Journal of Neuroimmune Pharmacology

, Volume 5, Issue 1, pp 31–43

Imaging Mass Spectrometry for Visualization of Drug and Endogenous Metabolite Distribution: Toward In Situ Pharmacometabolomes

Invited Review


It is important to determine how a candidate drug is distributed and metabolized within the body in early phase of drug discovery. Recently, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS; also referred to as mass spectrometry imaging) has attracted great interest for monitoring drug delivery and metabolism. Since this emerging technique enables simultaneous imaging of many types of metabolite molecules, MALDI-IMS can visualize and distinguish the parent drug and its metabolites. As another important advantage, changes in endogenous metabolites in response to drug administration can be mapped and evaluated in tissue sections. In this review, we discuss the capabilities of current IMS techniques for imaging metabolite molecules and summarize representative studies on imaging of both endogenous and exogenous metabolites. In addition, current limitations and problems with the technique are discussed, and reports of progress toward solving these problems are summarized. With this new tool, the pharmacological research community can begin to map the in situ pharmacometabolome.


imaging mass spectrometry MALDI pharmacometabolome 


  1. Ageta H, Asai S, Sugiura Y, Goto-Inoue N, Zaima N, Setou M (2008) Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol 42:16–23CrossRefGoogle Scholar
  2. Altelaar AF, Klinkert I, Jalink K, de Lange RP, Adan RA, Heeren RM, Piersma SR (2006) Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem 78:734–742. doi:10.1021/ac0513111 CrossRefPubMedGoogle Scholar
  3. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044. doi:10.1373/49.7.1041 CrossRefPubMedGoogle Scholar
  4. Astigarraga E, Barreda-Gomez G, Lombardero L, Fresnedo O, Castano F, Giralt MT, Ochoa B, Rodriguez-Puertas R, Fernandez JA (2008) Profiling and imaging of lipids on brain and liver tissue by matrix-assisted laser desorption/ionization mass spectrometry using 2-mercaptobenzothiazole as a matrix. Anal Chem 80:9105–9114CrossRefPubMedGoogle Scholar
  5. Atkinson SJ, Loadman PM, Sutton C, Patterson LH, Clench MR (2007) Examination of the distribution of the bioreductive drug AQ4N and its active metabolite AQ4 in solid tumours by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 21:1271–1276. doi:10.1002/rcm.2952 CrossRefPubMedGoogle Scholar
  6. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760. doi:10.1021/ac970888i CrossRefPubMedGoogle Scholar
  7. Cha S, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem 79:2373–2385. doi:10.1021/ac062251h CrossRefPubMedGoogle Scholar
  8. Chaurand P, Stoeckli M, Caprioli RM (1999) Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem 71:5263–5270. doi:10.1021/ac990781q CrossRefPubMedGoogle Scholar
  9. Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM (2006) New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 5:2889–2900. doi:10.1021/pr060346u CrossRefPubMedGoogle Scholar
  10. Chen Y, Allegood J, Liu Y, Wang E, Cachon-Gonzalez B, Cox TM, Merrill AH Jr, Sullards MC (2008) Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem 80:2780–2788. doi:10.1021/ac702350g CrossRefPubMedGoogle Scholar
  11. Colliver TL, Brummel CL, Pacholski ML, Swanek FD, Ewing AG, Winograd N (1997) Atomic and molecular imaging at the single-cell level with TOF-SIMS. Anal Chem 69:2225–2231. doi:10.1021/ac9701748 CrossRefPubMedGoogle Scholar
  12. Cornett DS, Frappier SL, Caprioli RM (2008) MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem 80:5648–5653. doi:10.1021/ac800617s CrossRefPubMedGoogle Scholar
  13. Fuchser J, Cornett S, Becker M (2008) High resolution molecular imaging of pharmaceuticals at therapeutic levels. Application note # FTMS-37. Bruker Daltonics, BillericaGoogle Scholar
  14. Garrett TJ, Prieto-Conaway MC, Kovtoun V, Bui H, Izgarian N, Stafford G, Yost RA (2006) Imaging of small molecules in tissue sections with a new intermediate-pressure MALDI linear ion trap mass spectrometer. Int J Mass Spectrom 260:11Google Scholar
  15. Gharahdaghi F, Kirchner M, Fernandez J, Mische SM (1996) Peptide-mass profiles of polyvinylidene difluoride-bound proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the presence of nonionic detergents. Anal Biochem 233:94–99. doi:10.1006/abio.1996.0012 CrossRefPubMedGoogle Scholar
  16. Hayasaka T, Goto-Inoue N, Sugiura Y, Zaima N, Nakanishi H, Ohishi K, Nakanishi S, Naito T, Taguchi R, Setou M (2008) Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun Mass Spectrom 22:3415–3426. doi:10.1002/rcm.3751 CrossRefPubMedGoogle Scholar
  17. Jackson SN, Wang HY, Woods AS (2005a) Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem 77:4523–4527. doi:10.1021/ac050276v CrossRefPubMedGoogle Scholar
  18. Jackson SN, Wang HY, Woods AS (2005b) In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 16:2052–2056. doi:10.1016/j.jasms.2005.08.014 CrossRefPubMedGoogle Scholar
  19. Jackson SN, Ugarov M, Egan T, Post JD, Langlais D, Albert Schultz J, Woods AS (2007a) MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom 42:1093–1098. doi:10.1002/jms.1245 CrossRefPubMedGoogle Scholar
  20. Jackson SN, Wang HY, Woods AS (2007b) In situ structural characterization of glycerophospholipids and sulfatides in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 18:17–26. doi:10.1016/j.jasms.2006.08.015 CrossRefPubMedGoogle Scholar
  21. Jones JJ, Borgmann S, Wilkins CL, O’Brien RM (2006) Characterizing the phospholipid profiles in mammalian tissues by MALDI FTMS. Anal Chem 78:3062–3071. doi:10.1021/ac0600858 CrossRefPubMedGoogle Scholar
  22. Jungalwala FB, Hayssen V, Pasquini JM, McCluer RH (1979) Separation of molecular species of sphingomyelin by reversed-phase high-performance liquid chromatography. J Lipid Res 20:579–587PubMedGoogle Scholar
  23. Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78:6448–6456. doi:10.1021/ac060788p CrossRefPubMedGoogle Scholar
  24. Kokaji T (2008) Applied biosystems’ IMS. In: Setou M (ed) Mass microscopy; imaging mass spectrometry protocol book. Springer, TokyoGoogle Scholar
  25. Kotani M, Kawashima I, Ozawa H, Terashima T, Tai T (1993) Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology 3:137–146. doi:10.1093/glycob/3.2.137 CrossRefPubMedGoogle Scholar
  26. Kowalski JM, Kowalski P, Holle A, Deininger SO, Khatib-Shahidi S, Caprioli RM (2007) MALDI tissue imaging of drugs with the ultraflex MALDI TOF/TOF. Application note # MT-87. Bruker Daltonics, BillericaGoogle Scholar
  27. Krause E, Wenschuh H, Jungblut PR (1999) The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal Chem 71:4160–4165. doi:10.1021/ac990298f CrossRefPubMedGoogle Scholar
  28. Li Y, Shrestha B, Vertes A (2007) Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Anal Chem 79:523–532. doi:10.1021/ac061577n CrossRefPubMedGoogle Scholar
  29. Li Y, Shrestha B, Vertes A (2008) Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics. Anal Chem 80:407–420. doi:10.1021/ac701703f CrossRefPubMedGoogle Scholar
  30. Liu Q, Guo Z, He L (2007) Mass spectrometry imaging of small molecules using desorption/ionization on silicon. Anal Chem 79:3535–3541. doi:10.1021/ac0611465 CrossRefPubMedGoogle Scholar
  31. Liu Q, Xiao Y, Pagan-Miranda C, Chiu YM, He L (2008) Metabolite imaging using matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry (ME-SALDI-MS). J Am Soc Mass Spectrom 20:80–88CrossRefPubMedGoogle Scholar
  32. Mansson JE, Vanier MT, Svennerholm L (1978) Changes in the fatty acid and sphingosine composition of the major gangliosides of human brain with age. J Neurochem 30:273–275. doi:10.1111/j.1471-4159.1978.tb07064.x CrossRefPubMedGoogle Scholar
  33. Mazel V, Richardin P, Debois D, Touboul D, Cotte M, Brunelle A, Walter P, Laprevote O (2007) Identification of ritual blood in African artifacts using TOF-SIMS and synchrotron radiation microspectroscopies. Anal Chem 79:9253–9260. doi:10.1021/ac070993k CrossRefPubMedGoogle Scholar
  34. McLean JA, Ridenour WB, Caprioli RM (2007) Profiling and imaging of tissues by imaging ion mobility–mass spectrometry. J Mass Spectrom 42:1099–1105. doi:10.1002/jms.1254 CrossRefPubMedGoogle Scholar
  35. Monroe EB, Jurchen JC, Lee J, Rubakhin SS, Sweedler JV (2005) Vitamin E imaging and localization in the neuronal membrane. J Am Chem Soc 127:12152–12153. doi:10.1021/ja051223y CrossRefPubMedGoogle Scholar
  36. Murakami M, Nakatani Y, Atsumi G, Inoue K, Kudo I (1997) Regulatory functions of phospholipase A2. Crit Rev Immunol 17:225–283PubMedGoogle Scholar
  37. Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordstrom A, Siuzdak G (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036. doi:10.1038/nature06195 CrossRefPubMedGoogle Scholar
  38. Ostrowski SG, Van Bell CT, Winograd N, Ewing AG (2004) Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science 305:71–73. doi:10.1126/science.1099791 CrossRefPubMedGoogle Scholar
  39. Palestini P, Masserini M, Sonnino S, Giuliani A, Tettamanti G (1990) Changes in the ceramide composition of rat forebrain gangliosides with age. J Neurochem 54:230–235. doi:10.1111/j.1471-4159.1990.tb13305.x CrossRefPubMedGoogle Scholar
  40. Palestini P, Sonnino S, Tettamanti G (1991) Lack of the ganglioside molecular species containing the C20-long-chain bases in human, rat, mouse, rabbit, cat, dog, and chicken brains during prenatal life. J Neurochem 56:2048–2050. doi:10.1111/j.1471-4159.1991.tb03465.x CrossRefPubMedGoogle Scholar
  41. Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist’s guide to lipidomics. Nat Rev Neurosci 8:743–754. doi:10.1038/nrn2233 CrossRefPubMedGoogle Scholar
  42. Prideaux B, Atkinson SJ, Carolan VA, Morton J, Clench MR (2007) Sample preparation and data interpretation procedures for the examination of xenobiotic compounds in skin by indirect imaging MALDI-MS. Int J Mass Spectrom 260:243–251CrossRefGoogle Scholar
  43. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364. doi:10.1002/mas.10061 CrossRefPubMedGoogle Scholar
  44. Rujoi M, Estrada R, Yappert MC (2004) In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem 76:1657–1663. doi:10.1021/ac0349680 CrossRefPubMedGoogle Scholar
  45. Sambasivarao K, McCluer RH (1964) Lipid components of gangliosides. J Lipid Res 15:103–108PubMedGoogle Scholar
  46. Schwarz HP, Kostyk I, Marmolejo A, Sarappa C (1967) Long-chain bases of brain and spinal cord of rabbits. J Neurochem 14:91–97. doi:10.1111/j.1471-4159.1967.tb09497.x CrossRefPubMedGoogle Scholar
  47. Shimma S, Setou M (2007) Mass microscopy to reveal distinct localization of heme B (m/z 616) in colon cancer liver metastasis. J Mass Spectrom Soc Jpn 55:145–148Google Scholar
  48. Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M (2008) Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal Chem 80:878–885CrossRefPubMedGoogle Scholar
  49. Sonnino S, Chigorno V (2000) Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta 1469:63–77PubMedGoogle Scholar
  50. Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7:493–496. doi:10.1038/86573 CrossRefPubMedGoogle Scholar
  51. Stoeckli M, Staab D, Staufenbiel M, Wiederhold KH, Signor L (2002) Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem 311:33–39. doi:10.1016/S0003-2697(02)00386-X CrossRefPubMedGoogle Scholar
  52. Stoeckli M, Staab D, Schweitzer A (2006) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom 260:195–202Google Scholar
  53. Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M (2008) Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One 3:e3232. doi:10.1371/journal.pone.0003232 CrossRefPubMedGoogle Scholar
  54. Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res (in press)Google Scholar
  55. Taira S, Sugiura Y, Moritake S, Shimma S, Ichiyanagi Y, Setou M (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80:4761–4766. doi:10.1021/ac800081z CrossRefPubMedGoogle Scholar
  56. Touboul D, Brunelle A, Halgand F, De La Porte S, Laprevote O (2005) Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy. J Lipid Res 46:1388–1395. doi:10.1194/jlr.M500058-JLR200 CrossRefPubMedGoogle Scholar
  57. Trim PJ, Henson CM, Avery JL, McEwen A, Snel MF, Claude E, Marshall PS, West A, Princivalle AP, Clench MR (2008) Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal Chem 80:8628–8634CrossRefPubMedGoogle Scholar
  58. van Echten G, Sandhoff K (1993) Ganglioside metabolism. Enzymology, topology, and regulation. J Biol Chem 268:5341–5344PubMedGoogle Scholar
  59. Wang HY, Jackson SN, Woods AS (2007) Direct MALDI-MS analysis of cardiolipin from rat organs sections. J Am Soc Mass Spectrom 18:567–577. doi:10.1016/j.jasms.2006.10.023 CrossRefPubMedGoogle Scholar
  60. Zhang H, Cha S, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization MS and MS(n) of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal Chem 79:6575–6584. doi:10.1021/ac0706170 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
  2. 2.Mitsubishi Kagaku Institute of Life SciencesTokyoJapan
  3. 3.Department of Molecular AnatomyHamamatsu University School of MedicineHamamatsuJapan

Personalised recommendations