Journal of Neuroimmune Pharmacology

, Volume 5, Issue 1, pp 122–132 | Cite as

Morphine and Rapid Disease Progression in Nonhuman Primate Model of AIDS: Inverse Correlation Between Disease Progression and Virus Evolution

  • Vanessa Rivera-AmillEmail author
  • Peter S. Silverstein
  • Richard J. NoelJr.
  • Santosh Kumar
  • Anil Kumar
Invited Review


HIV and simian immunodeficiency virus (SIV) have a formidable capacity for mutation and adaptation, a characteristic that has contributed to the extensive genetic variability. Evolutionary pressures imposed within the host and the viral capacity to mutate lead to the generation of such variants. To date, very little information is available regarding the evolution of HIV with drug abuse as a cofounding factor. Using our macaque model of drug dependency and AIDS, we have investigated the dynamics of SIV mutations in the genes tat, vpr, envelope, and nef. The results presented in this review, from our laboratory and others, contribute to the overall understanding of how drugs of abuse might influence immune selective pressure contribution to variation in different SIV genes. Additionally, the studies presented could help enlighten the development of HIV vaccines that take into consideration viral diversity.


morphine SIV viral evolution AIDS 



This work was supported by National Institute on Drug Abuse (DA015013) and NIGMS-RCMI (RR003050).


  1. Ahmad N, Venkatesan S (1988) Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. Science 241:1481–1485CrossRefPubMedGoogle Scholar
  2. Aldrovandi GM, Zack JA (1996) Replication and pathogenicity of human immunodeficiency virus type 1 accessory gene mutants in SCID-hu mice. J Virol 70:1505–1511PubMedGoogle Scholar
  3. Andersen JL, Le Rouzic E, Planelles V (2008) HIV-1 Vpr: mechanisms of G2 arrest and apoptosis. Exp Mol Pathol 85:2–10CrossRefPubMedGoogle Scholar
  4. Ansari AA (2004) Drugs of abuse and HIV—a perspective. J Neuroimmunol 147:9–12CrossRefPubMedGoogle Scholar
  5. Arora PK, Fride E, Petitto J, Waggie K, Skolnick P (1990) Morphine-induced immune alterations in vivo. Cell Immunol 126:343–353CrossRefPubMedGoogle Scholar
  6. Beagles K, Wellstein A, Bayer B (2004) Systemic morphine administration suppresses genes involved in antigen presentation. Mol Pharmacol 65:437–442CrossRefPubMedGoogle Scholar
  7. Birch M-R, Learmont JC, Dyer WB, Deacon NJ, Zaunders JJ, Saksena N, Cunningham AL, Mills J, Sullivan JS (2001) An examination of signs of disease progression in survivors of the Sydney Blood Bank Cohort (SBBC). J Clin Virol 22:263–270CrossRefPubMedGoogle Scholar
  8. Blumberg BM, Epstein LG, Saito Y, Chen D, Sharer LR, Anand R (1992) Human immunodeficiency virus type 1 nef quasispecies in pathological tissue. J Virol 66:5256–5264PubMedGoogle Scholar
  9. Boven LA, Noorbakhsh F, Bouma G, van der Zee R, Vargas DL, Pardo C, McArthur JC, Nottet HSLM, Power C (2007) Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. J Neurovirol 13:173–184CrossRefPubMedGoogle Scholar
  10. Bratanich AC, Liu C, McArthur JC, Fudyk T, Glass JD, Mittoo S, Klassen GA, Power C (1998) Brain-derived HIV-1 tat sequences from AIDS patients with dementia show increased molecular heterogeneity. J Neurovirol 4:387–393CrossRefPubMedGoogle Scholar
  11. Buch SJ, Villinger F, Pinson D, Hou Y, Adany I, Li Z, Dalal R, Raghavan R, Kumar A, Narayan O (2002) Innate differences between simian-human immunodeficiency virus (SHIV)(KU-2)-infected rhesus and pig-tailed macaques in development of neurological disease. Virology 295:54–62CrossRefPubMedGoogle Scholar
  12. Buonaguro L, Barillari G, Chang HK, Bohan CA, Kao V, Morgan R, Gallo RC, Ensoli B (1992) Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J Virol 66:7159–7167PubMedGoogle Scholar
  13. Catucci M, Venturi G, Romano L, Valensin PE, Zazzi M (2000) Analysis of the HIV-1 nef gene in five intravenous drug users with long-term nonprogressive HIV-1 infection in Italy. J Med Virol 60:294–299CrossRefPubMedGoogle Scholar
  14. Centers for Disease Control and Prevention (2006) HIV/AIDS surveillance report, 2006, vol 18. US Department of Health and Human Services, Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  15. Cheung R, Ravyn V, Wang L, Ptasznik A, Collman RG (2008) Signaling mechanism of HIV-1 gp120 and virion-induced IL-1beta release in primary human macrophages. J Immunol 180:6675–6684PubMedGoogle Scholar
  16. Chuang LF, Killam KF Jr, Chuang RY (1993a) Increased replication of simian immunodeficiency virus in CEM x174 cells by morphine sulfate. Biochem Biophys Res Commun 195:1165–1173CrossRefPubMedGoogle Scholar
  17. Chuang RY, Blackbourn DJ, Chaung LF, Liu Y, Killiam KF Jr (1993b) Modulation of simian AIDS by opioids. Adv Biosc 86:573–583Google Scholar
  18. Chuang RY, Suzuki S, Chuang TK, Miyagi T, Chuang LF, Doi RH (2005) Opioids and the progression of simian AIDS. Front Biosci 10:1666–1677CrossRefPubMedGoogle Scholar
  19. Churchill M, Sterjovski J, Gray L, Cowley D, Chatfield C, Learmont J, Sullivan J, Crowe S, Mills J, Brew B, Wesselingh S, McPhee D, Gorry P (2004) Longitudinal analysis of nef/long terminal repeat-deleted HIV-1 in blood and cerebrospinal fluid of a long-term survivor who developed HIV-associated dementia. J Infect Dis 190:2181–2186CrossRefPubMedGoogle Scholar
  20. Cicala C, Arthos J, Selig SM, Dennis G Jr, Hosack DA, Van Ryk D, Spangler ML, Steenbeke TD, Khazanie P, Gupta N, Yang J, Daucher M, Lempicki RA, Fauci AS (2002) HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proc Natl Acad Sci USA 99:9380–9385CrossRefPubMedGoogle Scholar
  21. Daniel MD, Letvin NL, King NW, Kannagi M, Sehgal PK, Hunt RD, Kanki PJ, Essex M, Desrosiers RC (1985) Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science 228:1201–1204CrossRefPubMedGoogle Scholar
  22. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, McPhee DA, Greenway AL, Ellett A, Chatfield C, Lawson VA, Crowe S, Maerz A, Sonza S, Learmont J, Sullivan JS, Cunningham A, Dwyer D, Dowton D, Mills J (1995) Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270:988–991CrossRefPubMedGoogle Scholar
  23. Di Marzio P, Choe S, Ebright M, Knoblauch R, Landau NR (1995) Mutational analysis of cell cycle arrest, nuclear localization and virion packaging of human immunodeficiency virus type 1 Vpr. J Virol 69:7909–7916PubMedGoogle Scholar
  24. Donahoe RM (2004) Multiple ways that drug abuse might influence AIDS progression: clues from a monkey model. J Neuroimmunol 147:28–32CrossRefPubMedGoogle Scholar
