Journal of Neuroimmune Pharmacology

, Volume 4, Issue 3, pp 328–337

Curcumin Protects Neuronal Cells from Japanese Encephalitis Virus-Mediated Cell Death and also Inhibits Infective Viral Particle Formation by Dysregulation of Ubiquitin–Proteasome System

Original Article

Abstract

Japanese encephalitis (JE) is an arboviral disease common in Southeast Asia encompassing a population of 3 billion people. Periodic outbreak of JE takes hundreds of lives. Children are major victims of JE. About one third of JE patients die, and many of the survivors suffer from permanent neuropsychiatric sequel, owing to the lack of specific therapeutic measure. Curcumin is a naturally occurring phenolic compound extracted from Curcuma longa L. Previous studies have reported that curcumin possesses strong antioxidant, anti-inflammatory, antiviral activity. We used Neuro2a cell line and infected them with JE virus. The infected cells were treated with varying doses of curcumin. Cell viability, reactive oxygen species (ROS) production within the cells, and change in cellular membrane integrity were studied. The changes in expression of some signaling and stress-related proteins were also assessed. We also studied the inhibitory role of curcumin on the production of infective viral particles by dysregulation of the ubiquitin–proteasome system. In this study, we found that curcumin imparts neuroprotection in vitro, probably by decreasing cellular reactive oxygen species level, restoration of cellular membrane integrity, decreasing pro-apoptotic signaling molecules, and modulating cellular levels of stress-related proteins. We have also shown that curcumin, by inhibition of ubiquitin–proteasome system causes reduction in infective viral particle production from previously infected neuroblastoma cells.

Keywords

Japanese encephalitis curcumin plaque assay neuroprotection reactive oxygen species ubiquitin–proteasome system 

