Journal of Neuroimmune Pharmacology

, Volume 2, Issue 4, pp 297–312 | Cite as

Toll-like Receptors in Defense and Damage of the Central Nervous System

  • Rajagopal N. Aravalli
  • Phillip K. Peterson
  • James R. Lokensgard
Invited Review


Members of the Toll-like receptor (TLR) family play critical roles as regulators of innate and adaptive immune responses. TLRs function by recognizing diverse molecular patterns on the surface of invading pathogens. In the brain, microglial cells generate neuroimmune responses through production of proinflammatory mediators. The upregulation of cytokines and chemokines in response to microbial products and other stimuli has both beneficial and deleterious effects. Emerging evidence demonstrates a central role for TLRs expressed on microglia as a pivotal factor in generating these neuroimmune responses. Therefore, understanding the basis of TLR signaling in producing these responses may provide insights into how activated microglia attempt to strike a balance between defense against invading pathogens and inflicting irreparable brain damage. These insights may lead to innovative therapies for CNS infections and neuroinflammatory diseases based on the modulation of microglial cell activation through TLR signaling.


Toll-like receptor pathogen-associated molecular patterns CNS infections microglia astrocytes 


  1. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedGoogle Scholar
  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedGoogle Scholar
  3. Aliprantis AO, Weiss DS, Zychlinsky A (2001) Toll-like receptor-2 transduces signals for NF-kappa B activation, apoptosis and reactive oxygen species production. J Endotoxin Res 7:287–291PubMedGoogle Scholar
  4. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor 2. Science 285:736–739PubMedGoogle Scholar
  5. Aloisi F (2001) Immune function of microglia. Glia 36:165–179PubMedGoogle Scholar
  6. Aravalli RN, Hu S, Rowen TN, Palmquist J, Lokensgard JR (2005) Cutting Edge: TLR2-mediated production of proinflammatory cytokines and chemokines by microglial cells in response to herpes simplex virus. J Immunol 175:4189–4193PubMedGoogle Scholar
  7. Aravalli RN, Hu S, Rowen TN, Gekker G, Lokensgard JR (2006) Differential apoptotic signaling in primary glial cells infected with herpes simplex virus 1. J Neurovirol 12:501–510PubMedGoogle Scholar
  8. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191PubMedGoogle Scholar
  9. Aschner M, Allen JW, Kimelberg HK, LoPachin RM, Streit WJ (1999) Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol 39:151–173PubMedGoogle Scholar
  10. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034PubMedGoogle Scholar
  11. Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118PubMedGoogle Scholar
  12. Bandholtz L, Guo Y, Palmberg C, Mattsson K, Ohlsson B, High A, Shabanowitz J, Hunt DF, Jornvall H, Wigzell H, Agerberth B, Gudmundsson GH (2003) Hsp90 binds CpG oligonucleotides directly: implications for hsp90 as a missing link in CpG signaling and recognition. Cell Mol Life Sci 60:422–429PubMedGoogle Scholar
  13. Bannerman DD, Goldblum SE (2003) Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis. Am J Physiol Lung Cell Mol Physiol 284:L899–L914PubMedGoogle Scholar
  14. Becher B, Fedorowicz V, Antel JP (1996) Regulation of CD14 expression on human adult central nervous system-derived microglia. J Neurosci Res 45:375–381PubMedGoogle Scholar
  15. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029PubMedGoogle Scholar
  16. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69PubMedGoogle Scholar
  17. Bowman CC, Rasley A, Tranguch SL, Marriott I (2003) Cultured astrocytes express toll-like receptors for bacterial products. Glia 43:281–291PubMedGoogle Scholar
  18. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021PubMedGoogle Scholar
  19. Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM (2006) Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53:688–695PubMedGoogle Scholar
  20. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168:1435–1440PubMedGoogle Scholar
  21. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–374PubMedGoogle Scholar
  22. Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25:1788–1796PubMedGoogle Scholar
  23. Chan G, Guilbert LJ (2006) Ultraviolet-inactivated human cytomegalovirus induces placental syncytiotrophoblast apoptosis in a Toll-like receptor-2 and tumour necrosis factor-a dependent manner. J Pathol 210:111–120PubMedGoogle Scholar
  24. Chao CC, Molitor TW, Hu S (1993) Neuroprotective role of IL-4 against activated microglia. J Immunol 151:1473–1481PubMedGoogle Scholar
  25. Cheeran MC, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR (2005) Differential responses of human brain cells to West Nile virus infection. J Neurovirol 11:512–524PubMedGoogle Scholar
  26. Cleveland MG, Gorham JD, Murphy TL, Tuomanen E, Murphy KM (1996) Lipoteichoic acid preparations of gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infect Immun 64:1906–1912PubMedGoogle Scholar
  27. Coban C, Ishii KJ, Uematsu S, Arisue N, Sato S, Yamamoto M, Kawai T, Takeuchi O, Hisaeda H, Horii T, Akira S (2007) Pathological role of Toll-like receptor signaling in cerebral malaria. Int Immunol 19:67–79PubMedGoogle Scholar
  28. Cooke GS, Hill AV (2001) Genetics of susceptibility to human infectious disease. Nat Rev Genet 2:967–977PubMedGoogle Scholar
  29. Creagh EM, O’Neill LAJ (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357PubMedGoogle Scholar
  30. Dalpke AH, Schafer MK, Frey M, Zimmermann S, Tebbe J, Weihe E, Heeg K (2002) Immunostimulatory CpG-DNA activates murine microglia. J Immunol 168:4854–4863PubMedGoogle Scholar
  31. Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62:127–136PubMedGoogle Scholar
  32. De Trez C, Pajak B, Brait M, Glaichenhaus N, Urbain J, Moser M, Lauvau G, Muraille E (2005) TLR4 and Toll-IL-1 receptor domain-containing adapter-inducing IFNbeta, but not MyD88, regulate Escherichia coli-induced dendritic cell maturation and apoptosis in vivo. J Immunol 175:839–846PubMedGoogle Scholar
  33. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531PubMedGoogle Scholar
  34. Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, Kurt-Jones EA, Karp CL (2005a) Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 6:571–578PubMedGoogle Scholar
  35. Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, Kurt-Jones EA, Karp CL (2005b) Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. J Endotoxin Res 11:363–368PubMedGoogle Scholar
  36. Dobrovolskaia MA, Vogel SN (2002) Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 4:903–914PubMedGoogle Scholar
  37. Draper DW, Bethea HN, He YW (2006) Toll-like receptor 2-dependent and -independent activation of macrophages by group B streptococci. Immunol Lett 102:202–214PubMedGoogle Scholar
  38. Dziarski R, Gupta D (2000) Role of MD-2 in TLR2- and TLR4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes. J Endotoxin Res 6:401–405PubMedGoogle Scholar
  39. Dziarski R, Jin YP, Gupta D (1996) Differential activation of extracellular signal-regulated kinase (ERK) 1, ERK2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinases by bacterial peptidoglycan. J Infect Dis 174:777–785PubMedGoogle Scholar
  40. Dziarski R, Wang Q, Miyake K, Kirschning CJ, Gupta D (2001) MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. J Immunol 166:1938–1944PubMedGoogle Scholar
  41. Ebert S, Gerber J, Bader S, Muhlhauser F, Brechtel K, Mitchell TJ, Nau R (2005) Dosedependent activation of microglial cells by Toll-like receptor agonists alone and in combination. J Neuroimmunol 159:87–96PubMedGoogle Scholar
  42. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100:13632–13637PubMedGoogle Scholar
  43. Engelhardt B (2006) Molecular mechanisms involved in T cell migration across the blood–brain barrier. J Neural Transm 113:477–485PubMedGoogle Scholar
  44. Esen N, Kielian T (2005) Recognition of Staphylococcus aureus-derived peptidoglycan (PGN) but not intact bacteria is mediated by CD14 in microglia. J Neuroimmunol 170:93–104PubMedGoogle Scholar
  45. Esen N, Kielian T (2006) Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. J Immunol 176:6802–6811PubMedGoogle Scholar
  46. Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 159:12–19PubMedGoogle Scholar
  47. Fearon DT (1997) Seeking wisdom in innate immunity. Nature 388:323–324PubMedGoogle Scholar
  48. Fischer SF, Rehm M, Bauer A, Hofling F, Kirschnek S, Rutz M, Bauer S, Wagner H, Hacker G (2005) Toll-like receptor 9 signaling can sensitize fibroblasts for apoptosis. Immunol Lett 97:115–122PubMedGoogle Scholar
  49. Frantz S, Kelly RA, Bourcier T (2001) Role of TLR-2 in the activation of nuclear factor κB by oxidative stress in cardiac myocytes. J Biol Chem 276:5197–5203Google Scholar
  50. Galdiero M, Galdiero M, Finamore E, Rossano F, Gambuzza M, Catania MR, Teti G, Midiri A, Mancuso G (2004) Haemophilus influenzae porin induces Toll-like receptor 2-mediated cytokine production in human monocytes and mouse macrophages. Infect Immun 72:1204–1209PubMedGoogle Scholar
  51. Frodsham AJ, Hill AV (2004) Genetics of infectious diseases. Human Mol Genet:R187–R194 (Spec No. 182)Google Scholar
  52. Gao JJ, Xue Q, Zuvanich EG, Haghi KR, Morrison, DC (2001) Commercial preparations of lipoteichoic acid contain endotoxin that contributes to activation of mouse macrophages in vitro. Infect Immun 69:751–757PubMedGoogle Scholar
  53. Goldstein DB, Cavalleri GL (2005) Genomics: understanding human diversity. Nature 437:1241–1242PubMedGoogle Scholar
  54. Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168:5989–5992PubMedGoogle Scholar
  55. Gupta D, Kirkland TN, Viriyakosol S, Dziarski R (1996) CD14 is a cell-activating receptor for bacterial peptidoglycan. J Biol Chem 271:23310–23316PubMedGoogle Scholar
  56. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658PubMedGoogle Scholar
  57. Hardy MP, O’Neill LA (2004) The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem 279:27699–27708PubMedGoogle Scholar
  58. Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Briere F, Vlach J, Lebecque S, Trinchieri G, Bates EE (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2950PubMedGoogle Scholar
  59. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal–ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279PubMedGoogle Scholar
  60. He H, Genovese KJ, Nisbet DJ, Kogut MH (2006) Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Mol Immunol 43:783–789PubMedGoogle Scholar
  61. Henneke P, Takeuchi O, van Strijp JA, Guttormsen HK, Smith JA, Schromm AB, Espevik TA, Akira S, Nizet V, Kasper DL, Golenbock DT (2001) Novel engagement of CD14 and multiple toll-like receptors by group B streptococci. J Immunol 167:7069–7076PubMedGoogle Scholar
  62. Hoffmann JA, Kafatos FC, Janeway CA, Jr, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318PubMedGoogle Scholar
  63. Honig LS, Rosenberg RN (2000) Apoptosis and neurologic disease. Am J Med 108:317–330PubMedGoogle Scholar
  64. Hosoi T, Suzuki S, Nomura J, Ono A, Okuma Y, Akira S, Nomura Y (2004) Bacterial DNA induced iNOS expression through MyD88-p38 MAP kinase in mouse primary cultured glial cells. Brain Res Mol Brain Res 124:159–164PubMedGoogle Scholar
  65. Hsu LC, Park JM, Zhang K, Luo JL, Maeda S, Kaufman RJ, Eckmann L, Guiney DG, Karin M (2004) The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428:341–345PubMedGoogle Scholar
  66. Humphries HE, Triantafilou M, Makepeace BL, Heckels JE, Triantafilou K, Christodoulides M (2005) Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor 4 and TLR2 signaling. Cell Microbiol 7:415–430PubMedGoogle Scholar
  67. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330PubMedGoogle Scholar
  68. Jin FY, Nathan C, Radzioch D, Ding A (1997) Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell 88:417–426PubMedGoogle Scholar
  69. Johnson GB, Brunn GJ, Kodaira Y, Platt JL (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 168:5233–5239PubMedGoogle Scholar
  70. Johnson GB, Brunn GJ, Platt JL (2003) Activation of mammalian Toll-like receptors by endogenous agonists. Crit Rev Immunol 23:15–44PubMedGoogle Scholar
  71. Jung DY, Lee H, Jung BY, Ock J, Lee MS, Lee WH, Suk K (2005) TLR4, but not TLR2, signals autoregulatory apoptosis of cultured microglia: a critical role of IFN-beta as a decision maker. J Immunol 174:6467–6476PubMedGoogle Scholar
  72. Kang TJ, Chae GT (2001) Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol 31:53–58PubMedGoogle Scholar
  73. Kariko K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279:12542–12550PubMedGoogle Scholar
  74. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825PubMedGoogle Scholar
  75. Kerfoot SM, Long EM, Hickey MJ, Andonegui G, Lapointe BM, Zanardo RC, Bonder C, James WG, Robbins SM, Kubes P (2004) TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J Immunol 173:7070–7077PubMedGoogle Scholar
  76. Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347:185–192PubMedGoogle Scholar
  77. Kielian T, Esen N, Bearden ED (2005) Toll-like receptor 2 (TLR2) is pivotal for recognition of S. aureus peptidoglycan but not intact bacteria by microglia. Glia 49:567–576PubMedGoogle Scholar
  78. Kielian T, Haney A, Mayes PM, Garg S, Esen N (2006) Toll-like receptor 2 modulates the proinflammatory milieu in Staphylococcus aureus-induced brain abscess. Infect Immun 73:7428–7435Google Scholar
  79. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313PubMedGoogle Scholar
  80. Kitamura Y, Spleiss O, Li H, Taniguchi T, Kimura H, Nomura Y, Gebicke-Haerter PJ (2001) Lipopolysaccharide-induced switch between retinoid receptor (RXR) alpha and glucocorticoid attenuated response gene (GARG)-16 messenger RNAs in cultured rat microglia. J Neurosci Res 64:553–563PubMedGoogle Scholar
  81. Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW, Kirschning CJ (2003) Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 170:438–444PubMedGoogle Scholar
  82. Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW, Kirschning CJ (2004) MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain Res 127:1437–1445Google Scholar
  83. Laflamme N, Soucy G, Rivest S (2001) Circulating cell wall components derived from gram-negative, not gram-positive, bacteria cause a profound induction of the gene-encoding Toll-like receptor 2 in the CNS. J Neurochem 79:648–657PubMedGoogle Scholar
  84. Laflamme N, Echchannaoui H, Landmann R, Rivest S (2003) Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol 33:1127–1138PubMedGoogle Scholar
  85. Lee SJ, Lee S (2002) Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy 1:181–191PubMedGoogle Scholar
  86. Lee S, Hong J, Choi SY, Oh SB, Park K, Kim JS, Karin M, Lee SJ (2004) CpG oligodeoxynucleotides induce expression of proinflammatory cytokines and chemokines in astrocytes: the role of c-Jun N-terminal kinase in CpG ODN-mediated NF-kappaB activation. J Neuroimmunol 153:50–63PubMedGoogle Scholar
  87. Lee H, Jo EK, Choi SY, Oh SB, Park K, Soo Kim J, Lee SJ (2006) Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: implication in Wallerian degeneration. Biochem Biophys Res Commun 350:742–747PubMedGoogle Scholar
  88. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22:2478–2486PubMedGoogle Scholar
  89. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100:8514–8519PubMedGoogle Scholar
  90. Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber JR, Golenbock DT, Vartanian T (2006) A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 177:583–592PubMedGoogle Scholar
  91. Lemaitre B, Nicolas E, Michaut L, Reichhart J-M, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983PubMedGoogle Scholar
  92. Lokensgard JR, Hu S, Sheng W, van Oijen M, Cox D, Cheeran MC, Peterson PK (2001) Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol 7:208–219PubMedGoogle Scholar
  93. Lorenz E, Patel DD, Hartung T, Schwartz DA (2002) Toll-like receptor 4 (TLR4)-deficient murine macrophage cell line as an in vitro assay system to show TLR4-independent signaling of Bacteroides fragilis lipopolysaccharide. Infect Immun 70:4892–4896PubMedGoogle Scholar
  94. Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lu J, Kosaras B, Sidman RL, Volpe JJ, Vartanian T (2006) Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 175:209–215PubMedGoogle Scholar
  95. Majde JA (1993) Microbial cell wall contaminants in peptides: a potential source of physiological artifacts. Peptides 14:629–632PubMedGoogle Scholar
  96. Malhotra D, Relhan V, Reddy BS, Bamezai R (2005) TLR2 Arg677Trp polymorphism in leprosy: revisited. Hum Genet 116:413–415PubMedGoogle Scholar
  97. Manukyan M, Triantafilou K, Triantafilou M, Mackie A, Nilsen N, Espevik T, Wiesmuller KH, Ulmer AJ, Heine H (2005) Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. Eur J Immunol 35:911–921PubMedGoogle Scholar
  98. Mathiesen GE, Johnson JP (1997) Brain abscess. Clin Infect Dis 25:763–779Google Scholar
  99. Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S, Koyasu S, Matsumoto K, Takeda K, Ichijo H (2005) ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6:587–592Google Scholar
  100. McKimmie CS, Fazakerley JK (2005) In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J Neuroimmunol 169:116–125PubMedGoogle Scholar
  101. Medvedev AE, Flo T, Ingalls RR, Golenbock DT, Teti G, Vogel SN, Espevik T (1998) Involvement of CD14 and complement receptors CR3 and CR4 in nuclear factor-kappaB activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls. J Immunol 160:4535–4542PubMedGoogle Scholar
  102. Medvedev AE, Sabroe I, Hasday JD, Vogel SN (2006) Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. J Endotoxin Res 12:133–150PubMedGoogle Scholar
  103. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397PubMedGoogle Scholar
  104. Miggin SM, O’Neill LA (2006) New insights into the regulation of TLR signaling. J Leukoc Biol 80:220–226PubMedGoogle Scholar
  105. Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh NR, Otchwemah RN, Dietz E, Ehrhardt S, Schroder NW, Bienzle U, Schumann RR (2006) Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci U S A 103:177–182PubMedGoogle Scholar
  106. Mogensen TH, Paludan SR, Kilian M, Ostergaard L (2006a) Live Streptococcus penumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 80:267–277PubMedGoogle Scholar
  107. Mogensen TH, Paludan SR, Kilian M, Ostergaard L (2006b) Two neisseria meningitidis strains with different ability to stimulate Toll-like receptor 4 through the MyD88-independent pathway. Scan J Immunol 64:646–654Google Scholar
  108. Mun HS, Aosai F, Narose K, Chen M, Piao LX, Takeuchi O, Akira S, Ishikura H, Yano A (2003) TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection. Int Immunol 15:1081–1087PubMedGoogle Scholar
  109. Nagai Y, Shimazu R, Ogata H, Akashi S, Sudo K, Yamasaki H, Hayashi S-I, Iwakura Y, Kimoto M, Miyake K (2002) Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood 99:1699–1705PubMedGoogle Scholar
  110. Nakahira K, Kim HP, Geng XH, Nakao A, Wang X, Murase N, Drain PF, Wang X, Sasidhar M, Nabel EG, Takahashi T, Lukacs NW, Ryter SW, Morita K, Choi AM (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203:2377–2389PubMedGoogle Scholar
  111. Neff SB, Z’graggen BR, Neff TA, Jamnicki-Abegg M, Suter D, Schimmer RC, Booy C, Joch H, Pasch T, Ward PA, Beck-Schimmer B (2006) Inflammatory response of tracheobronchial epithelial cells to endotoxin. Am J Physiol Lung Cell Mol Physiol 290:L86–L96PubMedGoogle Scholar
  112. Nolan Y, Vereker E, Lynch AM, Lynch MA (2003) Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus. Exp Neurol 184:794–804PubMedGoogle Scholar
  113. Ogata H, Su I-H, Miyake K, Nagai Y, Akashi S, Mecklenbrauker I, Rajewsky K, Kimoto M, Tarakhovsky A (2000) The Toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med 192:23–29PubMedGoogle Scholar
  114. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, Coskun M, Cilli A, Yegin O (2004) The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23:219–223PubMedGoogle Scholar
  115. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561PubMedGoogle Scholar
  116. Ohya M, Nishitani C, Sano H, Yamada C, Mitsuzawa H, Shimizu T, Saito T, Smith K, Crouch E, Kuroki Y (2006) Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 45:8657–8664PubMedGoogle Scholar
  117. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF 3rd (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233PubMedGoogle Scholar
  118. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924PubMedGoogle Scholar
  119. Pahlman LI, Morgelin M, Eckert J, Johansson L, Russell W, Riesbeck K, Soehnlein O, Lindbom L, Norrby-Teglund A, Schumann RR, Bjorck L, Herwald H (2006) Streptococcal M protein: a multipotent and powerful inducer of inflammation. J Immunol 177:1221–1228PubMedGoogle Scholar
  120. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377PubMedGoogle Scholar
  121. Park C, Lee S, Cho IH, Lee HK, Kim D, Choi SY, Oh SB, Park K, Kim JS, Lee SJ (2006) TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia 53:248–256PubMedGoogle Scholar
  122. Paul WE (1998) Fundamental immunology, 4th edn. Lippincott-Raven Publishers, PhiladelphiaGoogle Scholar
  123. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T, Wang DY, Li Y, Wang HY, Wang RF (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309:1380–1384PubMedGoogle Scholar
  124. Prehaud C, Megret F, Lafage M, Lafon M (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79:12893–12904PubMedGoogle Scholar
  125. Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, Piesche M, Schroers R, Weiss E, Kirschning CJ, Rochford CD, Bruck W, Becher B (2006) Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 116:456–464PubMedGoogle Scholar
  126. Qin L, Li G, Qian X, Liu Y, Wu X, Liu B, Hong JS, Block ML (2005) Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52:78–84PubMedGoogle Scholar
  127. Quesniaux V, Fremond C, Jacobs M, Parida S, Nicolle D, Yeremeev V, Bihl F, Erard F, Botha T, Drennan M, Soler MN, Le Bert M, Schnyder B, Ryffel B (2004) Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect 6:946–959PubMedGoogle Scholar
  128. Rao N, Nguyen S, Ngo K, Fung-Leung WP (2005) A novel splice variant of interleukin-1 receptor (IL-1R)-associated kinase 1 plays a negative regulatory role in Toll/IL-1R-induced inflammatory signaling. Mol Cell Biol 25:6521–6532PubMedGoogle Scholar
  129. Rasley A, Anguita J, Marriott I (2002) Borrelia burgdorferi induces inflammatory mediator production by murine microglia. J Neuroimmunol 130:22–31PubMedGoogle Scholar
  130. Read RC, Pullin J, Gregory S, Borrow R, Kaczmarski EB, di Giovine FS, Dower SK, Cannings C, Wilson AG (2001) A functional polymorphism of toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J Infect Dis 184:640–642PubMedGoogle Scholar
  131. Reed RC, Berwin B, Baker JP, Nicchitta CV (2003) GRP94/gp96 elicits ERK activation in murine macrophages. A role for endotoxin contamination in NF-kappa B activation and nitric oxide production. J Biol Chem 278:31853–31860PubMedGoogle Scholar
  132. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582PubMedGoogle Scholar
  133. Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17:942–964PubMedGoogle Scholar
  134. Rock RB, Hu S, Gekker G, Sheng WS, May B, Kapur V, Peterson PK (2005) Mycobacterium tuberculosis-induced cytokine and chemokine expression by human microglia and astrocytes: effects of dexamethasone. J Infect Dis 192:2054–2058PubMedGoogle Scholar
  135. Roffe E, Silva AA, Marino AP, dos Santos PV, Lannes-Vieira J (2003) Essential role of VLA-4/VCAM-1 pathway in the establishment of CD8+ T-cell mediated Trypanosoma cruzi-elicited meningoencephalitis. J Neuroimmunol 142:17–30PubMedGoogle Scholar
  136. Rubin SA, Yednock TA, Carbone KM (1998) In vivo treatment with anti-alpha4 integrin suppresses clinical and pathological evidence of Borna disease virus infection. J Neuroimmunol 84:158–163PubMedGoogle Scholar
  137. Ryan KA, Smith MF Jr, Sanders MK, Ernst PB (2004) Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-κB and interleukin-8 expression. Infect Immun 72:2123–2130PubMedGoogle Scholar
  138. Sato A, Linehan MM, Iwasaki A (2006) Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Sci U S A 103:17343–17348PubMedGoogle Scholar
  139. Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR (2006) Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 177:1272–1281PubMedGoogle Scholar
  140. Schmidt C (2006) Toll-like receptor therapies compete to reduce side effects. Nat Biotechnol 24:230–231PubMedGoogle Scholar
  141. Schork NJ, Fallin D, Lanchbury JS (2000) Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 58:250–264PubMedGoogle Scholar
  142. Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, Gobel UB, Weber JR, Schumann RR (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278:15587–15594PubMedGoogle Scholar
  143. Schroder NW, Diterich I, Zinke A, Eckert J, Draing C, von Baehr V, Hassler D, Priem S, Hahn K, Michelsen KS, Hartung T, Burmester GR, Gobel UB, Hermann C, Schumann RR (2005) Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol 175:2534–2540PubMedGoogle Scholar
  144. Scumpia PO, Kelly KM, Reeves WH, Stevens BR (2005) Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia 52:153–162PubMedGoogle Scholar
  145. Segal S, Hill AV (2003) Genetic susceptibility to infectious disease. Trends Microbiol 11:445–448PubMedGoogle Scholar
  146. Shishido T, Nozaki N, Takahashi H, Arimoto T, Niizeki T, Koyama Y, Abe J, Takeishi Y, Kubota I (2006) Central role of endogenous Toll-like receptor 2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury. Biochem Biophys Res Commun 345:1446–1453PubMedGoogle Scholar
  147. Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167:2887–2894PubMedGoogle Scholar
  148. Smirnova I, Mann N, Dols A, Derkx HH, Hibberd ML, Levin M, Beutler B (2003) Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci U S A 100:6075–6080PubMedGoogle Scholar
  149. Smith JD, McLean SD, Nakayama DK (1998) Nitric oxide causes apoptosis in pulmonary vascular smooth muscle cells. J Surg Res 79:121–127PubMedGoogle Scholar
  150. Smith JP, Morris-Downes M, Brennan FR, Wallace GJ, Amor S (2000) A role for alpha4-integrin in the pathology following Semliki Forest virus infection. J Neuroimmunol 106:60–68PubMedGoogle Scholar
  151. So EY, Kang MH, Kim BS (2006) Induction of chemokine and cytokine genes in astrocytes following infection with Theiler’s murine encephalomyelitis virus is mediated by the Toll-like receptor 3. Glia 53:858–867PubMedGoogle Scholar
  152. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314PubMedGoogle Scholar
  153. Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nerv Syst 7:13–27PubMedGoogle Scholar
  154. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139PubMedGoogle Scholar
  155. Streit WJ, Mrak RE, Griffin WST (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflamation 1:14Google Scholar
  156. Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL (2005) Role of microglia in the central nervous system’s immune response. Neurol Res 27:685–691PubMedGoogle Scholar
  157. Su J, Richter K, Zhang C, Gu Q, Li L. (2007) Differential regulation of interleukin-1 receptor associated kinase 1 (IRAK1) splice variants. Mol Immunol 44:900–905PubMedGoogle Scholar
  158. Sutmuller RP, Morgan ME, Netea MG, Grauer O, Adema GJ (2006) Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27:387–393PubMedGoogle Scholar
  159. Sweet L, Schorey JS (2006) Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner. J Leukoc Biol 80:415–423PubMedGoogle Scholar
  160. Takeshita S, Takeshita F, Haddad DE, Janabi N, Klinman DM (2001) Activation of microglia and astrocytes by CpG oligodeoxynucleotides. NeuroReport 12:3029–3032PubMedGoogle Scholar
  161. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111PubMedGoogle Scholar
  162. Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA (2006) Microglia recognize double-stranded RNA via TLR3. J Immunol 176:3804–3812PubMedGoogle Scholar
  163. Townsend GC, Scheld WM (1998) Infections of the central nervous system. Adv Intern Med 43:403–447PubMedGoogle Scholar
  164. Travis K (2007) Deciphering immunology’s dirty little secret. The Scientist 21:46–49Google Scholar
  165. Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519PubMedGoogle Scholar
  166. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002a) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112PubMedGoogle Scholar
  167. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H, Schild H (2002b) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853PubMedGoogle Scholar
  168. Verdrengh M, Thomas JA, Hultgren O (2004) IL-1 receptor-associated kinase 1 mediates protection against Staphylococcus aureus infection. Microbes Infect 6:1268–1272PubMedGoogle Scholar
  169. Visser L, de Heer HJ, Boven LA, van Riel D, van Meurs M, Melief MJ, Zahringer U, van Strijp J, Lambrecht BN, Nieuwenhuis EE, Laman JD (2005) Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. J Immunol 174:808–816PubMedGoogle Scholar
  170. Wadachi R, Hargreaves KM (2006) Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res 85:49–53PubMedCrossRefGoogle Scholar
  171. Wald D, Qin J, Zhao Z, Qian Y, Naramura M, Tian L, Towne J, Sims JE, Stark GR, Li X (2003) SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 4:920–927PubMedGoogle Scholar
  172. Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE, Langenbach R, Taniura S, Hong JS (2005) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 88:939–947CrossRefGoogle Scholar
  173. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med 10:1366–1373PubMedGoogle Scholar
  174. Weber JR, Freyer D, Alexander C, Schroder NW, Reiss A, Kuster C, Pfeil D, Tuomanen EI, Schumann RR (2003) Recognition of pneumococcal peptidoglycan: an expanded, pivotal role for LPS binding protein. Immunity 19:269–2798PubMedGoogle Scholar
  175. Wieland CW, Florquin S, Maris NA, Hoebe K, Beutler B, Takeda K, Akira S, van der Poll T (2005) The MyD88-dependent, but not the MyD88-independent, pathway of TLR4 signaling is important in clearing nontypeable haemophilus influenzae from the mouse lung. J Immunol 175:6042–6049PubMedGoogle Scholar
  176. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629PubMedGoogle Scholar
  177. Yim JJ, Lee HW, Lee HS, Kim YW, Han SK, Shim YS, Holland SM (2006a) The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun 7:150–155PubMedGoogle Scholar
  178. Yim JJ, Adams AA, Kim JH, Holland SM (2006b) Evolution of an intronic microsatellite polymorphism in Toll-like receptor 2 among primates. Immunogenetics 58:740–745CrossRefPubMedGoogle Scholar
  179. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26:174–179PubMedGoogle Scholar
  180. Zekki H, Feinstein DL, Rivest S (2002) The clinical course of experimental autoimmune encephalomyelitis is associated with a profound and sustained transcriptional activation of the genes encoding toll-like receptor 2 and CD14 in the mouse CNS. Brain Pathol 12:308–319PubMedCrossRefGoogle Scholar
  181. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1481–1482Google Scholar
  182. Zhang Z, Trautmann K, Schluesener HJ (2005a) Microglia activation in rat spinal cord by systemic injection of TLR3 and TLR7/8 agonists. J Neuroimmunol 164:154–160PubMedGoogle Scholar
  183. Zhang Z, Guo K, Schluesener HJ (2005b) The immunostimulatory activity of CpG oligonucleotides on microglial N9 cells is affected by a polyguanosine motif. J Neuroimmunol 161:68–77PubMedGoogle Scholar
  184. Zhou J, An H, Xu H, Liu S, Cao X (2005) Heat shock up-regulates expression of Toll-like receptor-2 and Toll-like receptor-4 in human monocytes via p38 kinase signal pathway. Immunology 114:522–530PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rajagopal N. Aravalli
    • 1
  • Phillip K. Peterson
    • 1
  • James R. Lokensgard
    • 1
  1. 1.Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational ResearchUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations