Journal of Neuroimmune Pharmacology

, Volume 4, Issue 3, pp 359–367 | Cite as

Inducible Expression of Functional Mu Opioid Receptors in Murine Dendritic Cells

  • Zheng-Hong Li
  • Niansheng Chu
  • Li-Dong Shan
  • Shan Gong
  • Qi-Zhang Yin
  • Xing-Hong Jiang
Original Article

Abstract

Opioids are known to exert direct effects on the immune system, and the expression of functional opioid receptors has been reported on several immune cell types. Dendritic cells (DCs) are important inducers and regulators of immune responses. In this study, we investigated whether murine dendritic cells express functional mu opioid receptors (MOR). RT-PCR analysis and double immunofluorescence staining revealed the expression of MOR in activated murine dendritic cells. We also studied the dynamic expression of MOR messenger RNA in murine dendritic cells in response to different Toll-like receptor ligands. Functionally, treatment of DCs with endomorphin 1 (EM1), a specific agonist of MOR, can inhibit the forskolin-induced formation of cyclic adenosine monophosphate level in activated DCs. Moreover, EM1 treatment resulted in less activation of p38 MAPK and more activation of ERK signaling in lipopolysaccharide-stimulated DCs. Consistently, treatment of DCs with EM1 altered cytokine production by increasing IL-10 and decreasing IL-12 and IL-23. Our results suggest that MOR is inducibly expressed on activated DCs and functionally mediates EM1-induced effects on DCs. Thus, dendritic cells might be involved in crosstalk between the neuroendocrine and the immune system.

Keywords

endomorphin 1 mu receptor dendritic cells p38 MAPK ERK 

Abbreviations

EM1

endomorphin 1

EM2

endomorphin 2

MOR

mu opioid receptors

DCs

dendritic cells

CNS

central nervous system

APC

antigen presenting cells

Notes

Acknowledgment

We thank Katherine Regan for editorial assistance.

References

  1. Azuma Y, Ohura K (2002) Endomorphins 1 and 2 inhibit IL-10 and IL-12 production and innate immune functions, and potentiate NF-kappaB DNA binding in THP-1 differentiated to macrophage-like cells. Scand J Immunol 56:260–269. doi: 10.1046/j.1365-3083.2002.01128.x PubMedCrossRefGoogle Scholar
  2. Belcheva MM, Haas PD, Tan Y, Heaton VM, Coscia CJ (2002) The fibroblast growth factor receptor is at the site of convergence between mu-opioid receptor and growth factor signaling pathways in rat C6 glioma cells. J Pharmacol Exp Ther 303:909–918. doi: 10.1124/jpet.102.038554 PubMedCrossRefGoogle Scholar
  3. Belcheva MM, Clark AL, Haas PD, Serna JS, Hahn JW, Kiss A, Coscia CJ (2005) Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. J Biol Chem 280:27662–27669. doi: 10.1074/jbc.M502593200 PubMedCrossRefGoogle Scholar
  4. Bidlack JM, Khimich M, Parkhill AL, Sumagin S, Sun B, Tipton CM (2006) Opioid receptors and signaling on cells from the immune system. J Neuroimmune Pharmacol 1:260–269. doi: 10.1007/s11481-006-9026-2 PubMedCrossRefGoogle Scholar
  5. Borner C, Kraus J, Schroder H, Ammer H, Hollt V (2004a) Transcriptional regulation of the human mu-opioid receptor gene by interleukin-6. Mol Pharmacol 66:1719–1726. doi: 10.1124/mol.104.003806 PubMedCrossRefGoogle Scholar
  6. Borner C, Woltje M, Hollt V, Kraus J (2004b) STAT6 transcription factor binding sites with mismatches within the canonical 5′-TTC…GAA-3′ motif involved in regulation of delta- and mu-opioid receptors. J Neurochem 91:1493–1500. doi: 10.1111/j.1471-4159.2004.02846.x PubMedCrossRefGoogle Scholar
  7. Borner C, Hollt V, Kraus J (2006) Cannabinoid receptor type 2 agonists induce transcription of the mu-opioid receptor gene in Jurkat T cells. Mol Pharmacol 69:1486–1491. doi: 10.1124/mol.105.018325 PubMedCrossRefGoogle Scholar
  8. Borner C, Stumm R, Hollt V, Kraus J (2007) Comparative analysis of mu-opioid receptor expression in immune and neuronal cells. J Neuroimmunol 188:56–63. doi: 10.1016/j.jneuroim.2007.05.007 PubMedCrossRefGoogle Scholar
  9. Borner C, Kraus J, Bedini A, Schraven B, Hollt V (2008) T-cell receptor/CD28-mediated activation of human T lymphocytes induces expression of functional mu-opioid receptors. Mol Pharmacol 74:496–504. doi: 10.1124/mol.108.046029 PubMedCrossRefGoogle Scholar
  10. Bussiere JL, Adler MW, Rogers TJ, Eisenstein TK (1993) Cytokine reversal of morphine-induced suppression of the antibody response. J Pharmacol Exp Ther 264:591–597PubMedGoogle Scholar
  11. Chang SL, Beltran JA, Swarup S (2007) Expression of the mu opioid receptor in the human immunodeficiency virus type 1 transgenic rat model. J Virol 81:8406–8411. doi: 10.1128/JVI.00155-07 PubMedCrossRefGoogle Scholar
  12. Dalpke A, Heeg K (2002) Signal integration following Toll-like receptor triggering. Crit Rev Immunol 22:217–250PubMedGoogle Scholar
  13. de Gandarias JM, Echevarria E, Acebes I, Abecia LC, Casis O, Casis L (1999) Effects of fluoxetine administration on mu-opoid receptor immunostaining in the rat forebrain. Brain Res 817:236–240. doi: 10.1016/S0006-8993(98)01256-6 PubMedCrossRefGoogle Scholar
  14. Dell'Aquila ME, Albrizio M, Guaricci AC, De ST, Maritato F, Tremoleda JL, Colenbrander B, Guerra L, Casavola V, Minoia P (2008) Expression and localization of the mu-opioid receptor (MOR) in the equine cumulus–oocyte complex and its involvement in the seasonal regulation of oocyte meiotic competence. Mol Reprod Dev 75:1229–1246. doi: 10.1002/mrd.20869 PubMedCrossRefGoogle Scholar
  15. Escors D, Lopes L, Lin R, Hiscott J, Akira S, Davis RJ, Collins MK (2008) Targeting dendritic cell signaling to regulate the response to immunization. Blood 111:3050–3061. doi: 10.1182/blood-2007-11-122408 PubMedCrossRefGoogle Scholar
  16. Frassdorf J, Weber NC, Obal D, Toma O, Mullenheim J, Kojda G, Preckel B, Schlack W (2005) Morphine induces late cardioprotection in rat hearts in vivo: the involvement of opioid receptors and nuclear transcription factor kappaB. Anesth Analg 101:934–941. doi: 10.1213/01.ane.0000172130.70274.84 PubMedCrossRefGoogle Scholar
  17. Friedman H, Newton C, Klein TW (2003) Microbial infections, immunomodulation, and drugs of abuse. Clin Microbiol Rev 16:209–219. doi: 10.1128/CMR.16.2.209-219.2003 PubMedCrossRefGoogle Scholar
  18. Gaveriaux-Ruff C, Matthes HW, Peluso J, Kieffer BL (1998) Abolition of morphine-immunosuppression in mice lacking the mu-opioid receptor gene. Proc Natl Acad Sci U S A 95:6326–6330. doi: 10.1073/pnas.95.11.6326 PubMedCrossRefGoogle Scholar
  19. Ghiringhelli F, Apetoh L, Housseau F, Kroemer G, Zitvogel L (2007) Links between innate and cognate tumor immunity. Curr Opin Immunol 19:224–231. doi: 10.1016/j.coi.2007.02.003 PubMedCrossRefGoogle Scholar
  20. Hackstein H, Thomson AW (2004) Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 4:24–34. doi: 10.1038/nri1256 PubMedCrossRefGoogle Scholar
  21. Husted TL, Govindaswami M, Oeltgen PR, Rudich SM, Lentsch AB (2005) A delta2-opioid agonist inhibits p38 MAPK and suppresses activation of murine macrophages. J Surg Res 128:45–49PubMedGoogle Scholar
  22. Korzh A, Keren O, Gafni M, Bar-Josef H, Sarne Y (2008) Modulation of extracellular signal-regulated kinase (ERK) by opioid and cannabinoid receptors that are expressed in the same cell. Brain Res 1189:23–32. doi: 10.1016/j.brainres.2007.10.070 PubMedCrossRefGoogle Scholar
  23. Kraus J, Borner C, Giannini E, Hickfang K, Braun H, Mayer P, Hoehe MR, Ambrosch A, Konig W, Hollt V (2001) Regulation of mu-opioid receptor gene transcription by interleukin-4 and influence of an allelic variation within a STAT6 transcription factor binding site. J Biol Chem 276:43901–43908. doi: 10.1074/jbc.M107543200 PubMedCrossRefGoogle Scholar
  24. Kraus J, Borner C, Giannini E, Hollt V (2003) The role of nuclear factor kappaB in tumor necrosis factor-regulated transcription of the human mu-opioid receptor gene. Mol Pharmacol 64:876–884. doi: 10.1124/mol.64.4.876 PubMedCrossRefGoogle Scholar
  25. Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX (2008) Inducible IL-23p19 expression in human microglia via p38 MAPK and NF-kappaB signal pathways. Exp Mol Pathol 84:1–8. doi: 10.1016/j.yexmp.2007.09.004 PubMedCrossRefGoogle Scholar
  26. Macey TA, Lowe JD, Chavkin C (2006) Mu opioid receptor activation of ERK1/2 is GRK3 and arrestin dependent in striatal neurons. J Biol Chem 281:34515–34524. doi: 10.1074/jbc.M604278200 PubMedCrossRefGoogle Scholar
  27. Makarenkova VP, Esche C, Kost NV, Shurin GV, Rabin BS, Zozulya AA, Shurin MR (2001) Identification of delta- and mu-type opioid receptors on human and murine dendritic cells. J Neuroimmunol 117:68–77. doi: 10.1016/S0165-5728(01)00313-7 PubMedCrossRefGoogle Scholar
  28. McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ (2001) Opioids, opioid receptors, and the immune response. Drug Alcohol Depend 62:111–123. doi: 10.1016/S0376-8716(00)00181-2 PubMedCrossRefGoogle Scholar
  29. Messmer D, Hatsukari I, Hitosugi N, Schmidt-Wolf IG, Singhal PC (2006) Morphine reciprocally regulates IL-10 and IL-12 production by monocyte-derived human dendritic cells and enhances T cell activation. Mol Med 12:284–290PubMedGoogle Scholar
  30. Qian C, Jiang X, An H, Yu Y, Guo Z, Liu S, Xu H, Cao X (2006) TLR agonists promote ERK-mediated preferential IL-10 production of regulatory dendritic cells (diffDCs), leading to NK-cell activation. Blood 108:2307–2315. doi: 10.1182/blood-2006-03-005595 PubMedCrossRefGoogle Scholar
  31. Reis e Sousa (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483. doi: 10.1038/nri1845 PubMedCrossRefGoogle Scholar
  32. Roy S, Barke RA, Loh HH (1998a) MU-opioid receptor-knockout mice: role of mu-opioid receptor in morphine mediated immune functions. Brain Res Mol Brain Res 61:190–194. doi: 10.1016/S0169-328X(98)00212-5 PubMedCrossRefGoogle Scholar
  33. Roy S, Cain KJ, Chapin RB, Charboneau RG, Barke RA (1998b) Morphine modulates NF kappa B activation in macrophages. Biochem Biophys Res Commun 245:392–396. doi: 10.1006/bbrc.1998.8415 PubMedCrossRefGoogle Scholar
  34. Roy S, Wang J, Kelschenbach J, Koodie L, Martin J (2006) Modulation of immune function by morphine: implications for susceptibility to infection. J Neuroimmune Pharmacol 1:77–89. doi: 10.1007/s11481-005-9009-8 PubMedCrossRefGoogle Scholar
  35. Rozenfeld-Granot G, Toren A, Amariglio N, Nagler A, Rosenthal E, Biniaminov M, Brok-Simoni F, Rechavi G (2002) MAP kinase activation by mu opioid receptor in cord blood CD34(+)CD38(−) cells. Exp Hematol 30:473–480. doi: 10.1016/S0301-472X(02)00786-5 PubMedCrossRefGoogle Scholar
  36. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108:1435–1440. doi: 10.1182/blood-2006-03-006403 PubMedCrossRefGoogle Scholar
  37. Yi AK, Yoon JG, Yeo SJ, Hong SC, English BK, Krieg AM (2002) Role of mitogen-activated protein kinases in CpG DNA-mediated IL-10 and IL-12 production: central role of extracellular signal-regulated kinase in the negative feedback loop of the CpG DNA-mediated Th1 response. J Immunol 168:4711–4720PubMedGoogle Scholar
  38. Vigano D, Rubino T, Di CG, Ascari I, Massi P, Parolaro D (2003) Mu opioid receptor signaling in morphine sensitization. Neuroscience 117:921–929. doi: 10.1016/S0306-4522(02)00825-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zheng-Hong Li
    • 1
    • 2
    • 3
  • Niansheng Chu
    • 4
  • Li-Dong Shan
    • 1
  • Shan Gong
    • 1
    • 2
  • Qi-Zhang Yin
    • 1
    • 2
  • Xing-Hong Jiang
    • 1
    • 2
  1. 1.Department of Neurobiology, School of MedicineSoochow UniversitySuzhouPeople’s Republic of China
  2. 2.Laboratory of Aging and Nervous Diseases, School of MedicineSoochow UniversitySuzhouPeople’s Republic of China
  3. 3.Department of PhysiologyBengbu Medical CollegeBengbuPeople’s Republic of China
  4. 4.Department of Pathbiology, School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations