Journal of Neuroimmune Pharmacology

, Volume 4, Issue 3, pp 309–316 | Cite as

Methamphetamine-Induced Behavioral Sensitization Is Enhanced in the HIV-1 Transgenic Rat

  • Xiangqian Liu
  • Linda Chang
  • Michael Vigorito
  • Marley Kass
  • He Li
  • Sulie L. Chang
Original Article

Abstract

Methamphetamine (METH) addiction is prevalent among individuals with HIV infection. We hypothesize that HIV-positive individuals are more prone to METH use and to the development of METH dependence. To test this hypothesis, we examined the effects of METH (daily intraperitoneal injection 2.5 mg/kg for 6 days) on rearing and head movement in 12–13-week-old male HIV-1 transgenic (HIV-1Tg) rats compared to F344 control rats as an indicator of behavioral sensitization, also representing neural adaptation underlying drug dependence and addiction. Body and brain weights were also recorded. The involvement of the dopaminergic system was investigated by examining dopamine receptors 1 (D1R) and 2 (D2R) and dopamine transporter (DAT) expression in the striatum and prefrontal cortex. METH increased rearing number and duration in both F344 and HIV-1Tg rats. Rearing number was attenuated over time, whereas rearing duration remained constant. METH also induced a progressive increase in stereotypical head movement in both F344 and HIV-1Tg rats, but it was greater in the HIV-1Tg rats than in the F344 animals. The brain to body weight ratio was significantly lower in METH-treated HIV-1Tg rats compared to F344 controls. There was no significant difference in striatal D1R, D2R, or DAT messenger RNA in HIV-1Tg and F344 rats. However, D1R expression was greater in the prefrontal cortex of HIV-1Tg rats than F344 rats and was attenuated by METH. Our results indicate that METH-induced behavioral sensitization is greater in the presence of HIV infection and suggest that D1R expression in the prefrontal cortex may play a role in METH addiction in HIV-positive individuals.

Keywords

methamphetamine behavior HIV dopaminergic prefrontal cortex 

Notes

Acknowledgement

This study was supported, in part, by National Institutes of Health (NIH) grants K02-DA016149 and R21-DA019836 (SLC) and K24-DA016170 (LC).

References

  1. Ances BM, Roc AC, Wang J, Korczykowski M, Okawa J, Stern J, Kim J, Wolf R, Lawler K, Kolson DL, Detre JA (2006) Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology 66:862–866. doi: 10.1212/01.wnl.0000203524.57993.e2 PubMedCrossRefGoogle Scholar
  2. Baral S, Sifakis F, Cleghorn F, Beyrer C (2007) Elevated risk for HIV infection among men who have sex with men in low- and middle-income countries 2000–2006: a systematic review. PLoS Med 4:e339. doi: 10.1371/journal.pmed.0040339 PubMedCrossRefGoogle Scholar
  3. Bjorklund NL, Sorg BA, Schenk JO (2008) Neuronal dopamine transporter activity, density and methamphetamine inhibition are differentially altered in the nucleus accumbens and striatum with no changes in glycosylation in rats behaviorally sensitized to methamphetamine. Synapse 62:736–745. doi: 10.1002/syn.20528 PubMedCrossRefGoogle Scholar
  4. Brady AM, Glick SD, O'Donnell P (2005) Selective disruption of nucleus accumbens gating mechanisms in rats behaviorally sensitized to methamphetamine. J Neurosci 25:6687–6695. doi: 10.1523/JNEUROSCI.0643-05.2005 PubMedCrossRefGoogle Scholar
  5. Cass WA, Harned ME, Peters LE, Nath A, Maragos WF (2003) HIV-1 protein Tat potentiation of methamphetamine-induced decreases in evoked overflow of dopamine in the striatum of the rat. Brain Res 984:133–142. doi: 10.1016/S0006-8993(03)03122-6 PubMedCrossRefGoogle Scholar
  6. Chang L, Cloak C, Patterson K, Grob C, Miller EN, Ernst T (2005) Enlarged striatum in abstinent methamphetamine abusers: a possible compensatory response. Biol Psychiatry 57:967–974. doi: 10.1016/j.biopsych.2005.01.039 PubMedCrossRefGoogle Scholar
  7. Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS (2008) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. Neuroimage 42:869–878. doi: 10.1016/j.neuroimage.2008.05.011 PubMedCrossRefGoogle Scholar
  8. Cho AK, Melega WP, Kuczenski R, Segal DS (2001) Relevance of pharmacokinetic parameters in animal models of methamphetamine abuse. Synapse 39:161–166. doi: 10.1002/1098-2396(200102)39:2<161::AID-SYN7>3.0.CO;2-E PubMedCrossRefGoogle Scholar
  9. Clay SW, Allen J, Parran T (2008) A review of addiction. Postgrad Med 120:E01–E07PubMedCrossRefGoogle Scholar
  10. Colfax G, Shoptaw S (2005) The methamphetamine epidemic: implications for HIV prevention and treatment. Curr HIV/AIDS Rep 2:194–199. doi: 10.1007/s11904-005-0016-4 PubMedCrossRefGoogle Scholar
  11. Coutinho A, Flynn C, Burdo TH, Mervis RF, Fox HS (2008) Chronic methamphetamine induces structural changes in frontal cortex neurons and upregulates type I interferons. J Neuroimmune Pharmacol 3:241–245. doi: 10.1007/s11481-008-9113-7 PubMedCrossRefGoogle Scholar
  12. Ferris MJ, Mactutus CF, Booze RM (2008) Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: current status of dopamine system vulnerability in NeuroAIDS. Neurosci Biobehav Rev 32:883–909. doi: 10.1016/j.neubiorev.2008.01.004 PubMedCrossRefGoogle Scholar
  13. Ferris MJ, Frederick-Duus D, Fadel J, Mactutus CF, Booze RM (2009) In vivo microdialysis in awake, freely moving rats demonstrates HIV-1 Tat-induced alterations in dopamine transmission. Synapse 63:181–185. doi: 10.1002/syn.20594 PubMedCrossRefGoogle Scholar
  14. Gelman BB, Spencer JA, Holzer CE III, Soukup VM (2006) Abnormal striatal dopaminergic synapses in National NeuroAIDS Tissue Consortium subjects with HIV encephalitis. J Neuroimmune Pharmacol 1:410–420. doi: 10.1007/s11481-006-9030-6 PubMedCrossRefGoogle Scholar
  15. Gurwell JA, Nath A, Sun Q, Zhang J, Martin KM, Chen Y, Hauser KF (2001) Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 Tat protein in striatal neurons in vitro. Neuroscience 102:555–563. doi: 10.1016/S0306-4522(00)00461-9 PubMedCrossRefGoogle Scholar
  16. Hamamura T, Akiyama K, Akimoto K, Kashihara K, Okumura K, Ujike H, Otsuki S (1991) Co-administration of either a selective D1 or D2 dopamine antagonist with methamphetamine prevents methamphetamine-induced behavioral sensitization and neurochemical change, studied by in vivo intracerebral dialysis. Brain Res 546:40–46. doi: 10.1016/0006-8993(91)91156-U PubMedCrossRefGoogle Scholar
  17. Jedynak JP, Uslaner JM, Esteban JA, Robinson TE (2007) Methamphetamine-induced structural plasticity in the dorsal striatum. Eur J NeuroSci 25:847–853. doi: 10.1111/j.1460-9568.2007.05316.x PubMedCrossRefGoogle Scholar
  18. Jernigan TL, Gamst AC, Archibald SL, Fennema-Notestine C, Mindt MR, Marcotte TD, Heaton RK, Ellis RJ, Grant I (2005) Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry 162:1461–1472. doi: 10.1176/appi.ajp.162.8.1461 PubMedCrossRefGoogle Scholar
  19. Kelly MA, Low MJ, Rubinstein M, Phillips TJ (2008) Role of dopamine D1-like receptors in methamphetamine locomotor responses of D2 receptor knockout mice. Genes Brain Behav 7:568–577. doi: 10.1111/j.1601-183X.2008.00392.x PubMedCrossRefGoogle Scholar
  20. Molitor F, Truax SR, Ruiz JD, Sun RK (1998) Association of methamphetamine use during sex with risky sexual behaviors and HIV infection among non-injection drug users. West J Med 168:93–97PubMedGoogle Scholar
  21. Neubert JK, Rossi HL, Pogar J, Jenkins AC, Caudle RM (2007) Effects of mu- and kappa-2 opioid receptor agonists on pain and rearing behaviors. Behav Brain Funct 3:49. doi: 10.1186/1744-9081-3-49 PubMedCrossRefGoogle Scholar
  22. Pollack A (2004) Coactivation of D1 and D2 dopamine receptors: in marriage, a case of his, hers, and theirs. Sci STKE 2004:pe50. doi: 10.1126/stke.2552004pe50 PubMedCrossRefGoogle Scholar
  23. Proudnikov D, Yuferov V, Zhou Y, LaForge KS, Ho A, Kreek MJ (2003) Optimizing primer—probe design for fluorescent PCR. J Neurosci Methods 123:31–45PubMedCrossRefGoogle Scholar
  24. Ray PE, Liu XH, Robinson LR, Reid W, Xu L, Owens JW, Jones OD, Denaro F, Davis HG, Bryant JL (2003) A novel HIV-1 transgenic rat model of childhood HIV-1-associated nephropathy. Kidney Int 63:2242–2253. doi: 10.1046/j.1523-1755.2003.00028.x PubMedCrossRefGoogle Scholar
  25. Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, Jones O, Doodnauth D, Davis H, Sill A, O’Driscoll P, Huso D, Fouts T, Lewis G, Hill M, Kamin-Lewis R, Wei C, Ray P, Gallo RC, Reitz M, Bryant J (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci USA 98:9271–9276. doi: 10.1073/pnas.161290298 PubMedCrossRefGoogle Scholar
  26. Reid W, Abdelwahab S, Sadowska M, Huso D, Neal A, Ahearn A, Bryant J, Gallo RC, Lewis GK, Reitz M (2004) HIV-1 transgenic rats develop T cell abnormalities. Virology 321:111–119. doi: 10.1016/j.virol.2003.12.010 PubMedCrossRefGoogle Scholar
  27. Rhodes SD, Hergenrather KC, Yee LJ, Knipper E, Wilkin AM, Omli MR (2007) Characteristics of a sample of men who have sex with men, recruited from gay bars and Internet chat rooms, who report methamphetamine use. AIDS Patient Care STDS 21:575–583. doi: 10.1089/apc.2007.0002 PubMedCrossRefGoogle Scholar
  28. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291. doi: 10.1016/0165-0173(93)90013-P PubMedCrossRefGoogle Scholar
  29. Robinson TE, Berridge KC (2008) Review: the incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 363:3137–3146. doi: 10.1098/rstb.2008.0093 PubMedCrossRefGoogle Scholar
  30. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl1):33–46. doi: 10.1016/j.neuropharm.2004.06.025 PubMedCrossRefGoogle Scholar
  31. Robinson L, Rempel H (2006) Methamphetamine use and HIV symptom self-management. J Assoc Nurses AIDS Care 17:7–14. doi: 10.1016/j.jana.2006.07.003 PubMedCrossRefGoogle Scholar
  32. Schenk S, Partridge B (1997) Sensitization and tolerance in psychostimulant self-administration. Pharmacol Biochem Behav 57:543–550. doi: 10.1016/S0091-3057(96)00447-9 PubMedCrossRefGoogle Scholar
  33. Seiden LS, Ricaurte GA (1987) Neurotoxicity of methamphetamine and related drugs. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 359–366Google Scholar
  34. Semple SJ, Patterson TL, Grant I (2002) Motivations associated with methamphetamine use among HIV+ men who have sex with men. J Subst Abuse Treat 22:149–156. doi: 10.1016/S0740-5472(02)00223-4 PubMedCrossRefGoogle Scholar
  35. Shuto T, Seeman P, Kuroiwa M, Nishi A (2008) Repeated administration of a dopamine D1 receptor agonist reverses the increased proportions of striatal dopamine D1High and D2High receptors in methamphetamine-sensitized rats. Eur J NeuroSci 27:2551–2557. doi: 10.1111/j.1460-9568.2008.06221.x PubMedCrossRefGoogle Scholar
  36. Spangler R, Goddard NL, Avena NM, Hoebel BG, Leibowitz SL (2003) Elevated D3 dopamine receptor mRNA in dopaminergic and dopaminoceptive regions of the rat brain in response to morphine. Brain Res Mol Brain Res 111:74–83PubMedCrossRefGoogle Scholar
  37. Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294:366–368. doi: 10.1038/294366a0 PubMedCrossRefGoogle Scholar
  38. Theodore S, Cass WA, Maragos WF (2006a) Involvement of cytokines in human immunodeficiency virus-1 protein Tat and methamphetamine interactions in the striatum. Exp Neurol 199:490–498. doi: 10.1016/j.expneurol.2006.01.009 PubMedCrossRefGoogle Scholar
  39. Theodore S, Cass WA, Maragos WF (2006b) Methamphetamine and human immunodeficiency virus protein Tat synergize to destroy dopaminergic terminals in the rat striatum. Neuroscience 137:925–935. doi: 10.1016/j.neuroscience.2005.10.056 PubMedCrossRefGoogle Scholar
  40. Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, Aizenstein HJ, Becker JT (2005) Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4 + T lymphocyte decline. Proc Natl Acad Sci USA 102:15647–15652. doi: 10.1073/pnas.0502548102 PubMedCrossRefGoogle Scholar
  41. Ujike H, Onoue T, Akiyama K, Hamamura T, Otsuki S (1989) Effects of selective D-1 and D-2 dopamine antagonists on development of methamphetamine-induced behavioral sensitization. Psychopharmacology (Berl) 98:89–92. doi: 10.1007/BF00442011 CrossRefGoogle Scholar
  42. Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–2458. doi: 10.1093/brain/awh269 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiangqian Liu
    • 1
    • 5
  • Linda Chang
    • 4
  • Michael Vigorito
    • 2
  • Marley Kass
    • 1
    • 2
  • He Li
    • 5
  • Sulie L. Chang
    • 1
    • 3
    • 5
  1. 1.Institute of Neuroimmune PharmacologySeton Hall UniversitySouth OrangeUSA
  2. 2.Department of PsychologySeton Hall UniversitySouth OrangeUSA
  3. 3.Department of Biological SciencesSeton Hall UniversitySouth OrangeUSA
  4. 4.Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluUSA
  5. 5.Department of Anatomy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations