Journal of Neuroimmune Pharmacology

, Volume 1, Issue 3, pp 340–350 | Cite as

Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System

  • Jeffrey D. Kingsley
  • Huanyu Dou
  • Justin Morehead
  • Barrett Rabinow
  • Howard E. Gendelman
  • Christopher J. DestacheEmail author
Invited Review


This review will provide an in-depth discussion on the previous development of nanoparticle-based drug delivery systems (DDS) and discuss original research data that includes the therapeutic enhancement of antiretroviral therapy. The use of nanoparticle DDS will allow practitioners to use drugs to target specific areas of the body. In the treatment of malignancies, the use of nanoparticles as a DDS is making measurable treatment impact. Medical imaging will also utilize DDS to illuminate tumors, the brain, or other cellular functions in the body. The utility of nanoparticle DDS to improve human health is potentially enormous.

Key words

nanotechnology review indinavir drug delivery system cancer HIV treatment 


  1. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623PubMedGoogle Scholar
  2. Alder-Moore J (1994) AmBisome targeting to fungal infections. Bone Marrow Transplant 14(Suppl 5):S3–S7Google Scholar
  3. Allen TM (1998) Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs 56:747–756PubMedGoogle Scholar
  4. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822PubMedGoogle Scholar
  5. Anzai Y (2004) Superparamagnetic iron oxide nanoparticles: nodal metastases and beyond. Top Magn Reson Imaging 15:103–111PubMedGoogle Scholar
  6. Beck P, Kreuter J, Reszka R, Fichtner I (1993) Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of anticancer drug mitoxantrone in murine tumour models. J Microencapsul 10:101–114PubMedGoogle Scholar
  7. Bender A, Schfer V, Steffan AM, Royer C, Kreuter J, Rubsamen-Waigmann H, von Briesen H (1994) Inhibition of HIV in vitro by antiviral drug-targeting using nanoparticles. Res Virol 145:215–220PubMedGoogle Scholar
  8. Bory C, Boulieu R, Souillet G, Chantin C, Guibaud P, Hershfield MS (1991) Effect of polyethylene glycol-modified adenosine deaminase (PEG-ADA) therapy in two ADA-deficient children: measurement of erythrocyte deoxyadenosine triphosphate as a useful tool. Adv Exp Med Biol 309A:173–176PubMedGoogle Scholar
  9. Bressler NM (2001) Verteporfin therapy of suboveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization-verteporfin in photodynamic therapy report 2. Am J Ophthalmol 131:541–560Google Scholar
  10. Cabanes A, Briggs KE, Gokhale PC, Treat JA, Rahman A (1998) Comparative in vivo studies with paclitaxel and liposome-encapsulated paclitaxel. Int J Oncol 12:1035–1040PubMedGoogle Scholar
  11. Caliceti P (2004) Pharmacokinetics of pegylated interferons: what is misleading? Dig Liver Dis 36(Suppl 3):S334–S339PubMedGoogle Scholar
  12. Ceresoli GL, Zucali PA, Favaretto AG, Grossi F, Bidoli P, el Conte G, Ceribelli A, Bearz A, Morenghi E, Cavina R, Marangolo M, Parra HJ, Santoro A (2006) Phase II study of pemetrexed plus carboplatin in malignant pleural mesothelioma. J Clin Oncol 24:1443–1448PubMedGoogle Scholar
  13. Cheng TL, Cheng CM, Chen BM, Tsao Da, Chuang KH, Hsiao SW, Lin YH, Roffler SR (2005) Monoclonal antibody-based quantitation of poly(ethylene glycol)-derivatized proteins, liposomes, and nanoparticles. Bioconjug Chem 16:1225–1231PubMedGoogle Scholar
  14. Cline MJ, Lehrer RI, Terrio MD, Golde DW (1978) Monocytes and macrophages: functions and diseases. Ann Intern Med 88:78–88PubMedGoogle Scholar
  15. Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19:1940–1950PubMedGoogle Scholar
  16. Couvreur P, Kante B, Crislain L, Roland M, Speiser P (1982) Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J Pharm Sci 71:790–792PubMedGoogle Scholar
  17. Cynamon MH, Swenson CE, Palmer GS, Ginsberg RS (1989) Liposome-encapsulated-amikacin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother 33:1179–1183PubMedGoogle Scholar
  18. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442PubMedGoogle Scholar
  19. Dembri A, Montisci MJ, Gantier JC, Chacun H, Ponchel G (2001) Targeting of 3′-azido 3′-deoxythymidine (AZT)-loaded poly(ioshexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm Res 18:467–473PubMedGoogle Scholar
  20. Dou H, Destache CJ, Morehead JR, Losley RL, Boska MD, Kingsley J, Gorantla S, Poluektova L, Nelson JA, Chaubal M, Werling J, Kipp J, Rabinow BE, Gendelman HE (2006) A macrophage nanoparticle system for anti-retroviral drug delivery: pharmacokinetic, immune and anti-viral responses in a murine model of HIV-1 disease. Blood (in press)Google Scholar
  21. Douglas SJ, Davis SS, Illum L (1987) Nanoparticles in drug delivery. Crit Rev Ther Drug Carr Syst 3:233–261Google Scholar
  22. Ferrari M (2005) Nanovector therapeutics. Curr Opin Chem Biol 9:343–346PubMedGoogle Scholar
  23. Fiegel J, Fu J, Hanes J (2004) Poly(ether-anhydride drug powder aerosols for sustained drug delivery in the lungs. J Control Release 96:411–423PubMedGoogle Scholar
  24. Fielding RM, Lewis RO, Moon-McDermott L (1998) Altered tissue distribution and elimination of amikacin encapsulated in unilamellar, low-clearance liposomes (MiKasome). Pharm Res 15:1775–1781PubMedGoogle Scholar
  25. Fishbein I, Chorny M, Banai S, Levitzki A, Danenberg HD, Gao J, Chen X, Moerman E, Gati I, Boldwasser V, Golomb G (2001) Formulation and delivery mode affect disposition and activity of tryphostin-loaded nanoparticles in the rat carotid model. Arterioscler Thromb Vasc Biol 21:1434–1439PubMedGoogle Scholar
  26. Galeska I, Kim T-K, Patil SD, Bhardwaj U, Chatttopadhyay D, Papadimitrakopoulos F, Burgess DJ (2005) Controlled release of dexamethasone from PLGA microspheres embedded within polyacid-containing PVA hydrogels. AAPS J 7:E231–E240PubMedGoogle Scholar
  27. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semi-conductor quantum dots. Nat Biotechnol 22:969–970PubMedGoogle Scholar
  28. Gbadamosi JK, Hunter AC, Moghimi SM (2002) PEGylation of microspheres generates a heterogeneous population of particles with different surface characteristics and biological performance. FEBS Lett 532:338–344PubMedGoogle Scholar
  29. Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490PubMedGoogle Scholar
  30. Gensini GF, Conti AA, Lippi D (2006) The 150th anniversary of the birth of Paul Ehrlich, chemotherapy pioneer. J Infect Mar 29 (in press)Google Scholar
  31. Glantz MJ, Jaeckle KA, Chamberlain MC, Phuphanich S, Recht L, Swinnen LJ, Maria B, LaFollette S, Schumann GB, Cole BF, Howell SB (1999a) A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res 5:3394–3402PubMedGoogle Scholar
  32. Glantz MJ, LaFollette S, Jaeckle KA, Shapiro W, Swinnen L, Rozental JR, Phuphanich S, Rogers LR, Gutheil JC, Batchelor T, Lyter D, Chamberlain M, Maria BL, Schiffer C, Bashir R, Thomas D, Cowens W, Howell SB (1999b) Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol 17:3110–3116PubMedGoogle Scholar
  33. Glue P, Pouzier-Panis R, Raffanel C, Sabo R, Gupta SK, Salfi M, Jacobs S, Clement RP (2000) A dose-ranging study of pegylated interferon alfa-2b and ribavirin in chronic hepatitis C. The Hepatitis C Intervention Therapy Group. Hepatology 32:647–657PubMedGoogle Scholar
  34. Gruenberg J (2001) The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2:721–730PubMedGoogle Scholar
  35. Gryziewicz L (2005) Regulator aspects of drug approval for macular degeneration. Adv Drug Deliv Rev 57:2092–2098PubMedGoogle Scholar
  36. Henson PM, Henson JE, Fittschen C (1988) Phagocytic cells: degranulation and secretion. In: Callin JI, Goldstein IM, Snyderman R (eds) Inflammation: Basic Principles and Clinical Correlates. Ranin Press, New York, NY, pp 363–390Google Scholar
  37. Hirsch JG (1962) Cinemicrophotographic observations on granule lysis in polymorphonuclear leucocytes during phagocytosis. J Exp Med 116:827–833PubMedGoogle Scholar
  38. Hitzman CJ, Elmquist WF, Wattenberg LW, Wiedmann TS (2006) Development of a respirable, sustained release microcarrier for 5-fluorouracil I: in vitro assessment of liposomes, microspheres, and lipid coated nanoparticles. J Pharm Sci 95:1114–1126PubMedGoogle Scholar
  39. Hoag H (2006) Seeing the big picture. Nature 440:1084–1085PubMedGoogle Scholar
  40. Hofheinz R-D, Gnad-Vogt SU, Beyer U, Hochhaus A (2005) Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs 16:691–707PubMedGoogle Scholar
  41. Hohng S, Ha T (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J Am Chem Soc 126:1324PubMedGoogle Scholar
  42. Jacobson IM, Gonzalez SA, Ahmed F, Lebovics E, Min AD, Bodenheimer HC Jr, Esposito SP, Brown RS Jr, Brau N, Klion FM, Tobias H, Bini EJ, Brodsky N, Cerulli MA, Aytaman A, Gardner PW, Geders JM, Spivack JE, Rahmin MG, Berman DH, Ehrlich J, Russo MW, Chait M, Rovner D, Edlin BR (2005) A randomized trial of pegylated interferon alpha-2b plus ribavirin in the retreatment of chronic hepatitis C. Am J Gastroenterol 100:2453–2462PubMedGoogle Scholar
  43. Jaiswal JK, Mattoussi J, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51PubMedGoogle Scholar
  44. Jayewardene AL, Zhu F, Aweeka FT, Gambertoglio JG (1998) Simple high-performance liquid chromatographic determination of the protease inhibitor indinavir in human plasma. J Chromatogr B Biomed Sci Appl 707:203–211PubMedGoogle Scholar
  45. Johnson CM, Pandey R, Sharma S, Khuller GK, Basaraba RJ, Orme IM, Lenaerts AJ (2005) Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:4335–4338PubMedGoogle Scholar
  46. Kamal SM, Fouly AE, Kamel RR, Hockenjos B, Al Rawil A, Khalifa KE, He O, Koziel MJ, El Niggar KM, Rasenack J, Afdhal NH (2006) Peginterferon alfa-2b therapy in acute hepatitis C: impact of onset of therapy on sustained virologic response. Gastroenterology 130:632–638PubMedGoogle Scholar
  47. Kato T, Nemoto R, Mori H, Abe R, Unno K, Goto A, Murota H, Harada M, Homma M (1984) Magnetic microcapsules for targeted delivery of anticancer drugs. Appl Biochem Biotechnol 10:199–211PubMedGoogle Scholar
  48. Kim CK, Lim SJ (2002) Recent progress in drug delivery systems for anticancer agents. Arch Pharm Res 25:229–239PubMedCrossRefGoogle Scholar
  49. Kim S, Chatelut E, Kim JC, Howell SB, Cates C, Kormanik PA, Chamberlain MC (1993) Extended CSF cytarabine exposure following intrathecal administration of DTD 101. J Clin Oncol 11:2186–2193PubMedGoogle Scholar
  50. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Kanayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Fangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97PubMedGoogle Scholar
  51. Kipp JE (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284:109–122PubMedGoogle Scholar
  52. Kircher MF, Allport JR, Graves EE, Love V, Josephson L, Lichtman AH, Weissleder R (2003) In vivo high-resolution three dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63:6838–6846PubMedGoogle Scholar
  53. Kontermann RE (2006) Immunoliposomes for cancer therapy. Curr Opin Mol Ther 8:39–45PubMedGoogle Scholar
  54. Kreuter J (1978) Nanoparticles and nanocapsules—new dosage forms in the nanometer size range. Pharm Acta Helv 53:33–39PubMedGoogle Scholar
  55. Kreuter J (1983) Evaluation of nanoparticles as drug-delivery systems. III. Materials, stability, toxicity, possibilities of targeting, and use. Pharm Acta Helv 58:242–250PubMedGoogle Scholar
  56. Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos Ap, Weiss S (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci USA 97:9461PubMedGoogle Scholar
  57. Lamprecht A, Ubrich N, Yamamoto H, Schafer U, Takeuchii H, Maincent P, Kawashima Y, Lehr CM (2001) Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther 299:775–781PubMedGoogle Scholar
  58. LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191PubMedGoogle Scholar
  59. Laverman P, Dams ET, Storm G, Hafmans TG, Croes HJ, Oven WJ, Corstens FH, Boerman OC (2001) Microscopic localization of PEG-liposomes in a rat model of focal infection. J Control Release 75:347–355PubMedGoogle Scholar
  60. Lee CC, MacKay JA, Frechet JM, Szoka FC (2005a) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526PubMedGoogle Scholar
  61. Lee JH, Canny MD, Erkenez A, Krilleke D, Ng YS, Shima DT, Pardi A, Jucker F (2005b) A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Natl Acad Sci USA 102:18902–18907PubMedGoogle Scholar
  62. Leroux JC, Cozens R, Roesel JL, Galli B, Kubel F, Doelker E, Gurny R (1995) Pharmacokinetics of a novel HIV-1 protease inhibitor incorporated into biodegradable or enteric nanoparticles following intravenous and oral administration to mice. J Pharm Sci 84:1387–1391PubMedGoogle Scholar
  63. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203PubMedGoogle Scholar
  64. Lobenberg R, Kreuter J (1996) Macrophage targeting of azidothymidine: a promising strategy for AIDS therapy. AIDS Res Hum Retrovir 10:1709–1715Google Scholar
  65. Lobenberg R, Araujo L, von Beirsen J, Rodgers E, Kreuter J (1998) Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats. J Control Release 50:21–30PubMedGoogle Scholar
  66. Luck M, Paulke BR, Schroder W, Blunk T, Muller RH (1998) Analysis of plasma protein adsoption on polymeric nanoparticles with different surface characteristics. J Biomed Mater Res 39:478–485PubMedGoogle Scholar
  67. Luster AD, Rothenburg ME (1997) Role of the monocytes chemoattractant protein and eotoxin subfamily of chemokines in allergic inflammation. J Leukoc Biol 62:620–633PubMedGoogle Scholar
  68. Lysik MA, Wu-Pong S (2003) Innovations in oligonucleotide drug delivery. J Pharm Sci 92:1559–1579PubMedGoogle Scholar
  69. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284PubMedGoogle Scholar
  70. Mansson A, Sundberg M, Balaz, Bunk R, Nicholls IA, Omling P, Tagerud S, Montelius L (2004) In vitro sliding of acting filaments labeled with single quantum dots. Biochem Biophys Res Commun 314:529–534PubMedGoogle Scholar
  71. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544PubMedGoogle Scholar
  72. Moghimi SM, Hunter AC (2001) Capture of stealth nanoparticles by the body's defences. Crit Rev Ther Drug Carr Syst 18:527–550Google Scholar
  73. Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–467PubMedGoogle Scholar
  74. Moghimi SM, Muir IS, Illum L, Davis SS, Kolb-Bachofen V (1993) Coating particle with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of the dysopsonins in the serum. Biochim Biophys Acta 1179:157–165PubMedGoogle Scholar
  75. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318PubMedGoogle Scholar
  76. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:11–30Google Scholar
  77. Muggia F, Hamilton A (2001) Phase III data on Caelyz in ovarian cancer. Eur J Cancer 37(Suppl 9):S15–S18PubMedGoogle Scholar
  78. Murry DJ, Blaney SM (2000) Clinical pharmacology of encapsulated sustained release cytarabine. Ann Pharmacother 34:1173–1178PubMedGoogle Scholar
  79. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedGoogle Scholar
  80. Nirmal M, Norris DJ, Kuno M, Bawendi MG, Efros AL, Rosen M (1995) Observation of the “Dark exciton” in CdSe quantum dots. Phys Rev Lett 75:2731–3728Google Scholar
  81. Nobs L, Buchegger F, Gurny R, Allemann E (2004) Current methods for attaching ligands to liposomes and nanoparticles. J Pharm Sci 93:1980–1992PubMedGoogle Scholar
  82. Nobuto H, Sugita T, Kubo T, Shimose S, Yasunaga Y, Murakami T, Ochi M (2004) Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109:627–635PubMedGoogle Scholar
  83. Northfelt DW, Martin FJ, Working P, Volberding PA, Russell J, Newman M, Amantea MA, Kaplan LD (1996) Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi's sarcoma. J Clin Pharmacol 36:55–63PubMedGoogle Scholar
  84. Nyman DW, Campbell KJ, Hersh E, Long K, Richardson K, Trieu V, Desai N, Hawkins MJ, Von Hoff DD (2005) Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 23:7785–7793PubMedGoogle Scholar
  85. Olsen E, Duvic M, Frankel A, Kim Y, Martin A, Vonerheid E, Jegasothy B, Wood G, Heald P, Oseroff A, Pinter-Brown L, Bowen G, Kuzel T, Fivenson D, Foss F, Glode M, Molina A, Knobler E, Stewart S, Cooper K, Stevens S, Craig F, Reuben J, Bacha P, Nichols J (2001) Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 19:376–388PubMedGoogle Scholar
  86. Pandey R, Khuller GK (2004) Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model. J Antimicrob Chemother 54:266–268PubMedGoogle Scholar
  87. Pandey R, Khuller GK (2005) Antitubercular inhaled therapy: opportunities, progress and challenges. J Antmicrob Chemother 55:430–435Google Scholar
  88. Pandey R, Sharma A, Zohoor A, Sharma S, Khuller GK, Prasad B (2003) Poly (dl-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 52:981–986PubMedGoogle Scholar
  89. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347PubMedGoogle Scholar
  90. Panyam J, Zhou W-Z, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16:1217–1226PubMedGoogle Scholar
  91. Paul M, Durand R, Boulard Y, Fusai T, Fernandez C, Rivollet D, Deniau M, Astier A (1998) Physiochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target 5:481–490PubMedCrossRefGoogle Scholar
  92. Perez AT, Domenech GH, Frankel C, Vogel CL (2002) Peglyated liposomal doxorubicin for metastatic breast cancer: the Cancer Research Network, Inc. experience. Cancer Investig 20(Suppl 2):22–29Google Scholar
  93. Persson EM, Gustafsson AS, Carlsson AS, Nilsson RG, Knutson L, Forsell P, Hanisch G, Llennenas H, Abrahamsson B (2005) The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm Res 22:2141–2151PubMedGoogle Scholar
  94. Petersein J, Saini S, Weissleder R (1996) Liver. II: iron oxide-based reticuloendothelial contrast agents for MR imaging. Clinical review. Magn Reson Imaging Clin N Am 4:53–60PubMedGoogle Scholar
  95. Pinaud F, King D, Moore HP, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126:6115PubMedGoogle Scholar
  96. Pinto-Alphandary H, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 13:155–168PubMedGoogle Scholar
  97. Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796PubMedGoogle Scholar
  98. Ravi Kumar MN (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Sci 3:234–258Google Scholar
  99. Reddy LH, Sharma RK, Murthy RS (2004) Enhanced tumour uptake of doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles in mice bearing Dalton's lymphoma tumour. J Drug Target 12:443–451PubMedGoogle Scholar
  100. Rosen O, Muller HJ, Gokbuget N, Langer W, Peter N, Schwartz S, Hahling D, Hartmann F, Ittel TH, Muck R, Rothmann F, Arnold R, Boos J, Hoelzer D (2003) Pegylated asparaginase in combination with high-dose methotrexate for consolidation in adult lymphoblastic leukaemia in first remission: a pilot study. Br J Haematol 123:836–841PubMedGoogle Scholar
  101. Schiffelers R, Storm G, Bakker-Woudenberg I (2001) Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. J Antimicrob Chemother 48:333–344PubMedGoogle Scholar
  102. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572PubMedGoogle Scholar
  103. Sharma A, Pandey R, Sharma S, Khuller GK (2004) Chemotherapeutic efficacy of poly (dl-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int J Antimicrob Agents 24:599–604PubMedGoogle Scholar
  104. Shenoy D, Little S, Langer R, Amiji M (2005) Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies. Pharm Res 22:2107–2114PubMedGoogle Scholar
  105. Siena S, Piccart MJ, Holmes FA, Glaspy J, Hackett J, Renwick JJ (2003) A combined analysis of two pivotal randomized trials of a single dose of pegfilgrastim per chemotherapy cycle and daily filgrastim in patients with stage II–IV breast cancer. Oncol Rep 10:715–724PubMedGoogle Scholar
  106. Singh SS (2006a) Preclinical pharmacokinetics: an approach towards safer and efficacious drugs. Curr Drug Metab 7:165–172PubMedGoogle Scholar
  107. Singh SS (2006b) Preclinical pharmacokinetics: an approach towards safer and efficacious drugs. Curr Drug Metab 7:165–182PubMedGoogle Scholar
  108. Sundar S, Jha TK, Thakur CP, Mishra M, Singh VP, Buffels R (2003) Single-dose liposomal amphotericin B in the treatment of visceral leishmaniasis in India: a multicenter study. Clin Infect Dis 37:800–804PubMedGoogle Scholar
  109. Sundar S, Mehta H, Suresh AV, Singh SP, Rai M, Murray HW (2004) Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations. Clin Infect Dis 38:377–383PubMedGoogle Scholar
  110. Symon Z, Peyser A, Tzemach D, Lyass O, Sucher E, Shezen E, Gabizon A (1999) Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 86:72–78PubMedGoogle Scholar
  111. Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Cellular trajectories of peptide-modified gold particles complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 15:482–490PubMedGoogle Scholar
  112. Torchilin VP (1997) Surface-modified liposomes in γ and MR-imaging. Adv Drug Deliv Rev 24:301–313Google Scholar
  113. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(Suppl 2):S81–S91PubMedGoogle Scholar
  114. Torchilin VP (2005a) Lipid-core micelles for targeted drug delivery. Curr Drug Deliv 2:319–327PubMedGoogle Scholar
  115. Torchilin VP (2005b) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160PubMedGoogle Scholar
  116. Tucker RD, Huidobro C, Larson R, Platz CE (2000) Use of permanent interstitial temperature self-regulating rods for ablation of prostate cancer. J Endourol 14:511–517PubMedCrossRefGoogle Scholar
  117. Vicent MJ, Duncan R (2006) Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol 24:39–47PubMedGoogle Scholar
  118. Vogel CL, Wojtukiewicz MZ, Carroll RR, Tjulandin SA, Barajas-Figueroa LJ, Wiens BL, Neumann TA, Schwartzberg LS (2005) First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebo-controlled phase III study. J Clin Oncol 23:1178–1184PubMedGoogle Scholar
  119. Volmink J, Garner P (2000) Interventions for promoting adherence to tuberculosis management. Cochrane Database Syst Rev 4:CD000010Google Scholar
  120. Walsh TJ, Viviani MA, Arathoon E, Chiou C, Ghannoum M, Groll AH, Odds FC (2000) New targets and delivery systems for antifungal therapy. Med Mycol 38(Suppl 1):335–347PubMedGoogle Scholar
  121. Wu XY, Liu H, Lui J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46PubMedGoogle Scholar
  122. Ye Q, Asheman J, Stevenson M, Brownson E, Katre NV (2000) DepoFoam technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release 64:155–166PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jeffrey D. Kingsley
    • 1
    • 4
  • Huanyu Dou
    • 1
    • 2
  • Justin Morehead
    • 1
    • 2
  • Barrett Rabinow
    • 6
  • Howard E. Gendelman
    • 1
    • 2
    • 3
  • Christopher J. Destache
    • 1
    • 2
    • 5
    Email author
  1. 1.Center for Neurovirology and Neurodegenerative DisordersUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaUSA
  4. 4.Department of PediatricsUniversity of Nebraska Medical CenterOmahaUSA
  5. 5.Creighton University School of Pharmacy & Health ProfessionsOmahaUSA
  6. 6.Baxter Healthcare CorporationRound LakeUSA

Personalised recommendations