tyrosine kinase and implications for AIDS dementia. J Virol 80:62–72PubMedCrossRefGoogle Scholar
  60. Kimpton J, Emerman M (1992) Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 66:2232–2239PubMedGoogle Scholar
  61. Kirchhoff F, Schindler M, Bailer N, Renkema GH, Saksela K, Knoop V, Muller-Trutwin MC, Santiago ML, Bibollet-Ruche F, Dittmar MT, Heeney JL, Hahn BH, Munch J (2004) Nef proteins from simian immunodeficiency virus-infected chimpanzees interact with p21-activated kinase 2 and modulate cell surface expression of various human receptors. J Virol 78:6864–6874PubMedCrossRefGoogle Scholar
  62. Kirchhoff F, Schindler M, Specht A, Arhel N, Munch J (2008) Role of Nef in primate lentiviral immunopathogenesis. Cell Mol Life Sci 65:2621–2636PubMedCrossRefGoogle Scholar
  63. Kistner A, Gossen M, Zimmermann F, Jerecic J, Ullmer C, Lubbert H, Bujard H (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci USA 93:10933–10938PubMedCrossRefGoogle Scholar
  64. Klippel A, Escobedo MA, Wachowicz MS, Apell G, Brown TW, Giedlin MA, Kavanaugh WM, Williams LT (1998) Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Mol Cell Biol 18:5699–5711PubMedGoogle Scholar
  65. Kohn AD, Barthel A, Kovacina KS, Boge A, Wallach B, Summers SA, Birnbaum MJ, Scott PH, Lawrence JC Jr, Roth RA (1998) Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem 273:11937–11943PubMedCrossRefGoogle Scholar
  66. Krady JK, Basu A, Levison SW, Milner RJ (2002) Differential expression of protein tyrosine kinase genes during microglial activation. Glia 40:11–24PubMedCrossRefGoogle Scholar
  67. Kwak YT, Raney A, Kuo LS, Denial SJ, Temple BR, Garcia JV, Foster JL (2010) Self-association of the Lentivirus protein. Nef Retrovirology 7:77CrossRefGoogle Scholar
  68. Laguette N, Benichou S, Basmaciogullari S (2009a) Human immunodeficiency virus type 1 Nef incorporation into virions does not increase infectivity. J Virol 83:1093–1104PubMedCrossRefGoogle Scholar
  69. Laguette N, Bregnard C, Bouchet J, Benmerah A, Benichou S, Basmaciogullari S (2009b) Nef-induced CD4 endocytosis in human immunodeficiency virus type 1 host cells: role of p56lck kinase. J Virol 83:7117–7128PubMedCrossRefGoogle Scholar
  70. Laguette N, Bregnard C, Benichou S, Basmaciogullari S (2010) Human immunodeficiency virus (HIV) type-1, HIV-2 and simian immunodeficiency virus Nef proteins. Mol Aspects Med 31(5):418–433PubMedCrossRefGoogle Scholar
  71. Lang SM, Iafrate AJ, Stahl-Hennig C, Kuhn EM, Nisslein T, Kaup FJ, Haupt M, Hunsmann G, Skowronski J, Kirchhoff F (1997) Association of simian immunodeficiency virus Nef with cellular serine/threonine kinases is dispensable for the development of AIDS in rhesus macaques. Nat Med 3:860–865PubMedCrossRefGoogle Scholar
  72. Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J (1996) Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85:931–942PubMedCrossRefGoogle Scholar
  73. Li SS (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653PubMedCrossRefGoogle Scholar
  74. Lindwasser OW, Smith WJ, Chaudhuri R, Yang P, Hurley JH, Bonifacino JS (2008) A diacidic motif in human immunodeficiency virus type 1 Nef is a novel determinant of binding to AP-2. J Virol 82:1166–1174PubMedCrossRefGoogle Scholar
  75. Liu LX, Heveker N, Fackler OT, Arold S, Le Gall S, Janvier K, Peterlin BM, Dumas C, Schwartz O, Benichou S, Benarous R (2000) Mutation of a conserved residue (D123) required for oligomerization of human immunodeficiency virus type 1 Nef protein abolishes interaction with human thioesterase and results in impairment of Nef biological functions. J Virol 74:5310–5319PubMedCrossRefGoogle Scholar
  76. Lock M, Greenberg ME, Iafrate AJ, Swigut T, Muench J, Kirchhoff F, Shohdy N, Skowronski J (1999) Two elements target SIV Nef to the AP-2 clathrin adaptor complex, but only one is required for the induction of CD4 endocytosis. EMBO J 18:2722–2733PubMedCrossRefGoogle Scholar
  77. Lu X, Yu H, Liu SH, Brodsky FM, Peterlin BM (1998) Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 8:647–656PubMedCrossRefGoogle Scholar
  78. Lubben NB, Sahlender DA, Motley AM, Lehner PJ, Benaroch P, Robinson MS (2007) HIV-1 Nef-induced down-regulation of MHC class I requires AP-1 and clathrin but not PACS-1 and is impeded by AP-2. Mol Biol Cell 18:3351–3365PubMedCrossRefGoogle Scholar
  79. Luo T, Anderson SJ, Garcia JV (1996) Inhibition of Nef- and phorbol ester-induced CD4 degradation by macrolide antibiotics. J Virol 70:1527–1534PubMedGoogle Scholar
  80. Madrid R, Janvier K, Hitchin D, Day J, Coleman S, Noviello C, Bouchet J, Benmerah A, Guatelli J, Benichou S (2005) Nef-induced alteration of the early/recycling endosomal compartment correlates with enhancement of HIV-1 infectivity. J Biol Chem 280:5032–5044PubMedCrossRefGoogle Scholar
  81. Manninen A, Hiipakka M, Vihinen M, Lu W, Mayer BJ, Saksela K (1998) SH3-Domain binding function of HIV-1 Nef is required for association with a PAK-related kinase. Virology 250:273–282PubMedCrossRefGoogle Scholar
  82. Marsh M, Pelchen-Matthews A (1996) Endocytic and exocytic regulation of CD4 expression and function. Curr Top Microbiol Immunol 205:107–135PubMedGoogle Scholar
  83. Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132PubMedCrossRefGoogle Scholar
  84. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–1322PubMedCrossRefGoogle Scholar
  85. Noviello CM, Benichou S, Guatelli JC (2008) Cooperative binding of the class I major histocompatibility complex cytoplasmic domain and human immunodeficiency virus type 1 Nef to the endosomal AP-1 complex via its mu subunit. J Virol 82:1249–1258PubMedCrossRefGoogle Scholar
  86. O’Neill E, Baugh LL, Novitsky VA, Essex ME, Garcia JV (2006a) Intra- and intersubtype alternative Pak2-activating structural motifs of human immunodeficiency virus type 1 Nef. J Virol 80:8824–8829PubMedCrossRefGoogle Scholar
  87. O’Neill E, Kuo LS, Krisko JF, Tomchick DR, Garcia JV, Foster JL (2006b) Dynamic evolution of the human immunodeficiency virus type 1 pathogenic factor, Nef. J Virol 80:1311–1320PubMedCrossRefGoogle Scholar
  88. Pelchen-Matthews A, da Silva RP, Bijlmakers MJ, Signoret N, Gordon S, Marsh M (1998) Lack of p56lck expression correlates with CD4 endocytosis in primary lymphoid and myeloid cells. Eur J Immunol 28:3639–3647PubMedCrossRefGoogle Scholar
  89. Pereyra F et al (2010) The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330(6010):1551–1557PubMedGoogle Scholar
  90. Picard C, Greenway A, Holloway G, Olive D, Collette Y (2002) Interaction with simian Hck tyrosine kinase reveals convergent evolution of the Nef protein from simian and human immunodeficiency viruses despite differential molecular surface usage. Virology 295:320–327PubMedCrossRefGoogle Scholar
  91. Piguet V, Gu F, Foti M, Demaurex N, Gruenberg J, Carpentier JL, Trono D (1999) Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell 97:63–73PubMedCrossRefGoogle Scholar
  92. Pizzato M, Helander A, Popova E, Calistri A, Zamborlini A, Palu G, Gottlinger HG (2007) Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef. Proc Natl Acad Sci USA 104:6812–6817PubMedCrossRefGoogle Scholar
  93. Poe JA, Smithgall TE (2009) HIV-1 Nef dimerization is required for Nef-mediated receptor downregulation and viral replication. J Mol Biol 394:329–342PubMedCrossRefGoogle Scholar
  94. Preusser A, Briese L, Baur AS, Willbold D (2001) Direct in vitro binding of full-length human immunodeficiency virus type 1 Nef protein to CD4 cytoplasmic domain. J Virol 75:3960–3964PubMedCrossRefGoogle Scholar
  95. Pritchard CA, Samuels ML, Bosch E, McMahon M (1995) Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol 15:6430–6442PubMedGoogle Scholar
  96. Pulkkinen K, Renkema GH, Kirchhoff F, Saksela K (2004) Nef associates with p21-activated kinase 2 in a p21-GTPase-dependent dynamic activation complex within lipid rafts. J Virol 78:12773–12780PubMedCrossRefGoogle Scholar
  97. Qiao X, He B, Chiu A, Knowles DM, Chadburn A, Cerutti A (2006) Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells. Nat Immunol 7:302–310PubMedCrossRefGoogle Scholar
  98. Rahim MM, Chrobak P, Hu C, Hanna Z, Jolicoeur P (2009) Adult AIDS-like disease in a novel inducible human immunodeficiency virus type 1 Nef transgenic mouse model: CD4+ T-cell activation is Nef dependent and can occur in the absence of lymphophenia. J Virol 83:11830–11846PubMedCrossRefGoogle Scholar
  99. Rauch S, Pulkkinen K, Saksela K, Fackler OT (2008) Human immunodeficiency virus type 1 Nef recruits the guanine exchange factor Vav1 via an unexpected interface into plasma membrane microdomains for association with p21-activated kinase 2 activity. J Virol 82:2918–2929PubMedCrossRefGoogle Scholar
  100. Rhee SS, Marsh JW (1994) HIV-1 Nef activity in murine T cells. CD4 modulation and positive enhancement. J Immunol 152:5128–5134PubMedGoogle Scholar
  101. Roeth JF, Collins KL (2006) Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Microbiol Mol Biol Rev 70:548–563PubMedCrossRefGoogle Scholar
  102. Rose JJ, Janvier K, Chandrasekhar S, Sekaly RP, Bonifacino JS, Venkatesan S (2005) CD4 down-regulation by HIV-1 and simian immunodeficiency virus (SIV) Nef proteins involves both internalization and intracellular retention mechanisms. J Biol Chem 280:7413–7426PubMedCrossRefGoogle Scholar
  103. Saksela K, Cheng G, Baltimore D (1995) Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef + viruses but not for down-regulation of CD4. EMBO J 14:484–491PubMedGoogle Scholar
  104. Sawai ET, Baur A, Struble H, Peterlin BM, Levy JA, Cheng-Mayer C (1994) Human immunodeficiency virus type 1 Nef associates with a cellular serine kinase in T lymphocytes. Proc Natl Acad Sci USA 91:1539–1543PubMedCrossRefGoogle Scholar
  105. Sawai ET, Baur AS, Peterlin BM, Levy JA, Cheng-Mayer C (1995) A conserved domain and membrane targeting of Nef from HIV and SIV are required for association with a cellular serine kinase activity. J Biol Chem 270:15307–15314PubMedCrossRefGoogle Scholar
  106. Schaefer MR, Wonderlich ER, Roeth JF, Leonard JA, Collins KL (2008) HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog 4:e1000131PubMedCrossRefGoogle Scholar
  107. Schindler M, Rajan D, Specht A, Ritter C, Pulkkinen K, Saksela K, Kirchhoff F (2007) Association of Nef with p21-activated kinase 2 is dispensable for efficient human immunodeficiency virus type 1 replication and cytopathicity in ex vivo-infected human lymphoid tissue. J Virol 81:13005–13014PubMedCrossRefGoogle Scholar
  108. Simmen T, Nobile M, Bonifacino JS, Hunziker W (1999) Basolateral sorting of furin in MDCK cells requires a phenylalanine-isoleucine motif together with an acidic amino acid cluster. Mol Cell Biol 19:3136–3144PubMedGoogle Scholar
  109. Singh RK, Lau D, Noviello CM, Ghosh P, Guatelli JC (2009) An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the micro subunit of the AP-1 endosomal coat complex. PLoS ONE 4:e8364PubMedCrossRefGoogle Scholar
  110. Stolp B, Reichman-Fried M, Abraham L, Pan X, Giese SI, Hannemann S, Goulimari P, Raz E, Grosse R, Fackler OT (2009) HIV-1 Nef interferes with host cell motility by deregulation of Cofilin. Cell Host Microbe 6:174–186PubMedCrossRefGoogle Scholar
  111. Swigut T, Iafrate AJ, Muench J, Kirchhoff F, Skowronski J (2000) Simian and human immunodeficiency virus Nef proteins use different surfaces to downregulate class I major histocompatibility complex antigen expression. J Virol 74:5691–5701PubMedCrossRefGoogle Scholar
  112. Swigut T, Alexander L, Morgan J, Lifson J, Mansfield KG, Lang S, Johnson RP, Skowronski J, Desrosiers R (2004) Impact of Nef-mediated downregulation of major histocompatibility complex class I on immune response to simian immunodeficiency virus. J Virol 78:13335–13344PubMedCrossRefGoogle Scholar
  113. Thoulouze MI, Sol-Foulon N, Blanchet F, Dautry-Varsat A, Schwartz O, Alcover A (2006) Human immunodeficiency virus type-1 infection impairs the formation of the immunological synapse. Immunity 24:547–561PubMedCrossRefGoogle Scholar
  114. Trible RP, Emert-Sedlak L, Smithgall TE (2006) HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. J Biol Chem 281:27029–27038PubMedCrossRefGoogle Scholar
  115. Trible RP, Emert-Sedlak L, Wales TE, Ayyavoo V, Engen JR, Smithgall TE (2007) Allosteric loss-of-function mutations in HIV-1 Nef from a long-term non-progressor. J Mol Biol 374:121–129PubMedCrossRefGoogle Scholar
  116. Tuazon PT, Spanos WC, Gump EL, Monnig CA, Traugh JA (1997) Determinants for substrate phosphorylation by p21-activated protein kinase (gamma-PAK). Biochemistry 36:16059–16064PubMedCrossRefGoogle Scholar
  117. Van den Broeke C, Radu M, Chernoff J, Favoreel HW (2010) An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol 20(3):160–169PubMedCrossRefGoogle Scholar
  118. Walk SF, Alexander M, Maier B, Hammarskjold ML, Rekosh DM, Ravichandran KS (2001) Design and use of an inducibly activated human immunodeficiency virus type 1 Nef to study immune modulation. J Virol 75:834–843PubMedCrossRefGoogle Scholar
  119. Wei BL, Denton PW, O’Neill E, Luo T, Foster JL, Garcia JV (2005) Inhibition of lysosome and proteasome function enhances human immunodeficiency virus type 1 infection. J Virol 79:5705–5712PubMedCrossRefGoogle Scholar
  120. Williams M, Roeth JF, Kasper MR, Filzen TM, Collins KL (2005) Human immunodeficiency virus type 1 Nef domains required for disruption of major histocompatibility complex class I trafficking are also necessary for coprecipitation of Nef with HLA-A2. J Virol 79:632–636PubMedCrossRefGoogle Scholar
  121. Wiskerchen M, Cheng-Mayer C (1996) HIV-1 Nef association with cellular serine kinase correlates with enhanced virion infectivity and efficient proviral DNA synthesis. Virology 224:292–301PubMedCrossRefGoogle Scholar
  122. Wonderlich ER, Williams M, Collins KL (2008) The tyrosine binding pocket in the adaptor protein 1 (AP-1) mu1 subunit is necessary for Nef to recruit AP-1 to the major histocompatibility complex class I cytoplasmic tail. J Biol Chem 283:3011–3022PubMedCrossRefGoogle Scholar
  123. Xu W, Santini PA, Sullivan JS, He B, Shan M, Ball SC, Dyer WB, Ketas TJ, Chadburn A, Cohen-Gould L, Knowles DM, Chiu A, Sanders RW, Chen K, Cerutti A (2009) HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol 10:1008–1017PubMedCrossRefGoogle Scholar
  124. Yamada T, Kaji N, Odawara T, Chiba J, Iwamoto A, Kitamura Y (2003) Proline 78 is crucial for human immunodeficiency virus type 1 Nef to down-regulate class I human leukocyte antigen. J Virol 77:1589–1594PubMedCrossRefGoogle Scholar
  125. Yang OO, Nguyen PT, Kalams SA, Dorfman T, Gottlinger HG, Stewart S, Chen IS, Threlkeld S, Walker BD (2002) Nef-mediated resistance of human immunodeficiency virus type 1 to antiviral cytotoxic T lymphocytes. J Virol 76:1626–1631PubMedCrossRefGoogle Scholar
  126. Ye H, Choi HJ, Poe J, Smithgall TE (2004) Oligomerization is required for HIV-1 Nef-induced activation of the Src family protein-tyrosine kinase, Hck. Biochemistry 43:15775–15784PubMedCrossRefGoogle Scholar
  127. Yi L, Rosales T, Rose JJ, Chaudhury B, Knutson JR, Venkatesan S (2010) HIV-1 Nef binds a subpopulation of MHC-I throughout its trafficking itinerary and down-regulates MHC-I by perturbing both anterograde and retrograde trafficking. J Biol Chem 285:30884–30905PubMedCrossRefGoogle Scholar
  128. Youker RT, Shinde U, Day R, Thomas G (2009) At the crossroads of homoeostasis and disease: roles of the PACS proteins in membrane traffic and apoptosis. Biochem J 421:1–15PubMedCrossRefGoogle Scholar
  129. Zarrinpar A, Bhattacharyya RP, Lim WA (2003) The structure and function of proline recognition domains. Sci STKE 2003:RE8.Google Scholar
  130. Zazopoulos E, Haseltine WA (1993) Disulfide bond formation in the human immunodeficiency virus type 1 Nef protein. J Virol 67:1676–1680PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • John L. Foster
    • 1
  • Sarah J. Denial
    • 1
  • Brenda R. S. Temple
    • 2
  • J. Victor Garcia
    • 1
  1. 1.Division of Infectious Diseases, Center for AIDS ResearchChapel HillUSA
  2. 2.Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics CoreUniversity of North CarolinaChapel HillUSA

Personalised recommendations