  25. Donahoe RM, Byrd LD, McClure HM, Fultz P, Brantley M, Marsteller F, Ansari AA, Wenzel D, Aceto M (1993) Consequences of opiate-dependency in a monkey model of AIDS. Adv Exp Med Biol 335:21–28PubMedGoogle Scholar
  26. Donahoe RM, O'eil SP, Marsteller FA, Novembre FJ, Anderson DC, Lankford-Turner P, McClure HH (2009) Probable deceleration of progression of Simian AIDS affected by opiate dependency: studies with a rhesus macaque/SIVsmm9 model. J Acquir Immune Defic Syndr 50:241–249CrossRefPubMedGoogle Scholar
  27. Eisenstein TK, Hilburger ME (1998) Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J Neuroimmunol 83:36–44CrossRefPubMedGoogle Scholar
  28. Flaherty MT, Hauer DA, Mankowski JL, Zink MC, Clements JE (1997) Molecular and biological characterization of a neurovirulent molecular clone of simian immunodeficiency virus. J Virol 71:5790–5798PubMedGoogle Scholar
  29. Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A, Rawat SS, Puri A, Durell S, Blumenthal R (2003) The HIV Env-mediated fusion reaction. Biochim Biophys Acta 1614:36–50CrossRefPubMedGoogle Scholar
  30. Geyer M, Fackler OT, Peterlin BM (2001) Structure–function relationships in HIV-1 Nef. EMBO Rep 2:580–585CrossRefPubMedGoogle Scholar
  31. Guo CJ, Li Y, Tian S, Wang X, Douglas SD, Ho WZ (2002) Morphine enhances HIV infection of human blood mononuclear phagocytes through modulation of beta-chemokines and CCR5 receptor. J Investig Med 50:435–442CrossRefPubMedGoogle Scholar
  32. Heinzinger NK, Bukinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315CrossRefPubMedGoogle Scholar
  33. Hilburger ME, Adler MW, Truant AL, Meissler JJ Jr, Satishchandran V, Rogers TJ, Eisenstein TK (1997) Morphine induces sepsis in mice. J Infect Dis 1997:183–188CrossRefGoogle Scholar
  34. Hofmann-Lehmann R, Vlasak J, Williams AL, Chenine AL, McClure HM, Anderson DC, O'Neil S, Ruprecht RM (2003) Live attenuated, nef-deleted SIV is pathogenic in most adult macaques after prolonged observation. AIDS 17:157–166CrossRefPubMedGoogle Scholar
  35. Iafrate AJ, Carl S, Bronson S, Stahl-Hennig C, Swigut T, Skowronski J, Kirchhoff F (2000) Disrupting surfaces of nef required for downregulation of CD4 and for enhancement of virion infectivity attenuates simian immunodeficiency virus replication in vivo. J Virol 74:9836–9844CrossRefPubMedGoogle Scholar
  36. Igarashi T, Endo Y, Englund G, Sadjadpour R, Matano T, Buckler C, Buckler-White A, Plishka R, Theodore T, Shibata R, Martin M (1999) Emergence of a highly pathogenic simian/human immunodeficiency virus in a rhesus macaque treated with anti-CD8 mAb during a primary infection with a nonpathogenic virus. Proc Natl Acad Sci USA 96:14049–14054CrossRefPubMedGoogle Scholar
  37. Joag SV, Li Z, Foresman L, Stephens EB, Zhao LJ, Adany I, Pinson DM, McClure HM, Narayan O (1996) Chimeric simian/human immunodeficiency virus that causes progressive loss of CD4+ T cells and AIDS in pig-tailed macaques. J Virol 70:3189–3197PubMedGoogle Scholar
  38. Jowett JB, Planelles V, Poon B, Shah NP, Chen ML, Chen IS (1995) The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2+M phase of the cell cycle. J Virol 69:6304–6313PubMedGoogle Scholar
  39. Kapadia F, Vlahov D, Donahoe RM, Friedland G (2005) The role of substance abuse in HIV disease progression: reconciling differences from laboratory and epidemiologic investigations. Clin Infect Dis 41:1027–1034CrossRefPubMedGoogle Scholar
  40. Karlsson GB, Halloran M, Li J, Park IW, Gomila R, Reimann KA, Axthelm MK, Iliff SA, Letvin NL, Sodroski J (1997) Characterization of molecularly cloned simian-human immunodeficiency viruses causing rapid CD4+ lymphocyte depletion in rhesus monkeys. J Virol 71:4218–4225PubMedGoogle Scholar
  41. Kestler HW III, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC (1991) Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65:651–662CrossRefPubMedGoogle Scholar
  42. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC (1995) Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 332:228–232CrossRefPubMedGoogle Scholar
  43. Kodama T, Mori K, Kawahara T, Ringler DJ, Desrosiers RC (1993) Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with simian AIDS. J Virol 67:6522–6534PubMedGoogle Scholar
  44. Kondo M, Shima T, Nishizawa M, Sudo K, Iwamuro S, Okabe T, Takebe Y, Imai M (2005) Identification of attenuated variants of HIV-1 circulating recombinant form 01_AE that are associated with slow disease progression due to gross genetic alterations in the nef/long terminal repeat sequences. J Infect Dis 192:56–61CrossRefPubMedGoogle Scholar
  45. Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly MM, Levy R, Wolinsky SM (1994) Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol 68:7467–7481PubMedGoogle Scholar
  46. Kumar A, Lifson JD, Li Z, Jia F, Mukherjee S, Adany I, Liu Z, Piatak M, Sheffer D, McClure HM, Narayan O (2001) Sequential immunization of macaques with two differentially attenuated vaccines induced long-term virus-specific immune responses and conferred protection against AIDS caused by heterologous simian human immunodeficiency virus (SHIV(89.6)P). Virology 279:241–256CrossRefPubMedGoogle Scholar
  47. Kumar R, Torres C, Yamamura Y, Rodriguez I, Martinez M, Staprans S, Donahoe RM, Kraiselburd E, Stephens EB, Kumar A (2004) Modulation by morphine of viral set point in rhesus macaques infected with simian immunodeficiency virus and simian-human immunodeficiency virus. J Virol 78:11425–11428CrossRefPubMedGoogle Scholar
  48. Kumar R, Orsoni S, Norman L, Verma AS, Tirado G, Giavedoni LD, Staprans S, Miller GM, Buch SJ, Kumar A (2006) Chronic morphine exposure causes pronounced virus replication in cerebral compartment and accelerated onset of AIDS in SIV/SHIV-infected Indian rhesus macaques. Virology 354:192–206CrossRefPubMedGoogle Scholar
  49. Laspia MF, Rice AP, Mathews MB (1989) HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59:283–292CrossRefPubMedGoogle Scholar
  50. Le Rouzic E, Benichou S (2005) The Vpr protein from HIV-1: distinct roles along the viral life cycle. Retrovirology 2:11CrossRefPubMedGoogle Scholar
  51. Lee C, Tomkowicz B, Freedman BD, Collman RG (2005) HIV-1 gp120-induced TNF-{alpha} production by primary human macrophages is mediated by phosphatidylinositol-3 (PI-3) kinase and mitogen-activated protein (MAP) kinase pathways. J Leukoc Biol 78:1016–1023CrossRefPubMedGoogle Scholar
  52. Luciw PA, Pratt-Lowe E, Shaw KE, Levy JA, Cheng-Mayer C (1995) Persistent infection of rhesus macaques with T-cell-line-tropic and macrophage-tropic clones of simian/human immunodeficiency viruses (SHIV). Proc Natl Acad Sci USA 92:7490–7494CrossRefPubMedGoogle Scholar
  53. Madden JJ, Whaley WL, Ketelsen D (1998) Opiate binding sites in the cellular immune system: expression and regulation. J Neuroimmunol 83:57–62CrossRefPubMedGoogle Scholar
  54. Mahajan SD, Aalinkeel R, Reynolds JL, Nair BB, Fernandez SF, Schwartz SA, Nair MP (2005) Morphine exacerbates HIV-1 viral protein gp120 induced modulation of chemokine gene expression in U373 astrocytoma cells. Curr HIV Res 3:277–288CrossRefPubMedGoogle Scholar
  55. Malik AA, Radhakrishnan N, Reddy K, Smith AD, Singhal PC (2002) Morphine-induced macrophage apoptosis modulates migration of macrophages: use of in vitro model of urinary tract infection. J Endourol 16:605–610CrossRefPubMedGoogle Scholar
  56. Mayne M, Bratanich AC, Chen P, Rana F, Nath A, Power C (1998) HIV-1 tat molecular diversity and induction of TNF-alpha: implications for HIV-induced neurological disease. Neuroimmunomodulation 5:184–192CrossRefPubMedGoogle Scholar
  57. Messmer D, Hatsukari I, Hitosugi N, Schmidt-Wolf IG, Singhal PC (2006) Morphine reciprocally regulates IL-10 and IL-12 production by monocyte-derived human dendritic cells and enhances T cell activation. Mol Med 12:284–290PubMedGoogle Scholar
  58. Micoli KJ, Pan G, Wu Y, Williams JP, Cook WJ, McDonald JM (2000) Requirement of calmodulin binding by HIV-1 gp160 for enhanced FAS-mediated apoptosis. J Biol Chem 275:1233–1240CrossRefPubMedGoogle Scholar
  59. Nathanson N, Hirsch VM, Mathieson BJ (1999) The role of nonhuman primates in the development of an AIDS vaccine. AIDS 13(Suppl A):S113–S120PubMedGoogle Scholar
  60. Noel RJ Jr, Kumar A (2006) Virus replication and disease progression inversely correlate with SIV tat evolution in morphine-dependent and SIV/SHIV-infected Indian rhesus macaques. Virology 346:127–138CrossRefPubMedGoogle Scholar
  61. Noel RJ Jr, Kumar A (2007) SIV Vpr evolution is inversely related to disease progression in a morphine-dependent rhesus macaque model of AIDS. Virology 359:397–404CrossRefPubMedGoogle Scholar
  62. Noel RJ Jr, Marrero-Otero Z, Kumar R, Chompre-Gonzalez GS, Verma AS, Kumar A (2006a) Correlation between SIV Tat evolution and AIDS progression in cerebrospinal fluid of morphine-dependent and control macaques infected with SIV and SHIV. Virology 349:440–452CrossRefPubMedGoogle Scholar
  63. Noel RJ, Toro-Bahamonde A, Marrero-Otero Z, Kumar R, Kumar A (2006b) Lack of correlation between SIV Nef evolution and rapid disease progression in morphine-dependent non-human primate model of AIDS. AIDS Res Hum Retroviruses 22:817–823CrossRefPubMedGoogle Scholar
  64. Perez-Casanova A, Noel RJ Jr, Rivera-Amill V, Husain K, Kumar A (2007) Morphine-mediated deterioration of oxidative stress leads to rapid disease progression in SIV/SHIV-infected macaques. AIDS Res Hum Retroviruses 23:1004–1007CrossRefPubMedGoogle Scholar
  65. Philippon V, Vellutini C, Gambarelli D, Harkiss G, Arbuthnott G, Metzger D, Roubin R, Filippi P (1994) The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: involvement of cytokines. Virology 205:519–529CrossRefPubMedGoogle Scholar
  66. Power C, McArthur JC, Johnson RT, Griffin DE, Glass JD, Perryman S, Chesebro B (1994) Demented and nondemented patients with AIDS differ in brain-derived human immunodeficiency virus type 1 envelope sequences. J Virol 68:4643–4649PubMedGoogle Scholar
  67. Power C, McArthur JC, Nath A, Wehrly K, Mayne M, Nishio J, Langelier T, Johnson RT, Chesebro B (1998) Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differs between demented and nondemented AIDS patients. J Virol 72:9045–9053PubMedGoogle Scholar
  68. Pu H, Tian J, Flora G, Woo LY, Nath A, Hennig B, Toborek M (2003) HIV-1 tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol Cell Neurosci 24:224–237CrossRefPubMedGoogle Scholar
  69. Rappaport J, Joseph J, Croul S, Alexander G, Del Valle L, Amini S, Khalili K (1999) Molecular pathway involved in HIV-1-induced CNS pathology: role of viral regulatory protein. Tat J Leukoc Biol 65:458–465Google Scholar
  70. Rautonen N, Rautonen J, Martin NL, Wara DW (1994) HIV-1 Tat induces cytokine synthesis by uninfected mononuclear cells. AIDS 8:1504–1506CrossRefPubMedGoogle Scholar
  71. Reimann KA, Watson A, Dailey PJ, Lin W, Lord CI, Steenbeke TD, Parker RA, Axthelm MK, Karlsson GB (1999) Viral burden and disease progression in rhesus monkeys infected with chimeric simian-human immunodeficiency viruses. Virology 256:15–21CrossRefPubMedGoogle Scholar
  72. Rice AP, Mathews MB (1988) Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature 332:551–553CrossRefPubMedGoogle Scholar
  73. Ritola K, Robertson K, Fiscus SA, Hall C, Swanstrom R (2005) Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J Virol 79:10830–10834CrossRefPubMedGoogle Scholar
  74. Rivera-Amill V, Noel RJ Jr, Orsini S, Tirado G, Garcia JM, Buch S, Kumar A (2007) Variable region 4 of SIV envelope correlates with rapid disease progression in morphine-exposed macaques infected with SIV/SHIV. Virology 358:373–383CrossRefPubMedGoogle Scholar
  75. Rivera-Amill V, Noel RJ Jr, Roman IR, Flores YG, Buch S, Kumar A (2009) Analysis of the V1V2 region of the SIV envelope in the brains of morphine-dependent and control SIV/SHIV-infected macaques. AIDS Res Hum Retroviruses 25:531–534CrossRefPubMedGoogle Scholar
  76. Ronaldson PT, Bendayan R (2006) HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol Pharmacol 70:1087–1098CrossRefPubMedGoogle Scholar
  77. Saksena NK, Ge YC, Wang B, Xiang SH, Dwyer DE, Randle C, Palasanthiran P, Ziegler J, Cunningham AL (1996) An HIV-1 infected long-term non-progressor (LTNP): molecular analysis of HIV-1 strains in the vpr and nef genes. Ann Acad Med Singapore 25:848–854PubMedGoogle Scholar
  78. Saksena NK, Wang B, Ge YC, Chang J, Dwyer DE, Xiang SH, Packham DR, Randle C, Cunningham AL (1997) Region-specific changes, gene duplications, and random deletions in the nef gene from HIV type 1-infected brain tissues and blood of a demented patient. AIDS Res Hum Retroviruses 13:111–116CrossRefPubMedGoogle Scholar
  79. Salvi R, Garbuglia AR, Di Caro A, Pulciani S, Montella F, Benedetto A (1998) Grossly defective nef gene sequences in a human immunodeficiency virus type 1-seropositive long-term nonprogressor. J Virol 72:3646–3657PubMedGoogle Scholar
  80. Saurer TB, Carrigan KA, Ijames SG, Lysle DT (2006) Suppression of natural killer cell activity by morphine is mediated by the nucleus accumbens shell. J Neuroimmunol 173:3–11CrossRefPubMedGoogle Scholar
  81. Sharp BM, Roy S, Bidlack JM (1998) Evidence for opioid receptors on cells involved in host defense and the immune system. J Neuroimmunol 83:45–56CrossRefPubMedGoogle Scholar
  82. Silverstein PS, Mackay GA, Mukherjee S, Li Z, Piatak M Jr, Lifson JD, Narayan O, Kumar A (2000) Pathogenic simian/human immunodeficiency virus SHIV(KU) inoculated into immunized macaques caused infection, but virus burdens progressively declined with time. J Virol 74:10489–10497CrossRefPubMedGoogle Scholar
  83. Smit TK, Brew BJ, Tourtellotte W, Morgello S, Gelman BB, Saksena NK (2004) Independent evolution of human immunodeficiency virus (HIV) drug resistance mutations in diverse areas of the brain in HIV-infected patients, with and without dementia, on antiretroviral treatment. J Virol 78:10133–10148CrossRefPubMedGoogle Scholar
  84. Stipp HL, Kumar A, Narayan O (2000) Characterization of immune escape viruses from a macaque immunized with live-virus vaccine and challenged with pathogenic SHIVKU-1. AIDS Res Hum Retroviruses 16:1573–1580CrossRefPubMedGoogle Scholar
  85. Suzuki S, Chuang AJ, Chuang LF, Doi RH, Chuang RY (2002) Morphine promotes simian acquired immunodeficiency syndrome virus replication in monkey peripheral mononuclear cells: induction of CC chemokine receptor 5 expression for virus entry. J Infect Dis 185:1826–1829CrossRefPubMedGoogle Scholar
  86. Swingler S, Mann AM, Zhou J, Swingler C, Stevenson M (2007) Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein. PLoS Pathog 3:1281–1290CrossRefPubMedGoogle Scholar
  87. Tirado G, Kumar A (2006) Evolution of SIV envelope in morphine-dependent rhesus macaques with rapid disease progression. AIDS Res Hum Retroviruses 22:114–119CrossRefPubMedGoogle Scholar
  88. Tomkowicz B, Lee C, Ravyn V, Cheung R, Ptasznik A, Collman RG (2006) The Src kinase Lyn is required for CCR5 signaling in response to MIP-1beta and R5 HIV-1 gp120 in human macrophages. Blood 108:1145–1150CrossRefPubMedGoogle Scholar
  89. Turchan-Cholewo J, Dimayuga FO, Gupta S, Keller JN, Knapp PE, Hauser KF, Bruce-Keller AJ (2009) Morphine and HIV-Tat increase microglial-free radical production and oxidative stress: possible role in cytokine regulation. J Neurochem 108:202–215CrossRefPubMedGoogle Scholar
  90. Wang J, Barke RA, Charboneau R, Roy S (2005) Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection. J Immunol 174:426–434PubMedGoogle Scholar
  91. Wang J, Barke RA, Ma J, Charboneau R, Roy S (2008) Opiate abuse, innate immunity, and bacterial infectious diseases. Arch Immunol Ther Exp (Warsz) 56:299–309CrossRefGoogle Scholar
  92. Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–1888CrossRefPubMedGoogle Scholar
  93. Yao H, Allen JE, Zhu X, Callen S, Buch S (2009) Cocaine and human immunodeficiency virus type 1 gp120 mediate neurotoxicity through overlapping signaling pathways. J Neurovirol 15:164–175CrossRefPubMedGoogle Scholar
  94. Zhu Y, Pe'ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, Amendt B, Mathews MB, Price DH (1997) Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 11:2622–2632CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vanessa Rivera-Amill
    • 1
    Email author
  • Peter S. Silverstein
    • 2
  • Richard J. NoelJr.
    • 3
  • Santosh Kumar
    • 2
  • Anil Kumar
    • 2
  1. 1.Department of MicrobiologyPonce School of MedicinePonceUSA
  2. 2.Division of Pharmacology, School of PharmacyUniversity of MissouriKansas CityUSA
  3. 3.Department of BiochemistryPonce School of MedicinePonceUSA

Personalised recommendations