Journal of Neuroimmune Pharmacology

, Volume 4, Issue 2, pp 249–259 | Cite as

Modulation of Cannabinoid Receptor Activation as a Neuroprotective Strategy for EAE and Stroke

  • Ming Zhang
  • Billy R. Martin
  • Martin W. Adler
  • Raj J. Razdan
  • Weimin Kong
  • Doina Ganea
  • Ronald F. Tuma
Invited Review

Abstract

Recognition of the importance of the endocannabinoid system in both homeostasis and pathologic responses raised interest recently in the development of therapeutic agents based on this system. The CB2 receptor, a component of the endocannabinoid system, has significant influence on immune function and inflammatory responses. Inflammatory responses are major contributors to central nervous system (CNS) injury in a variety of diseases. In this report, we present evidence that activation of CB2 receptors, by selective CB2 agonists, reduces inflammatory responses that contribute to CNS injury. The studies demonstrate neuroprotective effects in experimental autoimmune encephalomyelitis, a model of multiple sclerosis, and in a murine model of cerebral ischemia/reperfusion injury. In both cases, CB2 receptor activation results in reduced white cell rolling and adhesion to cerebral microvessels, a reduction in immune cell invasion, and improved neurologic function after insult. In addition, administration of the CB1 antagonist SR141716A reduces infarct size following ischemia/reperfusion injury. Administration of both a selective CB2 agonist and a CB1 antagonist has the unique property of increasing blood flow to the brain during the occlusion period, suggesting an effect on collateral blood flow. In summary, selective CB2 receptor agonists and CB1 receptor antagonists have significant potential for neuroprotection in animal models of two devastating diseases that currently lack effective treatment options.

Keywords

CB1 CB2 endocannabinoid system neuroprotection EAE stroke 

Notes

Acknowledgments

This project is funded, in part, under a grant with the Pennsylvania Department of Health, a contract from BTG (London), and grants from DA P30 13429, DA 03672, and DA 05488 from the National Institute on Drug Abuse.

References

  1. Archambault AS, Sim J et al (2005) Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Eur J Immunol 35(4):1076–1085. doi: 10.1002/eji.200425864 PubMedCrossRefGoogle Scholar
  2. Ashton JC, Rahman RM et al (2007) Cerebral hypoxia–ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neurosci Lett 412(2):114–117. doi: 10.1016/j.neulet.2006.10.053 PubMedCrossRefGoogle Scholar
  3. Baker D, Pryce G et al (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404(6773):84–87. doi: 10.1038/35003583 PubMedCrossRefGoogle Scholar
  4. Baker D, Pryce G et al (2001) Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J 15(2):300–302PubMedGoogle Scholar
  5. Batkai S, Osei-Hyiaman D et al (2007) Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. FASEB J 21(8):1788–1800. doi: 10.1096/fj.06-7451com PubMedCrossRefGoogle Scholar
  6. Becher B, Bechmann I et al (2006) Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med 84(7):532–543. doi: 10.1007/s00109-006-0065-1 PubMedCrossRefGoogle Scholar
  7. Berger C, Schmid PC et al (2004) Massive accumulation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia. J Neurochem 88(5):1159–1167. doi: 10.1046/j.1471-4159.2003.02244.x PubMedCrossRefGoogle Scholar
  8. Correa F, Mestre L et al (2005) Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. Br J Pharmacol 145(4):441–448. doi: 10.1038/sj.bjp.0706215 PubMedCrossRefGoogle Scholar
  9. Dawson DA, Ruetzler CA et al (1996) Polymorphonuclear leukocytes and microcirculatory perfusion in acute stroke in the SHR. Keio J Med 45(3):248–252 discussion 252–253PubMedGoogle Scholar
  10. Dittel BN (2008) Direct suppression of autoreactive lymphocytes in the central nervous system via the CB2 receptor. Br J Pharmacol 153(2):271–276. doi: 10.1038/sj.bjp.0707493 PubMedCrossRefGoogle Scholar
  11. Dutka AJ, Hallenbeck JM et al (1987) A brief episode of severe arterial hypertension induces delayed deterioration of brain function and worsens blood flow after transient multifocal cerebral ischemia. Stroke 18(2):386–395PubMedGoogle Scholar
  12. Dutka AJ, Kochanek P et al (1988) Air embolism may cause unrecognized ischemia of the gray–white junction. Undersea Biomed Res 15(2):99–106PubMedGoogle Scholar
  13. Dutka AJ, Kochanek PM et al (1989) Influence of granulocytopenia on canine cerebral ischemia induced by air embolism. Stroke 20(3):390–395PubMedGoogle Scholar
  14. Eljaschewitsch E, Witting A et al (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49(1):67–79. doi: 10.1016/j.neuron.2005.11.027 PubMedCrossRefGoogle Scholar
  15. Golech SA, McCarron RM et al (2004) Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res 132(1):87–92. doi: 10.1016/j.molbrainres.2004.08.025 PubMedCrossRefGoogle Scholar
  16. Greter M, Heppner FL et al (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11(3):328–334. doi: 10.1038/nm1197 PubMedCrossRefGoogle Scholar
  17. Hallenbeck JM, Dutka AJ et al (1986) Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 17(2):246–253PubMedGoogle Scholar
  18. Hallenbeck JM, Dutka AJ et al (1988) Stroke risk factors prepare rat brainstem tissues for modified local Shwartzman reaction. Stroke 19(7):863–869PubMedGoogle Scholar
  19. Hayakawa K, Mishima K et al (2004) Cannabidiol prevents infarction via the non-CB1 cannabinoid receptor mechanism. Neuroreport 15(15):2381–2385. doi: 10.1097/00001756-200410250-00016 PubMedCrossRefGoogle Scholar
  20. Heppner FL, Greter M et al (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11(2):146–152. doi: 10.1038/nm1177 PubMedCrossRefGoogle Scholar
  21. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239(4837):290–292. doi: 10.1126/science.3276004 PubMedCrossRefGoogle Scholar
  22. Jarai Z, Wagner JA et al (1999) Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc Natl Acad Sci U S A 96(24):14136–14141. doi: 10.1073/pnas.96.24.14136 PubMedCrossRefGoogle Scholar
  23. Jin KL, Mao XO et al (2000) CB1 cannabinoid receptor induction in experimental stroke. Ann Neurol 48(2):257–261. doi: 10.1002/1531-8249(200008)48:2<257::AID-ANA18>3.0.CO;2-P PubMedCrossRefGoogle Scholar
  24. Klein TW (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5(5):400–411. doi: 10.1038/nri1602 PubMedCrossRefGoogle Scholar
  25. Klein TW, Cabral GA (2006) Cannabinoid-induced immune suppression and modulation of antigen-presenting cells. J Neuroimmune Pharmacol 1:50–64. doi: 10.1007/s11481-005-9007-x PubMedCrossRefGoogle Scholar
  26. Klein TW, Newton C et al (2004) Cannabinoid receptors and T helper cells. J Neuroimmunol 147(1–2):91–94. doi: 10.1016/j.jneuroim.2003.10.019 PubMedCrossRefGoogle Scholar
  27. Kochanek PM, Hallenbeck JM (1992) Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 23(9):1367–1379PubMedGoogle Scholar
  28. Kochanek PM, Dutka AJ et al (1987a) Indomethacin, prostacyclin, and heparin improve postischemic cerebral blood flow without affecting early postischemic granulocyte accumulation. Stroke 18(3):634–637PubMedGoogle Scholar
  29. Kochanek PM, Dutka AJ et al (1987b) Platelet activating factor receptor blockade enhances recovery after multifocal brain ischemia. Life Sci 41(24):2639–2644. doi: 10.1016/0024-3205(87)90278-5 PubMedCrossRefGoogle Scholar
  30. Kochanek PM, Dutka AJ et al (1988) Effects of prostacyclin, indomethacin, and heparin on cerebral blood flow and platelet adhesion after multifocal ischemia of canine brain. Stroke 19(6):693–699PubMedGoogle Scholar
  31. Leker RR, Gai N et al (2003) Drug-induced hypothermia reduces ischemic damage: effects of the cannabinoid HU-210. Stroke 34(8):2000–2006. doi: 10.1161/01.STR.0000079817.68944.1E PubMedCrossRefGoogle Scholar
  32. Little PJ, Compton DR et al (1988) Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J Pharmacol Exp Ther 247(3):1046–1051PubMedGoogle Scholar
  33. Louw DF, Yang FW et al (2000) The effect of delta-9-tetrahydrocannabinol on forebrain ischemia in rat. Brain Res 857(1–2):183–187. doi: 10.1016/S0006-8993(99)02422-1 PubMedCrossRefGoogle Scholar
  34. Lu T, Newton C et al (2006) Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection. J Pharmacol Exp Ther 319(1):269–276. doi: 10.1124/jpet.106.108381 PubMedCrossRefGoogle Scholar
  35. Lyman WD, Sonett JR et al (1989) Delta 9-tetrahydrocannabinol: a novel treatment for experimental autoimmune encephalomyelitis. J Neuroimmunol 23(1):73–81. doi: 10.1016/0165-5728(89)90075-1 PubMedCrossRefGoogle Scholar
  36. Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122. doi: 10.1146/annurev.pharmtox.46.120604.141254 PubMedCrossRefGoogle Scholar
  37. Maresz K, Pryce G et al (2007) Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB(1) on neurons and CB(2) on autoreactive T cells. Nat Med 13(4):492–497. doi: 10.1038/nm1561 PubMedCrossRefGoogle Scholar
  38. McCollum L, Howlett AC et al (2007) Anandamide-mediated CB1/CB2 cannabinoid receptor-independent nitric oxide production in rabbit aortic endothelial cells. J Pharmacol Exp Ther 321(3):930–937. doi: 10.1124/jpet.106.117549 PubMedCrossRefGoogle Scholar
  39. McMahon EJ, Bailey SL et al (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11(3):335–339. doi: 10.1038/nm1202 PubMedCrossRefGoogle Scholar
  40. McMahon EJ, Bailey SL et al (2006) CNS dendritic cells: critical participants in CNS inflammation. Neurochem Int 49(2):195–203. doi: 10.1016/j.neuint.2006.04.004 PubMedCrossRefGoogle Scholar
  41. Mechoulam R, Fride E et al (1998) Endocannabinoids. Eur J Pharmacol 359(1):1–18. doi: 10.1016/S0014-2999(98)00649-9 PubMedCrossRefGoogle Scholar
  42. Muthian S, Rademacher DJ et al (2004) Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia. Neuroscience 129(3):743–750. doi: 10.1016/j.neuroscience.2004.08.044 PubMedCrossRefGoogle Scholar
  43. Nagayama T, Sinor AD et al (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19(8):2987–2995PubMedGoogle Scholar
  44. Ni X, Geller EB et al (2004) Win 55212–2, a cannabinoid receptor agonist, attenuates leukocyte/endothelial interactions in an experimental autoimmune encephalomyelitis model. Mult Scler 10(2):158–164. doi: 10.1191/1352458504ms1009oa PubMedCrossRefGoogle Scholar
  45. O'Sullivan SE, Kendall DA et al (2004a) Characterisation of the vasorelaxant properties of the novel endocannabinoid N-arachidonoyl-dopamine (NADA). Br J Pharmacol 141(5):803–812. doi: 10.1038/sj.bjp.0705643 PubMedCrossRefGoogle Scholar
  46. O'Sullivan SE, Kendall DA et al (2004b) Heterogeneity in the mechanisms of vasorelaxation to anandamide in resistance and conduit rat mesenteric arteries. Br J Pharmacol 142(3):435–442. doi: 10.1038/sj.bjp.0705810 PubMedCrossRefGoogle Scholar
  47. Pacher P, Hasko G (2008) Endocannabinoids and cannabinoid receptors in ischaemia–reperfusion injury and preconditioning. Br J Pharmacol 153(2):252–262. doi: 10.1038/sj.bjp.0707582 PubMedCrossRefGoogle Scholar
  48. Pacher P, Batkai S et al (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58(3):389–462. doi: 10.1124/pr.58.3.2 PubMedCrossRefGoogle Scholar
  49. Parmentier-Batteur S, Jin K et al (2002) Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J Neurosci 22(22):9771–9775PubMedGoogle Scholar
  50. Pertwee RG (1999) Medical uses of cannabinoids: the way forward. Addiction 94(3):317–320. doi: 10.1080/09652149933801 PubMedCrossRefGoogle Scholar
  51. Rajesh M, Pan H et al (2007) Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis. J Leukoc Biol 82(6):1382–1389. doi: 10.1189/jlb.0307180 PubMedCrossRefGoogle Scholar
  52. Ralevic V, Kendall DA et al (2002) Cannabinoid modulation of sensory neurotransmission via cannabinoid and vanilloid receptors: roles in regulation of cardiovascular function. Life Sci 71(22):2577–2594. doi: 10.1016/S0024-3205(02)02086-6 PubMedCrossRefGoogle Scholar
  53. Schmid PC, Krebsbach RJ et al (1995) Occurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain. FEBS Lett 375(1–2):117–120. doi: 10.1016/0014-5793(95)01194-J PubMedCrossRefGoogle Scholar
  54. Shouman B, Fontaine RH et al (2006) Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage. Br J Pharmacol 148(4):442–451. doi: 10.1038/sj.bjp.0706755 PubMedCrossRefGoogle Scholar
  55. Sommer C, Schomacher M et al (2006) Neuroprotective cannabinoid receptor antagonist SR141716A prevents downregulation of excitotoxic NMDA receptors in the ischemic penumbra. Acta Neuropathol 112(3):277–286. doi: 10.1007/s00401-006-0110-8 PubMedCrossRefGoogle Scholar
  56. Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85(3):299–302. doi: 10.1016/S0092-8674(00)81107-1 PubMedCrossRefGoogle Scholar
  57. Stella N (2004) Cannabinoid signaling in glial cells. Glia 48(4):267–277. doi: 10.1002/glia.20084 PubMedCrossRefGoogle Scholar
  58. van der Stelt M, Veldhuis WB et al (2001a) Neuroprotection by Delta9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J Neurosci 21(17):6475–6479PubMedGoogle Scholar
  59. van der Stelt M, Veldhuis WB et al (2001b) Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J Neurosci 21(22):8765–8771PubMedGoogle Scholar
  60. Weaver M, Leshley K et al (2002) LEX032, a novel recombinant serpin, protects the brain after transient focal ischemia. Microvasc Res 63(3):327–334. doi: 10.1006/mvre.2002.2405 PubMedCrossRefGoogle Scholar
  61. Wiley JL, Beletskaya ID et al (2002) Resorcinol derivatives: a novel template for the development of cannabinoid CB(1)/CB(2) and CB(2)-selective agonists. J Pharmacol Exp Ther 301(2):679–689. doi: 10.1124/jpet.301.2.679 PubMedCrossRefGoogle Scholar
  62. Wirguin I, Mechoulam R et al (1994) Suppression of experimental autoimmune encephalomyelitis by cannabinoids. Immunopharmacology 28(3):209–214. doi: 10.1016/0162-3109(94)90056-6 PubMedCrossRefGoogle Scholar
  63. Witting A, Chen L et al (2006) Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proc Natl Acad Sci U S A 103(16):6362–6367. doi: 10.1073/pnas.0510418103 PubMedCrossRefGoogle Scholar
  64. Yuan M, Kiertscher SM et al (2002) Delta 9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol 133(1–2):124–131. doi: 10.1016/S0165-5728(02)00370-3 PubMedCrossRefGoogle Scholar
  65. Zhang M, Martin BR et al (2007) Cannabinoid CB(2) receptor activation decreases cerebral infarction in a mouse focal ischemia/reperfusion model. J Cereb Blood Flow Metab 27(7):1387–1396. doi: 10.1038/sj.jcbfm.9600447 PubMedCrossRefGoogle Scholar
  66. Zhang M, Martin BR et al (2008) Modulation of the balance between cannabinoid CB(1) and CB(2) receptor activation during cerebral ischemic/reperfusion injury. Neuroscience 152(3):753–760. doi: 10.1016/j.neuroscience.2008.01.022 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ming Zhang
    • 1
  • Billy R. Martin
    • 2
  • Martin W. Adler
    • 1
  • Raj J. Razdan
    • 3
  • Weimin Kong
    • 4
  • Doina Ganea
    • 4
  • Ronald F. Tuma
    • 1
  1. 1.Center for Substance Abuse ResearchTemple University School of MedicinePhiladelphiaUSA
  2. 2.Department of Pharmacology and ToxicologyVirginia Commonwealth University School of MedicineRichmondUSA
  3. 3.Organix Inc.WoburnUSA
  4. 4.Department of Microbiology and ImmunologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations