Journal of Neuroimmune Pharmacology

, Volume 2, Issue 1, pp 93–96 | Cite as

Glycogen Synthase Kinase 3 Beta (GSK-3β) as a Therapeutic Target in NeuroAIDS

  • Stephen Dewhurst
  • Sanjay B. Maggirwar
  • Giovanni Schifitto
  • Howard E. Gendelman
  • Harris A. Gelbard
Invited Review

Abstract

Highly active antiretroviral therapy (HAART) has made a significant impact on the lives of people living with HIV-1 infection. The incidence of neurologic disease associated with HIV-1 infection of the CNS plummeted between 1996–2000, but unfortunately the number of people currently HIV-1 infected (i.e., prevalence) with associated cognitive impairment has been steadily rising. While the reasons for this may be multifactorial, the implication is clear: there is a pressing need for adjunctive therapy directed at reversing or preventing damage to vulnerable pathways in the central nervous system (CNS) from HIV-1 infection. Using a team of preclinical and clinical investigators, we have focused our efforts on defining how proinflammatory mediators and secretory neurotoxins from HIV-1 disrupt signaling of the survival-regulating enzyme, glycogen synthase kinase 3 beta (GSK-3β). In a series of studies initiated using in vitro, then in vivo models of HIV-1-associated dementia (HAD), we have demonstrated the ability of the mood stabilizing and anticonvulsant drug, sodium valproate (VPA), that inhibits GSK-3β activity and other downstream mediators, to reverse HIV-1-induced damage to synaptic pathways in the CNS. Based on these results, we successfully performed pharmacokinetic and safety and tolerability trials with VPA in a cohort of HIV-1-infected patients with neurologic disease. VPA was well tolerated in this population and secondary measures of brain metabolism, as evidenced by an increase in N-acetyl aspartate/creatine (NAA/Cr), further suggested that VPA may improve gray matter integrity in brain regions damaged by HIV-1. These findings highlight the therapeutic potential of GSK-3β blockade.

Keywords

glycogen synthase kinase 3 beta histone deacetylase type 3 human immunodeficiency virus type 1 HIV-1 associated dementia neuroprotection 

Notes

Acknowledgements

The investigative team for this work encompassed three institutions: S. Dewhurst, S. Maggirwar, D. Peterson, G. Schifitto, R. J. Zhong, and H.A. Gelbard of the University of Rochester Medical Center, R. DiCenzo and G. Morse at the State University of Buffalo, and H. Dou, M. Boska, and H. Gendelman of the University of Nebraska Medical Center. We would also like to acknowledge the generous support of the Geoffrey Waasdorp Pediatric Neurology Fund, University of Rochester Medical Center. This work was supported by NIH grants PO1 MH64570, R01 MH56838, and RO1 NS054578.

References

  1. Ances BM, Letendre S, Buzzell M, Marquie-Beck J, Lazaretto D, Marcotte TD, Grant I, Ellis RJ (2006) Valproic acid does not affect markers of human immunodeficiency virus disease progression. J Neurovirol 12:403–406PubMedCrossRefGoogle Scholar
  2. Chang L, Ernst T, Leonido-Yee M, Witt M, Speck O, Walot I, Miller EN (1999) Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 53:782–789PubMedGoogle Scholar
  3. Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246PubMedCrossRefGoogle Scholar
  4. DiCenzo R, Peterson D, Cruttenden K, Morse G, Riggs G, Gelbard H, Schifitto G (2004) Effects of valproic acid coadministration on plasma efavirenz and lopinavir concentrations in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 48:4328–4331PubMedCrossRefGoogle Scholar
  5. Dou H, Birusingh K, Faraci J, Gorantla S, Poluektova LY, Maggirwar SB, Dewhurst S, Gelbard HA, Gendelman HE (2003) Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J Neurosci 23:9162–9170PubMedGoogle Scholar
  6. Dou H, Ellison B, Bradley J, Kasiyanov A, Poluektova LY, Xiong H, Maggirwar S, Dewhurst S, Gelbard HA, Gendelman HE (2005) Neuroprotective mechanisms of lithium in murine human immunodeficiency virus-1 encephalitis. J Neurosci 25:8375–8385PubMedCrossRefGoogle Scholar
  7. Everall IP, Bell C, Mallory M, Langford D, Adame A, Rockestein E, Masliah E (2002) Lithium ameliorates HIV-gp120-mediated neurotoxicity. Mol Cell Neurosci 21: 493–501PubMedCrossRefGoogle Scholar
  8. Fox HS, Weed MR, Huitron-Resendiz S, Baig J, Horn TF, Dailey PJ, Bischofberger N, Henriksen SJ (2000) Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus-infected monkeys. J Clin Invest 106:37–45PubMedGoogle Scholar
  9. Gendelman HE, Zheng J, Coulter CL, Ghorpade A, Che M, Thylin M, Rubocki R, Persidsky Y, Hahn F, Reinhard J Jr, Swindells S (1998) Suppression of inflammatory neurotoxins by highly active antiretroviral therapy in human immunodeficiency virus-associated dementia. J Infect Dis 178:1000–1007PubMedGoogle Scholar
  10. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762PubMedCrossRefGoogle Scholar
  11. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978PubMedCrossRefGoogle Scholar
  12. Hall AC, Brennan A, Goold RG, Cleverley K, Lucas FR, Gordon-Weeks PR, Salinas PC (2002) Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci 20:257–270PubMedCrossRefGoogle Scholar
  13. Kolson DL, Gonzalez-Scarano F (2000) HIV and HIV dementia. J Clin Invest 106:11–13PubMedCrossRefGoogle Scholar
  14. Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, Gottlicher M (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 22:3411–3420PubMedCrossRefGoogle Scholar
  15. Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, Landay AL, Coombs RW, Richman DD, Mellors JW, Coffin JM, Bosch RJ, Margolis DM (2005) Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366:549–555PubMedCrossRefGoogle Scholar
  16. Letendre SL, Woods SP, Ellis RJ, Atkinson JH, Masliah E, van den Brande G, Durelle J, Grant I, Everall I (2006) Lithium improves HIV-associated neurocognitive impairment. AIDS 20:1885–1888PubMedCrossRefGoogle Scholar
  17. Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S (1999) HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J Neurochem 73:578–586PubMedCrossRefGoogle Scholar
  18. Martinez A, Castro A, Dorronsoro I, Alonso M (2002) Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev 22:373–384PubMedCrossRefGoogle Scholar
  19. Meyerhoff DJ, MacKay S, Bachman L, Poole N, Dillon WP, Weiner MW, Fein G (1993) Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging. Neurology 43:509–515PubMedGoogle Scholar
  20. Murase S, Mosser E, Schuman EM (2002) Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35:91–105PubMedCrossRefGoogle Scholar
  21. Nishimura W, Yao I, Iida J, Tanaka N, Hata Y (2002) Interaction of synaptic scaffolding molecule and Beta-catenin. J Neurosci 22:757–765PubMedGoogle Scholar
  22. Packard M, Mathew D, Budnik V (2003) Wnts and TGF beta in synaptogenesis: old friends signalling at new places. Nat Rev Neurosci 4:113–120PubMedCrossRefGoogle Scholar
  23. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741PubMedCrossRefGoogle Scholar
  24. Rao R, Hao CM, Breyer MD (2004) Hypertonic stress activates glycogen synthase kinase 3beta-mediated apoptosis of renal medullary interstitial cells, suppressing an NFkappaB-driven cyclooxygenase-2-dependent survival pathway. J Biol Chem 279:3949–3955PubMedCrossRefGoogle Scholar
  25. Sanchez JF, Sniderhan LF, Williamson AL, Fan S, Chakraborty-Sett S, Maggirwar SB (2003) Glycogen synthase kinase 3beta-mediated apoptosis of primary cortical astrocytes involves inhibition of nuclear factor kappaB signaling. Mol Cell Biol 23:4649–4662PubMedCrossRefGoogle Scholar
  26. Schifitto G, Peterson DR, Zhong J, Ni H, Cruttenden K, Gaugh M, Gendelman HE, Boska M, Gelbard H (2006) Valproic acid adjunctive therapy for HIV-associated cognitive impairment: a first report. Neurology 66:919–921PubMedCrossRefGoogle Scholar
  27. Stankoff B, Tourbah A, Suarez S, Turell E, Stievenart JL, Payan C, Coutellier A, Herson S, Baril L, Bricaire F, Calvez V, Cabanis EA, Lacomblez L, Lubetzki C (2001) Clinical and spectroscopic improvement in HIV-associated cognitive impairment. Neurology 56:112–115PubMedGoogle Scholar
  28. Sui Z, Sniderhan LF, Fan S, Kazmierczak K, Reisinger E, Kovacs AD, Potash MJ, Dewhurst S, Gelbard HA, Maggirwar SB (2006) Human immunodeficiency virus-encoded Tat activates glycogen synthase kinase-3beta to antagonize nuclear factor-kappaB survival pathway in neurons. Eur J Neurosci 23:2623–2634PubMedCrossRefGoogle Scholar
  29. Tepper VJ, Farley JJ, Rothman MI, Houck DL, Davis KF, Collins-Jones TL, Wachtel RC (1998) Neurodevelopmental/neuroradiologic recovery of a child infected with HIV after treatment with combination antiretroviral therapy using the HIV-specific protease inhibitor ritonavir. Pediatrics 101:E7PubMedCrossRefGoogle Scholar
  30. Tong N, Sanchez JF, Maggirwar SB, Ramirez SH, Guo H, Dewhurst S, Gelbard HA (2001) Activation of glycogen synthase kinase 3 beta (GSK-3beta) by platelet activating factor mediates migration and cell death in cerebellar granule neurons. Eur J Neurosci 13:1913–1922PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Stephen Dewhurst
    • 3
  • Sanjay B. Maggirwar
    • 3
  • Giovanni Schifitto
    • 2
  • Howard E. Gendelman
    • 5
    • 6
  • Harris A. Gelbard
    • 1
    • 2
    • 3
    • 4
    • 7
  1. 1.Center for Aging and Developmental BiologyUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Department of NeurologyUniversity of Rochester Medical CenterRochesterUSA
  3. 3.Department of Microbiology and ImmunologyUniversity of Rochester Medical CenterRochesterUSA
  4. 4.Department of PediatricsUniversity of Rochester Medical CenterRochesterUSA
  5. 5.Center for Neurovirology and Neurodegenerative DisordersUniversity of Nebraska Medical CenterOmahaUSA
  6. 6.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA
  7. 7.Center for Aging and Developmental BiologyRochesterUSA

Personalised recommendations