References

  1. Agee JM, Flanagan T, Blackbourne LH, Kron IL, Tribble CG (1991) Reducing postischemic paraplegia using conjugated superoxide dismutase. Ann Thorac Surg 5:911–915CrossRefGoogle Scholar
  2. Bala K, Tripathy B, Sharma D (2006) Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology 7:81–89. doi:10.1007/s10522-006-6495-x http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=16802111&dopt=Abstract PubMedCrossRefGoogle Scholar
  3. Billiet L, Rouis M (2008) Thioredoxin-1 is a novel and attractive therapeutic approach for various diseases including cardiovascular disorders. Cardiovasc Hematol Disord Drug Targets 8:293–296. doi:10.2174/187152908786786179 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=19075641&dopt=Abstract PubMedCrossRefGoogle Scholar
  4. Calabrese V, Bates TE, Mancuso C, Cornelius C, Ventimiglia B, Cambria BT, Di Renzo L, De Lorenzo A, Dinkova-Kostova AT (2008) Curcumin and the cellular stress response in free radical-related diseases. Mol Nutr Food Res 52:1062–1073. doi:10.1002/mnfr.200700316 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18792015&dopt=Abstract PubMedCrossRefGoogle Scholar
  5. Chen CJ, Raung SL, Kuo MD, Wang YM (2002) Suppression of Japanese encephalitis virus infection by non-steroidal anti-inflammatory drugs. J Gen Virol 83:1897–1905PubMedGoogle Scholar
  6. Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Adv Exp Med Biol 595:197–212. doi:10.1007/978-0-387-46401-5_8 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17569212&dopt=Abstract PubMedCrossRefGoogle Scholar
  7. Endo H, Nito C, Kamada H, Yu F, Chan PH (2007) Reduction in oxidative stress by SOD-1 overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/GSK3β survival signaling. J Cereb Blood Flow Metab 27:975–982 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=16969382&dopt=Abstract PubMedGoogle Scholar
  8. Fujimoto K, Iwasa C, Kawaguchi H, Yasugi E, Oshima M (1999) Cell membrane dynamics and the induction of apoptosis by lipid compounds. FEBS Lett 446:113–116. doi:10.1016/S0014-5793(99)00204-5 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=10100625&dopt=Abstract PubMedCrossRefGoogle Scholar
  9. Gabai VL, Meriin AB, Mosseri DD, Caroni AW, Ritsi S, Shifrin VI, Sherman MY (1997) Hsp70 prevents activation of stress kinases: A novel pathway of cellular thermotolerance. J Biol Chem 272:18033–18037. doi:10.1074/jbc.272.29.18033 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=9218432&dopt=Abstract PubMedCrossRefGoogle Scholar
  10. Galinier RE, Gout H, Lortat-Jacob JW, Chroboczek J (2002) Adenovirus protein involved in virus internalization recruits ubiquitin-protein ligases. Biochemistry 41:14299–14305. doi:10.1021/bi020125b http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=12450395&dopt=Abstract PubMedCrossRefGoogle Scholar
  11. Ghosh D, Basu A (2008) Present perspectives on flaviviral chemotherapy. Drug Discov Today 13:619–624. doi:10.1016/j.drudis.2008.04.001 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18598919&dopt=Abstract PubMedCrossRefGoogle Scholar
  12. Gorria M, Tekpli X, Sergent O, Huc L, Gaboriau F, Rissel M, Chevanne M, Dimanche-Boitrel MT, Lagadic-Gossmann D (2006) Membrane fluidity changes are associated with benzo[a]pyrene-induced apoptosis in F258 cells: protection by exogenous cholesterol. Ann N Y Acad Sci 1090:108–112. doi:10.1196/annals.1378.011 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17384252&dopt=Abstract PubMedCrossRefGoogle Scholar
  13. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716. doi:10.2165/00002512-200118090-00004 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=11599635&dopt=Abstract PubMedCrossRefGoogle Scholar
  14. Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119:598–620 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=1593209&dopt=Abstract PubMedGoogle Scholar
  15. Jana NR, Dikshit P, Goswami A, Nukina N (2004) Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem 279:11680–11685. doi:10.1074/jbc.M310369200 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=14701837&dopt=Abstract PubMedCrossRefGoogle Scholar
  16. Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111. doi:10.1080/10408690490424702 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15116757&dopt=Abstract PubMedCrossRefGoogle Scholar
  17. Kasparia M, Tavalaib N, Stammingerb T, Zimmermannc A, Schilfa R, Bogner E (2008) Proteasome inhibitor MG132 blocks viral DNA replication and assembly of human cytomegalovirus. FEBS Lett 582:666–672. doi:10.1016/j.febslet.2008.01.040 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18242185&dopt=Abstract CrossRefGoogle Scholar
  18. Kaur R, Vrati S (2003) Development of a recombinant vaccine against Japanese encephalitis. J Neurovirol 9:421–431. doi:10.1080/713831600 PubMedCrossRefGoogle Scholar
  19. Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ (2008) Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 373:239–247. doi:10.1016/j.virol.2007.11.028 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18191976&dopt=Abstract PubMedCrossRefGoogle Scholar
  20. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120:497–512. doi:10.1016/j.cell.2005.01.028 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15734682&dopt=Abstract PubMedCrossRefGoogle Scholar
  21. Mishra MK, Ghosh D, Duseja R, Basu A (2009) Antioxidant potential of minocycline in Japanese encephalitis virus infection in N2a cells: correlation with membrane fluidity and cell death. Neurochem Int 54:464–470. doi:10.1016/j.neuint.2009.01.022 PubMedCrossRefGoogle Scholar
  22. Rahmani M, Reese E, Dai Y, Bauer C, Payne SG, Dent P, Spiegel S, Grant S (2005) Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 65:2422–2432. doi:10.1158/0008-5472.CAN-04-2440 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15781658&dopt=Abstract PubMedCrossRefGoogle Scholar
  23. Raung SL, Kuo MD, Wang YM, Chen CJ (2001) Role of reactive oxygen intermediates in Japanese encephalitis virus infection in murine neuroblastoma cells. Neurosci Lett 315:9–12. doi:10.1016/S0304-3940(01)02300-X http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=11711202&dopt=Abstract PubMedCrossRefGoogle Scholar
  24. Schreck R, Baeuerle PA (1994) Assessing oxygen radicals as mediators in activation of inducible eukaryotic transcription factor NF-kappa B. Methods Enzymol 234:151–163. doi:10.1016/0076-6879(94)34085-4 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=7808288&dopt=Abstract PubMedCrossRefGoogle Scholar
  25. Sergent O, Pereira M, Belhomme M, Chevanne M, Huc L, Lagadic-Gossmann D (2005) Role for membrane fluidity in ethanol-induced oxidative stress of primary rat hepatocytes. J Pharmacol Exp Ther 313:104–111. doi:10.1124/jpet.104.078634 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15634942&dopt=Abstract PubMedCrossRefGoogle Scholar
  26. Si X, Wang Y, Wong J, Zhang J, McManus BM, Luo H (2007) Dysregulation of the ubiquitin–proteasome system by curcumin suppresses coxsackievirus B3 replication. J Virol 81:3142–3150. doi:10.1128/JVI.02028-06 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17229707&dopt=Abstract PubMedCrossRefGoogle Scholar
  27. Si X, Gao G, Wong J, Wang Y, Zhang J, Luo H (2008) Ubiquitination is required for effective replication of coxsackievirus B3. PLoS One 3:e2585. doi:10.1371/journal.pone.0002585 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18612413&dopt=Abstract PubMedCrossRefGoogle Scholar
  28. Su H-L, Liao CL, Lin YL (2002) Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol 76:4162–4171. doi:10.1128/JVI.76.9.4162-4171.2002 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=11932381&dopt=Abstract PubMedCrossRefGoogle Scholar
  29. Swarup V, Das S, Ghosh S, Basu A (2007a) Tumor necrosis factor receptor-1-induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis. J Neurochem 103:771–783. doi:10.1111/j.1471-4159.2007.04790.x http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17666051&dopt=Abstract PubMedCrossRefGoogle Scholar
  30. Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A (2007b) Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 51:3367–3370. doi:10.1128/AAC.00041-07 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17576830&dopt=Abstract PubMedCrossRefGoogle Scholar
  31. Swarup V, Ghosh J, Mishra MK, Basu A (2008) Novel strategy for treatment of Japanese encephalitis using arctigenin, a plant lignan. J Antimicrob Chemother 61:679–688. doi:10.1093/jac/dkm503 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18230688&dopt=Abstract PubMedCrossRefGoogle Scholar
  32. Taylor GM, Hanson PI, Kielian M (2007) Ubiquitin depletion and dominant-negative vps4 inhibit rhabdovirus budding without affecting alphavirus budding. J Virol 81:13631–13639. doi:10.1128/JVI.01688-07 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17913808&dopt=Abstract PubMedCrossRefGoogle Scholar
  33. Yu GY, Lai MMC (2005) The ubiquitin–proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. J Virol 79:644–648. doi:10.1128/JVI.79.1.644-648.2005 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15596861&dopt=Abstract PubMedCrossRefGoogle Scholar
  34. Zhadina M, McClure MO, Johnson MC, Bieniasz PD (2007) Ubiquitin-dependent virus particle budding without viral protein ubiquitination. Proc Natl Acad Sci U S A 104:20031–20036. doi:10.1073/pnas.0708002104 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18056634&dopt=Abstract PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.National Brain Research CentreHaryanaIndia

Personalised recommendations