Journal of Neuroimmune Pharmacology

, Volume 4, Issue 2, pp 213–217 | Cite as

HIV Regulation of Amyloid Beta Production

Invited Review


The use of antiretroviral therapy for HIV infection has extended the survival of individuals living with HIV. However, the effects of chronic HIV infection and aging are introducing another facet of HIV complications. HIV therapy can calm the immune system and lower viral replication to undetectable but the virus is still present. In the brain, amyloid beta (Aβ) increases during normal aging but Aβ accumulation appears to accelerate in HIV infection. HIV Tat protein inhibits the major Aβ-degrading enzyme neprilysin with the cysteine-rich domain of Tat being essential for this inhibition. In this minireview, we also include new data that the β chemokine, CCL2/MCP-1, associated with HIV migration to the brain, also causes an increase in Aβ. These findings may explain the continued cognitive dysfunction found in HIV-infected individuals controlled on antiviral therapy.


HIV Tat CCL2 MCP-1 amyloid beta brain 


  1. Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688PubMedGoogle Scholar
  2. Carson JA, Turner AJ (2002) Beta-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases? J Neurochem 81:1–8. doi:10.1046/j.1471-4159.2002.00855.x PubMedCrossRefGoogle Scholar
  3. Chang HC, Samaniego F, Nair BC, Buonaguro L, Ensoli B (1997) HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 11:1421–1431. doi:10.1097/00002030-199712000-00006 PubMedCrossRefGoogle Scholar
  4. Chesneau V, Vekrellis K, Rosner MR, Selkoe DJ (2000) Purified recombinant insulin-degrading enzyme degrades amyloid beta-protein but does not promote its oligomerization. Biochem J 351(Pt 2):509–516. doi:10.1042/0264-6021:3510509 PubMedCrossRefGoogle Scholar
  5. Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L (1988) Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38:1682–1687PubMedGoogle Scholar
  6. Cummings BJ, Pike CJ, Shankle R, Cotman CW (1996) Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 17:921–933. doi:10.1016/S0197-4580(96)00170-4 PubMedCrossRefGoogle Scholar
  7. Daily A, Nath A, Hersh LB (2006) Tat peptides inhibit neprilysin. J Neurovirology 12:153–160. doi:10.1080/13550280600760677 CrossRefGoogle Scholar
  8. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67:277–287PubMedGoogle Scholar
  9. Esiri MM, Biddolph SC, Morris CS (1998) Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65:29–33. doi:10.1136/jnnp.65.1.29 PubMedCrossRefGoogle Scholar
  10. Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345. doi:10.1080/15216540701283882 PubMedCrossRefGoogle Scholar
  11. Gelman BB, Schuenke K (2004) Brain aging in acquired immunodeficiency syndrome: increased ubiquitin–protein conjugate is correlated with decreased synaptic protein but not amyloid plaque accumulation. J Neurovirology 10:98–108. doi:10.1080/13550280490279816 CrossRefGoogle Scholar
  12. Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19:407–411. doi:10.1097/01.aids.0000161770.06158.5c PubMedCrossRefGoogle Scholar
  13. Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M (2003) HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosci 28:323–335. doi:10.1007/BF02970151 PubMedCrossRefGoogle Scholar
  14. Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y, Saido TC (2000) Identification of the major Abeta1–42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6:143–150. doi:10.1038/77399 PubMedCrossRefGoogle Scholar
  15. Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE (1996) Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 271:4077–4081. doi:10.1074/jbc.271.8.4077 PubMedCrossRefGoogle Scholar
  16. Lehmann MH, Masanetz S, Kramer S, Erfle V (2006) HIV-1 Nef upregulates CCL2/MCP-1 expression in astrocytes in a myristoylation- and calmodulin-dependent manner. J Cell Sci 119:4520–4530. doi:10.1242/jcs.03231 PubMedCrossRefGoogle Scholar
  17. Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387. doi:10.1038/82199 PubMedCrossRefGoogle Scholar
  18. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862PubMedGoogle Scholar
  19. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866 doi:10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M PubMedCrossRefGoogle Scholar
  20. Pulliam L, Herndier BG, Tang NM, McGrath MS (1991) Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 87:503–512. doi:10.1172/JCI115024 PubMedCrossRefGoogle Scholar
  21. Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 273:32730–32738. doi:10.1074/jbc.273.49.32730 PubMedCrossRefGoogle Scholar
  22. Rempel HC, Pulliam L (2005) HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS 19:127–135. doi:10.1097/00002030-200501280-00004 PubMedCrossRefGoogle Scholar
  23. Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39:333–340. doi:10.1016/S0197-0186(01)00040-7 PubMedCrossRefGoogle Scholar
  24. Rogers J, Strohmeyer R, Kovelowski CJ, Li R (2002) Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40:260–269. doi:10.1002/glia.10153 PubMedCrossRefGoogle Scholar
  25. Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8:447–453. doi:10.1016/S0962-8924(98)01363-4 PubMedCrossRefGoogle Scholar
  26. Selkoe DJ (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140:627–638PubMedGoogle Scholar
  27. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842. doi:10.1038/nm1782 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Veterans Affair Medical Center, San FranciscoUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations