Advertisement

Journal of Neuroimmune Pharmacology

, Volume 4, Issue 4, pp 448–461 | Cite as

Microglia in Infectious Diseases of the Central Nervous System

  • Monica M. Mariani
  • Tammy Kielian
Invited Review

Abstract

Microglia are the resident macrophage population in the central nervous system (CNS) parenchyma and, as such, are poised to provide a first line of defense against invading pathogens. Microglia are endowed with a vast repertoire of pattern recognition receptors that include such family members as Toll-like receptors and phagocytic receptors, which collectively function to sense and eliminate microbes invading the CNS parenchyma. In addition, microglial activation elicits a broad range of pro-inflammatory cytokines and chemokines that are involved in the recruitment and subsequent activation of peripheral immune cells infiltrating the infected CNS. Studies from several laboratories have demonstrated the ability of microglia to sense and respond to a wide variety of pathogens capable of colonizing the CNS including bacterial, viral, and fungal species. This review will highlight the role of microglia in microbial recognition and the resultant antipathogen response that ensues in an attempt to clear these infections. Implications as to whether microglial activation is uniformly beneficial to the CNS or in some circumstances may exacerbate pathology will also be discussed.

Keywords

microglia bacterial meningitis brain abscess Lyme neuroborreliosis Toxoplasma encephalitis cerebral malaria fungal infections review 

Notes

Acknowledgments

This work was supported by the NIH National Institute of Neurological Disorders and Stroke (NINDS; RO1s NS040740, NS055385, and NS053487) to T.K.

References

  1. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9(1):143–150PubMedCrossRefGoogle Scholar
  2. Aguirre K, Miller S (2002) MHC class II-positive perivascular microglial cells mediate resistance to Cryptococcus neoformans brain infection. Glia 39(2):184–188PubMedCrossRefGoogle Scholar
  3. Akira S (2006) TLR signaling. Curr Top Microbiol Immunol 311:1–16PubMedCrossRefGoogle Scholar
  4. Aloisi F (2001) Immune function of microglia. Glia 36(2):165–179PubMedCrossRefGoogle Scholar
  5. Aravalli RN, Hu S, Woods JP, Lokensgard JR (2008) Histoplasma capsulatum yeast phase-specific protein Yps3p induces Toll-like receptor 2 signaling. J Neuroinflammation 5:30PubMedCrossRefGoogle Scholar
  6. Baldwin AC, Kielian T (2004) Persistent immune activation associated with a mouse model of Staphylococcus aureus-induced experimental brain abscess. J Neuroimmunol 151(1–2):24–32PubMedCrossRefGoogle Scholar
  7. Bernardino AL, Myers TA, Alvarez X, Hasegawa A, Philipp MT (2008) Toll-like receptors: insights into their possible role in the pathogenesis of lyme neuroborreliosis. Infect Immun 76(10):4385–4395PubMedCrossRefGoogle Scholar
  8. Bernardino AL, Kaushal D, Philipp MT (2009) The antibiotics doxycycline and minocycline inhibit the inflammatory responses to the lyme disease spirochete Borrelia burgdorferi. J Infect Dis 199(9):1379–1388PubMedCrossRefGoogle Scholar
  9. Blasi E, Barluzzi R, Mazzolla R, Tancini B, Saleppico S, Puliti M, Pitzurra L, Bistoni F (1995) Role of nitric oxide and melanogenesis in the accomplishment of anticryptococcal activity by the BV-2 microglial cell line. J Neuroimmunol 58(1):111–116PubMedCrossRefGoogle Scholar
  10. Brandenburg LO, Varoga D, Nicolaeva N, Leib SL, Wilms H, Podschun R, Wruck CJ, Schroder JM, Pufe T, Lucius R (2008) Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J Neuropathol Exp Neurol 67(11):1041–1054PubMedCrossRefGoogle Scholar
  11. Braun JS, Novak R, Murray PJ, Eischen CM, Susin SA, Kroemer G, Halle A, Weber JR, Tuomanen EI, Cleveland JL (2001) Apoptosis-inducing factor mediates microglial and neuronal apoptosis caused by pneumococcus. J Infect Dis 184(10):1300–1309PubMedCrossRefGoogle Scholar
  12. Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, Tuomanen EI, Weber JR (2002) Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. J Clin Invest 109(1):19–27PubMedGoogle Scholar
  13. Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J (1998) MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273(20):12203–12209PubMedCrossRefGoogle Scholar
  14. Carson MJ, Reilly CR, Sutcliffe JG, Lo D (1998) Mature microglia resemble immature antigen-presenting cells. Glia 22(1):72–85PubMedCrossRefGoogle Scholar
  15. Cassiani-Ingoni R, Cabral ES, Lunemann JD, Garza Z, Magnus T, Gelderblom H, Munson PJ, Marques A, Martin R (2006) Borrelia burgdorferi induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression. J Neuropathol Exp Neurol 65(6):540–548PubMedCrossRefGoogle Scholar
  16. Chao CC, Anderson WR, Hu S, Gekker G, Martella A, Peterson PK (1993) Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism. Clin Immunol Immunopathol 67(2):178–183PubMedCrossRefGoogle Scholar
  17. Chao CC, Gekker G, Hu S, Peterson PK (1994) Human microglial cell defense against Toxoplasma gondii. The role of cytokines. J Immunol 152(3):1246–1252PubMedGoogle Scholar
  18. Coban C, Ishii KJ, Uematsu S, Arisue N, Sato S, Yamamoto M, Kawai T, Takeuchi O, Hisaeda H, Horii T et al (2007) Pathological role of Toll-like receptor signaling in cerebral malaria. Int Immunol 19(1):67–79PubMedCrossRefGoogle Scholar
  19. Colton C, Wilt S, Gilbert D, Chernyshev O, Snell J, Dubois-Dalcq M (1996) Species differences in the generation of reactive oxygen species by microglia. Mol Chem Neuropathol 28(1–3):15–20PubMedCrossRefGoogle Scholar
  20. Das Sarma J, Ciric B, Marek R, Sadhukhan S, Caruso ML, Shafagh J, Fitzgerald DC, Shindler KS, Rostami AM (2009) Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflammation 6(1):14PubMedCrossRefGoogle Scholar
  21. Deckert M, Sedgwick JD, Fischer E, Schluter D (2006) Regulation of microglial cell responses in murine Toxoplasma encephalitis by CD200/CD200 receptor interaction. Acta Neuropathol 111(6):548–558PubMedCrossRefGoogle Scholar
  22. Deckert-Schluter M, Buck C, Weiner D, Kaefer N, Rang A, Hof H, Wiestler OD, Schluter D (1997) Interleukin-10 downregulates the intracerebral immune response in chronic Toxoplasma encephalitis. J Neuroimmunol 76(1–2):167–176PubMedCrossRefGoogle Scholar
  23. Deininger MH, Kremsner PG, Meyermann R, Schluesener H (2002) Macrophages/microglial cells in patients with cerebral malaria. Eur Cytokine Netw 13(2):173–185PubMedGoogle Scholar
  24. Djukic M, Mildner A, Schmidt H, Czesnik D, Bruck W, Priller J, Nau R, Prinz M (2006) Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 129(Pt 9):2394–2403PubMedCrossRefGoogle Scholar
  25. Dobbie M, Crawley J, Waruiru C, Marsh K, Surtees R (2000) Cerebrospinal fluid studies in children with cerebral malaria: an excitotoxic mechanism? Am J Trop Med Hyg 62(2):284–290PubMedGoogle Scholar
  26. Engwerda C, Belnoue E, Gruner AC, Renia L (2005) Experimental models of cerebral malaria. Curr Top Microbiol Immunol 297:103–143PubMedCrossRefGoogle Scholar
  27. Esen N, Kielian T (2006) Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. J Immunol 176(11):6802–6811PubMedGoogle Scholar
  28. Esen N, Kielian T (2007) Effects of low dose GM-CSF on microglial inflammatory profiles to diverse pathogen-associated molecular patterns (PAMPs). J Neuroinflammation 4:10PubMedCrossRefGoogle Scholar
  29. Fischer HG, Reichmann G (2001) Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166(4):2717–2726PubMedGoogle Scholar
  30. Fischer HG, Bielinsky AK, Nitzgen B, Daubener W, Hadding U (1993) Functional dichotomy of mouse microglia developed in vitro: differential effects of macrophage and granulocyte/macrophage colony-stimulating factor on cytokine secretion and antitoxoplasmic activity. J Neuroimmunol 45(1–2):193–201PubMedCrossRefGoogle Scholar
  31. Fischer HG, Nitzgen B, Reichmann G, Gross U, Hadding U (1997) Host cells of Toxoplasma gondii encystation in infected primary culture from mouse brain. Parasitol Res 83(7):637–641PubMedCrossRefGoogle Scholar
  32. Ford AL, Goodsall AL, Hickey WF, Sedgwick JD (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154(9):4309–4321PubMedGoogle Scholar
  33. Freund YR, Zaveri NT, Javitz HS (2001) In vitro investigation of host resistance to Toxoplasma gondii infection in microglia of BALB/c and CBA/Ca mice. Infect Immun 69(2):765–772PubMedCrossRefGoogle Scholar
  34. Galiza EP, Heath PT (2009) Improving the outcome of neonatal meningitis. Curr Opin Infect Dis 22(3):229–234PubMedCrossRefGoogle Scholar
  35. Garcao P, Oliveira CR, Agostinho P (2006) Comparative study of microglia activation induced by amyloid-beta and prion peptides: role in neurodegeneration. J Neurosci Res 84(1):182–193PubMedCrossRefGoogle Scholar
  36. Garg S, Nichols JR, Esen N, Liu S, Phulwani NK, Syed MMd, Wood WH, Zhang Y, Becker KG, Aldrich A, Kielian T (2009) MyD88 expression by CNS-resident cells is pivotal for eliciting protective immunity in brain abscesses. ASN Neuro. doi: 10.1042/AN20090004
  37. Goos M, Lange P, Hanisch UK, Prinz M, Scheffel J, Bergmann R, Ebert S, Nau R (2007) Fibronectin is elevated in the cerebrospinal fluid of patients suffering from bacterial meningitis and enhances inflammation caused by bacterial products in primary mouse microglial cell cultures. J Neurochem 102(6):2049–2060PubMedCrossRefGoogle Scholar
  38. Griffith JW, O'Connor C, Bernard K, Town T, Goldstein DR, Bucala R (2007) Toll-like receptor modulation of murine cerebral malaria is dependent on the genetic background of the host. J Infect Dis 196(10):1553–1564PubMedCrossRefGoogle Scholar
  39. Gurley C, Nichols J, Liu S, Phulwani NK, Esen N, Kielian T (2008) Microglia and astrocyte activation by Toll-like receptor ligands: modulation by PPAR-gamma agonists. PPAR Res 2008:453120PubMedGoogle Scholar
  40. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40(2):140–155PubMedCrossRefGoogle Scholar
  41. Hanisch UK, Prinz M, Angstwurm K, Hausler KG, Kann O, Kettenmann H, Weber JR (2001) The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls. Eur J Immunol 31(7):2104–2115PubMedCrossRefGoogle Scholar
  42. Hengge UR, Tannapfel A, Tyring SK, Erbel R, Arendt G, Ruzicka T (2003) Lyme borreliosis. Lancet Infect Dis 3(8):489–500PubMedCrossRefGoogle Scholar
  43. Hill JO, Aguirre KM (1994) CD4+ T cell-dependent acquired state of immunity that protects the brain against Cryptococcus neoformans. J Immunol 152(5):2344–2350PubMedGoogle Scholar
  44. Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ (2006) Immunopathogenesis of cerebral malaria. Int J Parasitol 36(5):569–582PubMedCrossRefGoogle Scholar
  45. Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40(2):195–205PubMedCrossRefGoogle Scholar
  46. Idro R, Jenkins NE, Newton CR (2005) Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 4(12):827–840PubMedCrossRefGoogle Scholar
  47. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H et al (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30(1):108–119PubMedCrossRefGoogle Scholar
  48. Jones ME, Draghi DC, Karlowsky JA, Sahm DF, Bradley JS (2004) Prevalence of antimicrobial resistance in bacteria isolated from central nervous system specimens as reported by U.S. hospital laboratories from 2000 to 2002. Ann Clin Microbiol Antimicrob 3:3PubMedCrossRefGoogle Scholar
  49. Kawanokuchi J, Shimizu K, Nitta A, Yamada K, Mizuno T, Takeuchi H, Suzumura A (2008) Production and functions of IL-17 in microglia. J Neuroimmunol 194(1–2):54–61PubMedCrossRefGoogle Scholar
  50. Kielian T (2004) Immunopathogenesis of brain abscess. J Neuroinflammation 1(1):16PubMedCrossRefGoogle Scholar
  51. Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83(5):711–730PubMedCrossRefGoogle Scholar
  52. Kielian T, Barry B, Hickey WF (2001) CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol 166(7):4634–4643PubMedGoogle Scholar
  53. Kielian T, Mayes P, Kielian M (2002) Characterization of microglial responses to Staphylococcus aureus: effects on cytokine, costimulatory molecule, and Toll-like receptor expression. J Neuroimmunol 130(1–2):86–99PubMedCrossRefGoogle Scholar
  54. Kielian T, Bearden ED, Baldwin AC, Esen N (2004) IL-1 and TNF-alpha play a pivotal role in the host immune response in a mouse model of Staphylococcus aureus-induced experimental brain abscess. J Neuropathol Exp Neurol 63(4):381–396PubMedGoogle Scholar
  55. Kielian T, Esen N, Bearden ED (2005) Toll-like receptor 2 (TLR2) is pivotal for recognition of S. aureus peptidoglycan but not intact bacteria by microglia. Glia 49(4):567–576PubMedCrossRefGoogle Scholar
  56. Kielian T, Phulwani NK, Esen N, Syed MM, Haney AC, McCastlain K, Johnson J (2007) MyD88-dependent signals are essential for the host immune response in experimental brain abscess. J Immunol 178(7):4528–4537PubMedGoogle Scholar
  57. Kim YS, Tauber MG (1996) Neurotoxicity of glia activated by gram-positive bacterial products depends on nitric oxide production. Infect Immun 64(8):3148–3153PubMedGoogle Scholar
  58. Kim K, Weiss LM (2008) Toxoplasma: the next 100 years. Microbes Infect 10(9):978–984PubMedCrossRefGoogle Scholar
  59. Kleinert H, Pautz A, Linker K, Schwarz PM (2004) Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500(1–3):255–266PubMedCrossRefGoogle Scholar
  60. Kleinschek MA, Muller U, Brodie SJ, Stenzel W, Kohler G, Blumenschein WM, Straubinger RK, McClanahan T, Kastelein RA, Alber G (2006) IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol 176(2):1098–1106PubMedGoogle Scholar
  61. Koedel U, Scheld WM, Pfister HW (2002) Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2(12):721–736PubMedCrossRefGoogle Scholar
  62. Larsen PH, Holm TH, Owens T (2007) Toll-like receptors in brain development and homeostasis. Sci STKE 2007(402):pe47PubMedCrossRefGoogle Scholar
  63. Lee SC, Kress Y, Dickson DW, Casadevall A (1995) Human microglia mediate anti-Cryptococcus neoformans activity in the presence of specific antibody. J Neuroimmunol 62(1):43–52PubMedCrossRefGoogle Scholar
  64. Lehnardt S, Wennekamp J, Freyer D, Liedtke C, Krueger C, Nitsch R, Bechmann I, Weber JR, Henneke P (2007) TLR2 and caspase-8 are essential for group B Streptococcus-induced apoptosis in microglia. J Immunol 179(9):6134–6143PubMedGoogle Scholar
  65. Lepenies B, Cramer JP, Burchard GD, Wagner H, Kirschning CJ, Jacobs T (2008) Induction of experimental cerebral malaria is independent of TLR2/4/9. Med Microbiol Immunol 197(1):39–44PubMedCrossRefGoogle Scholar
  66. Lipovsky MM, Gekker G, Anderson WR, Molitor TW, Peterson PK, Hoepelman AI (1997) Phagocytosis of nonopsonized Cryptococcus neoformans by swine microglia involves CD14 receptors. Clin Immunol Immunopathol 84(2):208–211PubMedCrossRefGoogle Scholar
  67. Lipovsky MM, Juliana AE, Gekker G, Hu S, Hoepelman AI, Peterson PK (1998) Effect of cytokines on anticryptococcal activity of human microglial cells. Clin Diagn Lab Immunol 5(3):410–411PubMedGoogle Scholar
  68. Lu CH, Chang WN, Lui CC (2006) Strategies for the management of bacterial brain abscess. J Clin Neurosci 13(10):979–985PubMedCrossRefGoogle Scholar
  69. Luder CG, Giraldo-Velasquez M, Sendtner M, Gross U (1999) Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Exp Parasitol 93(1):23–32PubMedCrossRefGoogle Scholar
  70. Luder CG, Lang C, Giraldo-Velasquez M, Algner M, Gerdes J, Gross U (2003) Toxoplasma gondii inhibits MHC class II expression in neural antigen-presenting cells by down-regulating the class II transactivator CIITA. J Neuroimmunol 134(1–2):12–24PubMedCrossRefGoogle Scholar
  71. Manning SD (2003) Molecular epidemiology of Streptococcus agalactiae (group B Streptococcus). Front Biosci 8:s1–s18PubMedCrossRefGoogle Scholar
  72. Mathisen GE, Johnson JP (1997) Brain abscess. Clin Infect Dis 25(4):763–779, quiz 780-1PubMedCrossRefGoogle Scholar
  73. Mausberg AK, Jander S, Reichmann G (2009) Intracerebral granulocyte-macrophage colony-stimulating factor induces functionally competent dendritic cells in the mouse brain. Glia 57:1341–1350PubMedCrossRefGoogle Scholar
  74. McGilvray ID, Serghides L, Kapus A, Rotstein OD, Kain KC (2000) Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance. Blood 96(9):3231–3240PubMedGoogle Scholar
  75. McKimmie CS, Roy D, Forster T, Fazakerley JK (2006) Innate immune response gene expression profiles of N9 microglia are pathogen-type specific. J Neuroimmunol 175(1–2):128–141PubMedCrossRefGoogle Scholar
  76. Medana IM, Hunt NH, Chan-Ling T (1997) Early activation of microglia in the pathogenesis of fatal murine cerebral malaria. Glia 19(2):91–103PubMedCrossRefGoogle Scholar
  77. Medana IM, Chan-Ling T, Hunt NH (2000) Reactive changes of retinal microglia during fatal murine cerebral malaria: effects of dexamethasone and experimental permeabilization of the blood–brain barrier. Am J Pathol 156(3):1055–1065PubMedGoogle Scholar
  78. Miklossy J, Kasas S, Zurn AD, McCall S, Yu S, McGeer PL (2008) Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation 5:40PubMedCrossRefGoogle Scholar
  79. Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363(9425):1965–1976PubMedCrossRefGoogle Scholar
  80. Mukhopadhyay S, Herre J, Brown GD, Gordon S (2004) The potential for Toll-like receptors to collaborate with other innate immune receptors. Immunology 112(4):521–530PubMedCrossRefGoogle Scholar
  81. Murray HW, Rubin BY, Masur H, Roberts RB (1984) Impaired production of lymphokines and immune (gamma) interferon in the acquired immunodeficiency syndrome. N Engl J Med 310(14):883–889PubMedCrossRefGoogle Scholar
  82. Nau R, Bruck W (2002) Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 25(1):38–45PubMedCrossRefGoogle Scholar
  83. Nichols JR, Aldrich AL, Mariani MM, Vidlak D, Esen N, Kielian T (2009) TLR2 deficiency leads to increased Th17 infiltrates in experimental brain abscesses. J Immunol 182(11):7119–7130PubMedCrossRefGoogle Scholar
  84. O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364PubMedCrossRefGoogle Scholar
  85. Pachner AR, Gelderblom H, Cadavid D (2001) The rhesus model of Lyme neuroborreliosis. Immunol Rev 183:186–204PubMedCrossRefGoogle Scholar
  86. Pashenkov M, Teleshova N, Kouwenhoven M, Smirnova T, Jin YP, Kostulas V, Huang YM, Pinegin B, Boiko A, Link H (2002) Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections. J Neuroimmunol 122(1–2):106–116PubMedCrossRefGoogle Scholar
  87. Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC (2004) CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 189(2):204–213PubMedCrossRefGoogle Scholar
  88. Peppoloni S, Colombari B, Neglia R, Quaglino D, Iannelli F, Oggioni MR, Pozzi G, Blasi E (2006) The lack of Pneumococcal surface protein C (PspC) increases the susceptibility of Streptococcus pneumoniae to the killing by microglia. Med Microbiol Immunol 195(1):21–28PubMedCrossRefGoogle Scholar
  89. Peterson PK, Hu S, Anderson WR, Chao CC (1994) Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J Infect Dis 170(2):457–460PubMedGoogle Scholar
  90. Pfister HW, Rupprecht TA (2006) Clinical aspects of neuroborreliosis and post-Lyme disease syndrome in adult patients. Int J Med Microbiol 296(Suppl 40):11–16PubMedCrossRefGoogle Scholar
  91. Pfister HW, Feiden W, Einhaupl KM (1993) Spectrum of complications during bacterial meningitis in adults. Results of a prospective clinical study. Arch Neurol 50(6):575–581PubMedGoogle Scholar
  92. Pfister HW, Wilske B, Weber K (1994) Lyme borreliosis: basic science and clinical aspects. Lancet 343(8904):1013–1016PubMedCrossRefGoogle Scholar
  93. Ponomarev ED, Novikova M, Maresz K, Shriver LP, Dittel BN (2005) Development of a culture system that supports adult microglial cell proliferation and maintenance in the resting state. J Immunol Methods 300(1–2):32–46PubMedCrossRefGoogle Scholar
  94. Prasad KN, Mishra AM, Gupta D, Husain N, Husain M, Gupta RK (2006) Analysis of microbial etiology and mortality in patients with brain abscess. J Infect 53(4):221–227PubMedCrossRefGoogle Scholar
  95. Prinz M, Kann O, Draheim HJ, Schumann RR, Kettenmann H, Weber JR, Hanisch UK (1999) Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines. J Neuropathol Exp Neurol 58(10):1078–1089PubMedCrossRefGoogle Scholar
  96. Ramesh G, Borda JT, Dufour J, Kaushal D, Ramamoorthy R, Lackner AA, Philipp MT (2008) Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis. Am J Pathol 173(5):1415–1427PubMedCrossRefGoogle Scholar
  97. Rasley A, Anguita J, Marriott I (2002) Borrelia burgdorferi induces inflammatory mediator production by murine microglia. J Neuroimmunol 130(1–2):22–31PubMedCrossRefGoogle Scholar
  98. Rasley A, Tranguch SL, Rati DM, Marriott I (2006) Murine glia express the immunosuppressive cytokine, interleukin-10, following exposure to Borrelia burgdorferi or Neisseria meningitidis. Glia 53(6):583–592PubMedCrossRefGoogle Scholar
  99. Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17(4):942–964, table of contentsPubMedCrossRefGoogle Scholar
  100. Rozenfeld C, Martinez R, Figueiredo RT, Bozza MT, Lima FR, Pires AL, Silva PM, Bonomo A, Lannes-Vieira J, De Souza W et al (2003) Soluble factors released by Toxoplasma gondii-infected astrocytes down-modulate nitric oxide production by gamma interferon-activated microglia and prevent neuronal degeneration. Infect Immun 71(4):2047–2057PubMedCrossRefGoogle Scholar
  101. Rupprecht TA, Koedel U, Fingerle V, Pfister HW (2008) The pathogenesis of lyme neuroborreliosis: from infection to inflammation. Mol Med 14(3–4):205–212PubMedGoogle Scholar
  102. Saccente M (2008) Central nervous system histoplasmosis. Curr Treat Options Neurol 10(3):161–167PubMedCrossRefGoogle Scholar
  103. Scheld WM, Koedel U, Nathan B, Pfister HW (2002) Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 186(Suppl 2):S225–S233PubMedCrossRefGoogle Scholar
  104. Schluesener HJ, Kremsner PG, Meyermann R (1998) Widespread expression of MRP8 and MRP14 in human cerebral malaria by microglial cells. Acta Neuropathol 96(6):575–580PubMedCrossRefGoogle Scholar
  105. Schluter D, Hein A, Dorries R, Deckert-Schluter M (1995) Different subsets of T cells in conjunction with natural killer cells, macrophages, and activated microglia participate in the intracerebral immune response to Toxoplasma gondii in athymic nude and immunocompetent rats. Am J Pathol 146(4):999–1007PubMedGoogle Scholar
  106. Schluter D, Kaefer N, Hof H, Wiestler OD, Deckert-Schluter M (1997) Expression pattern and cellular origin of cytokines in the normal and Toxoplasma gondii-infected murine brain. Am J Pathol 150(3):1021–1035PubMedGoogle Scholar
  107. Schluter D, Kwok LY, Lutjen S, Soltek S, Hoffmann S, Korner H, Deckert M (2003) Both lymphotoxin-alpha and TNF are crucial for control of Toxoplasma gondii in the central nervous system. J Immunol 170(12):6172–6182PubMedGoogle Scholar
  108. Schneemann M, Schoedon G, Hofer S, Blau N, Guerrero L, Schaffner A (1993) Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis 167(6):1358–1363PubMedGoogle Scholar
  109. Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5(9):722–735PubMedCrossRefGoogle Scholar
  110. Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 88(16):7438–7442PubMedCrossRefGoogle Scholar
  111. Shimoda M, Jones VC, Kobayashi M, Suzuki F (2006) Microglial cells from psychologically stressed mice as an accelerator of cerebral cryptococcosis. Immunol Cell Biol 84(6):551–556PubMedCrossRefGoogle Scholar
  112. Somand D, Meurer W (2009) Central nervous system infections. Emerg Med Clin North Am 27(1):89–100, ixPubMedCrossRefGoogle Scholar
  113. Sowa G, Gekker G, Lipovsky MM, Hu S, Chao CC, Molitor TW, Peterson PK (1997) Inhibition of swine microglial cell phagocytosis of Cryptococcus neoformans by femtomolar concentrations of morphine. Biochem Pharmacol 53(6):823–828PubMedCrossRefGoogle Scholar
  114. Strack A, Schluter D, Asensio VC, Campbell IL, Deckert M (2002) Regulation of the kinetics of intracerebral chemokine gene expression in murine Toxoplasma encephalitis: impact of host genetic factors. Glia 40(3):372–377PubMedCrossRefGoogle Scholar
  115. Szklarczyk A, Stins M, Milward EA, Ryu H, Fitzsimmons C, Sullivan D, Conant K (2007) Glial activation and matrix metalloproteinase release in cerebral malaria. J Neurovirol 13(1):2–10PubMedCrossRefGoogle Scholar
  116. Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85(3):352–370PubMedCrossRefGoogle Scholar
  117. Togbe D, Schofield L, Grau GE, Schnyder B, Boissay V, Charron S, Rose S, Beutler B, Quesniaux VF, Ryffel B (2007) Murine cerebral malaria development is independent of toll-like receptor signaling. Am J Pathol 170(5):1640–1648PubMedCrossRefGoogle Scholar
  118. Townsend GC, Scheld WM (1998) Infections of the central nervous system. Adv Intern Med 43:403–447PubMedGoogle Scholar
  119. Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 177(1):36–39PubMedGoogle Scholar
  120. Trajkovic V, Stosic-Grujicic S, Samardzic T, Markovic M, Miljkovic D, Ramic Z, Mostarica Stojkovic M (2001) Interleukin-17 stimulates inducible nitric oxide synthase activation in rodent astrocytes. J Neuroimmunol 119(2):183–191PubMedCrossRefGoogle Scholar
  121. Underhill DM, Gantner B (2004) Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microbes Infect 6(15):1368–1373PubMedCrossRefGoogle Scholar
  122. Wennekamp J, Henneke P (2008) Induction and termination of inflammatory signaling in group B streptococcal sepsis. Immunol Rev 225:114–127PubMedCrossRefGoogle Scholar
  123. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7(6):837–847PubMedCrossRefGoogle Scholar
  124. Zhou Q, Gault RA, Kozel TR, Murphy WJ (2007) Protection from direct cerebral cryptococcus infection by interferon-gamma-dependent activation of microglial cells. J Immunol 178(9):5753–5761PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations